2018 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

ALABAMA POWER COMPANY PLANT GASTON GYPSUM POND

Report Electronically Submitted - January 31, 2019

Prepared By:

Southern Company Services

Earth Science and Environmental Engineering

Table of Contents

1.0	Introduction	1
2.0	Site Location and Description	2
3.0	Site Geology and Hydrogeology	2
3.1	Physical Setting	2
3.2	Geology and Hydrogeology	2
3.3	Uppermost Aquifer	3
4.0	Groundwater Monitoring System and Activity	5
4.1	Groundwater Monitoring System	5
4.2	Monitoring Well Installation and Maintenance	7
4.3	Assessment Monitoring	7
4.4	Additional Groundwater Sampling	7
5.0	Sampling Methodology and Analysis	9
5.1	Groundwater Flow Direction, Gradient, and Velocity	9
5.2	Groundwater Sampling	11
5.3	Laboratory Analysis	11
5.4	Quality Assurance/Quality Control	11
6.0	Statistical Analysis	13
6.1	Statistical Methods	13
6	.1.1 Appendix III Constituents	13
6	.1.2 Assessment Monitoring Statistics	14
6.2	Statistical Analysis Results	15
6	.2.1 First Semi-Annual Groundwater Monitoring Event	16
6	.2.2 Second Semi-Annual Groundwater Monitoring Event	16
7.0	Alternate Source Demonstrations	17
8.0	Monitoring Program Status	18
9.0	Conclusions and Future Actions	19
10.0	References	20

Plant Gaston Gypsum Pond 2018 Annual Groundwater Monitoring and Corrective Action Report

FIGURES

Figure 1	Site Location Map
Figure 2	Site Geologic Map
Figure 3	Monitoring Well Location Map
Figure 4	Potentiometric Surface Map (February 2018)
Figure 5	Potentiometric Surface Map (June 2018)
Figure 6	Potentiometric Surface Map (October 2018)

TABLES

Table 1	Groundwater Monitoring Well Network Details
Table 2	Compliance Sampling Events Summary
Table 3	Groundwater Elevations Summary 2018
Table 4	Flow Rate Calculations
Table 5	Summary of Background Levels and Groundwater Protection Standards

APPENDICES

Appendix A	Groundwater Analytical Data
Appendix B	Statistical Data Evaluation
Appendix C	Alternate Source Demonstration

ABBREVATIONS

AL Alabama

APC Alabama Power Company
APCEL APC Environmental Laboratory
ASD Alternate Source Demonstration

ASTM Alabama Power Company Environmental Laboratory

BGS below ground surface
CCR Coal Combustion Residual
CFR Code of Federal Regulations

COC chain of custody
DO dissolved oxygen

EPA United States Environmental Protection Agency

ft feet

GW groundwater

m meter

mg/L milligram per liter
MSL mean sea level

MW- denotes "Monitoring Well"

NELAP National Environmental Laboratory Accreditation Program

NTU nephelometric turbidity unit ORP oxidation reduction potential

pCi/L picocuries per liter
PE Professional Engineer
PG Professional Geologist

PL prediction limits

PQL practical quantitation limit
PVC polymerizing vinyl chloride
QA/QC quality assurance/quality control

RL reporting limit

RPD relative percent difference

SM Standard Method(s)

SSI statistically significant increase SSL statistically significant level

TAL Test America, Inc.
TOC top of casing

TDS total dissolved solids

USGS Unites States Geological Survey

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency's (EPA) coal combustion residual (CCR) rule (40 C.F.R. Part 257, Subpart D) and the State of Alabama's ADEM Admin. Code Chapter 335-13-15, this 2018 Annual Groundwater Monitoring and Corrective Action Report has been prepared to document the 2018 initial assessment and two semi-annual groundwater monitoring activities at the Plant Gaston Gypsum Pond and to satisfy the requirements of §257.90(e) and ADEM Admin. Code r. 335-13-15-.06(1)(f). Initial assessment monitoring, semi-annual monitoring, and associated reporting for Plant Gaston Gypsum Pond is performed in accordance with the monitoring requirements §257.90 through §257.95 and ADEM Admin. Code r. 335-13-15-.06(1) through r. 335-13-15-.06(6).

2.0 SITE LOCATION AND DESCRIPTION

Alabama Power Company's Plant E.C. Gaston Steam Plant (Plant Gaston) is in Shelby County, Alabama. The physical address is 31972 Alabama Highway 25, Wilsonville, AL 35186. Plant Gaston lies in Section 1, Township 21 South, Range 1 East, Sections 5 and 6, Township 21 South, Range 2 East, and Sections 31 and 32, Township 20 South, Range 2 East data are based on visual inspection of USGS topographic quadrangle maps and GIS maps (USGS, 1980, 1982a, 1982b, 1983).

The Gypsum Pond is located south-southwest of the main plant along the Coosa River. **Figure 1**, **Site Location Map**, depicts the location of the Plant and Gypsum Pond with respect to the surrounding area.

3.0 SITE GEOLOGY AND HYDROGEOLOGY

3.1 Physical Setting

Plant Gaston's topography is characterized by a flat valley adjacent to the Coosa river. Elevations typically range from 400 to 600 feet above mean sea level (MSL) in the Coosa Valley district of the Valley and Ridge physiographic province. The Coosa Valley extends approximately 20 miles (Sapp and Emplaincourt, 1975). Local topography is characterized by moderate relief with elevations ranging from approximately 395 MSL along the eastern plant boundary to approximately 530 feet MSL at a hilltop in the southwestern portion of the plant.

3.2 Geology and Hydrogeology

Plant Gaston is located in the Coosa Valley district of the Valley and Ridge Physiographic Province of central Alabama, which is characterized by moderate relief with elevations ranging from approximately 395 feet MSL along the eastern plant boundary to approximately 530 feet MSL at a hilltop in the southwestern portion of the plant. The geologic units on the property have been folded and faulted at various intervals, and several faults consisting of low-to-high angle thrust faults and some normal faults are present. Fault sets trend obliquely to one another in the northeastern portion of the plant, resulting in a series of imbricate thrust slices of Fort Payne chert, Parkwood and Floyd shales, and Newala limestone (Frings, 1980).

The plant is on a portion of the Valley and Ridge province known as the Coosa deformed belt, which is a long, sinuous, structurally complex zone that can be subdivided laterally into three segments by two lateral offsets. (GSA, 2010b) The Coosa deformed belt is situated on the Yellowleaf thrust sheet, which is a

shallowly detached structural complex with small-scale, commonly isoclinal parasitic folding (McIntyre, *et al.*, 2010). Two lateral offsets subdivide the belt, the Harpersville offset and the Reeds Mill offset. The Harpersville offset is located on the southwest end of the Coosa deformed belt and lies just northeast of the plant. **Figure 2**, **Site Geologic Map**, illustrates the surface geology at the site and neighboring areas.

The boundaries of the Coosa deformed belt are delineated by the Coosa synclinorium to the north and the Pell City thrust fault to the south. Most structures in the belt trend northeast-southwest, although a northwest-southeast trend is encountered in the plant area. Imbricate thrust slices of sedimentary Paleozoic rocks comprise the geological material of the belt (Frings, 1981). The area is underlain by a structurally complex Paleozoic sequence of sedimentary rocks that range from Cambrian to Mississippian in age. Carbonate rocks comprise the bulk of the Cambrian and Ordovician rocks, and cherty limestone, sandstone, and shale comprise the Mississippian-age units. Also present in some portions of the plant is a thin unit of Devonian-age sandstone or shale.

Generalized near surface stratigraphy of the site, in descending order, consists of approximately 18 to 60 feet of overburden materials overlying the Ordovician Newala Limestone. Overburden materials are predominantly comprised of yellow-brown, clayey sand with zones of clay and gravelly fines. The underlying Newala Limestone was encountered at depths ranging from 18 to 60 feet and was described as a medium to dark gray, micritic limestone with thin shale layers and minor amounts of dolomite. A 12-ft thick section of light gray, sandstone was encountered at location GN-GSA-MW-13, possibly indicating the presence of the Parkwood Formation at portions of the site. Pyrite occurrence was noted at GN-GSA-MW-13 as well.

3.3 Uppermost Aquifer

The uppermost aquifer beneath the site is the Valley and Ridge aquifer system. At the site, monitoring wells are generally screened in overburden material, the overburden-top of rock interface, and upper portions of the Newala Limestone. The first zone of saturation most commonly pertains to coarse sediments near the top of rock interface. Depth to the top of the uppermost aquifer is generally on the order of 30 to 40 feet below ground surface (BGS), but can vary at locations where overburden moisture is not present and weathered or fractured rock yields little groundwater for pumping. Groundwater elevations from overburden and rock screened wells are relatively uniform, indicating unconfined conditions.

The Valley and Ridge aquifer system, found in the Coosa, Cahaba, Birmingham-Big Canoe, and Murphrees Valleys, includes the Weisner Formation; Shady Dolomite; Conasauga Formation; Copper Ridge and

Chepultepec Dolomites; as well as the Longview, Newala, Lenoir, and Little Oak Limestones. In some areas, the Knox Group includes Copper Ridge, Chepultepec, Longview, and Newala united as one group. This aquifer system includes the Ketona, Brierfield, and Bibb Dolomites in Shelby County. Other rock units of Cambrian to Devonian age are included within the Valley and Ridge aquifer system, due to the fact that they do not form effective barriers to ground water movement among permeable units of the system. However, these other units are not significant sources of ground water (Kopaska-Merkel *et al.*, 2005).

The Valley and Ridge aquifer system in Shelby County has a yield potential that varies locally, with a maximum yield of 1,600 gallons per minute (gpm). In western Shelby County, groundwater generally flows toward the Coosa River, and much of this area is a recharge zone for the Valley and Ridge Aquifer system (Kopaska-Merkel *et al.*, 2005). Ground water in Shelby County is generally of good quality and is suitable for most uses, but the high iron content or hardness may be objectionable for some uses (Shamburger and Harkins, 1980). As of 2005, 2% of total freshwater use, or 20.54 million gallons per day (mgd) out of a total of 812.71 mgd, came from groundwater in Shelby County (USGS, 2005).

4.0 GROUNDWATER MONITORING SYSTEM AND ACTIVITY

Pursuant to §257.91 and ADEM Admin. Code r. 335-13-15-.06(2), Plant Gaston has installed a groundwater monitoring system to monitor groundwater within the uppermost aquifer. The certified groundwater monitoring system for the Plant Gaston Gypsum Pond is designed to monitor groundwater passing the waste boundary of the CCR unit within the uppermost aquifer. Wells were located to serve as upgradient and downgradient monitoring locations based on groundwater flow direction as determined by the potentiometric surface elevation contour maps. All groundwater monitoring wells were designed and constructed using "Design and Installation of Groundwater Monitoring Wells in Aquifers", ASTM Subcommittee D18.21, as a guideline. As required by § 257.90(e) and ADEM Admin. Code r. 335-13-15-.06(1)(f), the following also describes monitoring related-activities performed during the preceding year

4.1 Groundwater Monitoring System

The groundwater monitoring network is comprised of 15 monitoring wells. Monitoring well locations are presented on Figure 3, Monitoring Well Location Map. Table 1, Groundwater Monitoring Well Network Details, summarizes the monitoring well construction details and design purpose for the Plant Gaston Gypsum Pond.

Monitoring well locations GN-GSA-MW-2, GN-GSA-MW-3, GN-GSA-MW-14S, and GN-GSA-MW-15 serve as upgradient locations for the Gypsum Pond. Upgradient wells are located north of the Gypsum Pond as determined by water level monitoring and potentiometric surface maps constructed for the site. Monitoring well locations GN-GSA-MW-1 and GN-GSA-MW-4 through GN-GSA-MW-13 are utilized as downgradient locations for the Gypsum Pond. Downgradient locations are located lateral to and south of the Gypsum Pond as determined by water level monitoring and potentiometric surface maps constructed for the site.

Table 1. Groundwater Monitoring Well Network Details

Well ID	Purpose	Installation Date	Northing	Easting	Total Depth	Top of Casing Elevation (feet MSL)	Ground Elevation (feet MSL)	Top of Screen Elevation (feet MSL)	Bottom of Screen Elevation (feet MSL)
GN-GSA-MW-1	Downgradient	11/5/2015	1002932.67	465110.34	168.50	426.73	423.21	309.75	299.75
GN-GSA-MW-2	Upgradient	10/28/2015	1003344.33	465112.90	55.00	421.19	417.63	372.88	362.88
GN-GSA-MW-3	Upgradient	10/21/2015	1003093.69	464357.74	54.30	425.30	421.84	379.06	369.06
GN-GSA-MW-4	Downgradient	10/27/2015	1002849.78	463873.54	46.50	427.71	424.87	391.37	381.37
GN-GSA-MW-5	Downgradient	11/19/2015	1002321.38	464049.62	55.00	429.49	426.08	392.47	382.47
GN-GSA-MW-6	Downgradient	11/17/2015	1001935.61	464191.94	45.00	427.64	424.55	390.70	380.70
GN-GSA-MW-7	Downgradient	11/10/2015	1001142.07	464485.43	50.00	423.79	420.38	385.22	375.22
GN-GSA-MW-8	Downgradient	10/28/2015	1000455.33	464781.68	54.90	417.58	414.51	376.45	366.45
GN-GSA-MW-9	Downgradient	10/29/2015	1000625.59	465070.63	44.00	417.68	414.76	381.13	371.13
GN-GSA-MW-10	Downgradient	12/9/2015	1000898.07	465327.37	40.00	418.04	414.78	386.53	376.53
GN-GSA-MW-11	Downgradient	11/12/2015	1001309.48	465221.83	31.00	417.69	414.81	393.48	383.48
GN-GSA-MW-12	Downgradient	10/29/2015	1001872.32	465065.28	36.00	417.10	413.80	394.16	384.16
GN-GSA-MW-13	Downgradient	12/15/2015	1002342.50	465346.71	45.00	422.74	419.82	384.58	374.58
GN-GSA-MW-14S	Upgradient	5/3/2016	1003222.16	464632.71	52.00	424.06	420.32	391.08	381.08
GN-GSA-MW-15	Upgradient	5/5/2016	1003002.35	464146.68	46.31	426.19	422.53	386.62	376.62

Notes: 1. Northing and easting are in feet relative to the State Plane Alabama West North America Datum of 1983.

^{2.} Elevations are in feet relative to the North American Vertical Datum of 1988.

4.2 Monitoring Well Installation and Maintenance

There was no change to the groundwater monitoring system in 2018; the network remained the same as in the 2017 (previous) reporting year. Monitoring well-related activities were limited to the following: Visual inspection of well conditions prior to sampling, recording the site conditions, and performing exterior maintenance to perform sampling under safe and clean conditions.

4.3 Assessment Monitoring

Based on results of the 2017 Annual Groundwater and Corrective Action Monitoring Report, Alabama Power initiated an assessment monitoring program on January 15, 2018. Pursuant to 40 CFR §257.95(a) and ADEM Admin. Code r. 335-13-15-.06(6)(a), monitoring wells were sampled for Appendix IV parameters in February 2018, within 90 days of initiating the assessment monitoring program. Pursuant to 40 CFR §257.95(d) and ADEM Admin. Code r. 335-13-15-.06(6)(d) monitoring wells were subsequently sampled for Appendix III and Appendix IV parameters in June and October 2018. The June 2018 event was conducted within 90 days of obtaining the results from the February 2018 sampling event. Samples were collected from wells in the Professional Engineer (PE)-certified monitoring systems shown on **Figure 3.** A summary of groundwater sampling events completed in 2018 is provided in **Table 2, Compliance Sampling Events Summary.**

Analytical data from the initial assessment and semi-annual monitoring events are included as **Appendix A, Groundwater Analytical Data**, in accordance with the requirements of §257.90(e)(3) and ADEM Admin. Code r. 335-13-15-.06(1)(f)3.

Table 2. Compliance Sampling Events Summary					
Sampling Purpose Constituents Sampled Laboratory Receipt Date					
Compliance Event 1	Initial Assessment	Appendix IV	4/13/2018		
Compliance Event 2	Assessment Monitoring	Appendices III and IV	7/25/2018		
Compliance Event 3	Assessment Monitoring	Appendices III and IV	11/28/2018		

4.4 Additional Groundwater Sampling

Additional groundwater sampling was performed in October to further characterize groundwater quality at the site. Groundwater samples were collected following the procedures described in Section 5.0. Analytical results are included in **Appendix A**. Additional sampling was completed for the following analytes:

Plant Gaston Gypsum Pond 2018 Annual Groundwater Monitoring and Corrective Action Report

- Alkalinity, Total
- Bicarbonate Alkalinity
- Calcium, Total
- Carbonate Alkalinity
- Chloride
- Conductivity
- Dissolved Oxygen
- Dissolved Solids
- Iron, Dissolved
- Iron, Total
- Magnesium, Total
- Manganese, Dissolved
- Manganese, Total
- ORP
- pH
- pH for Alkalinity
- Potassium, Total
- Sodium, Total
- Sulfate
- Temperature
- Turbidity

5.0 SAMPLING METHODOLOGY AND ANALYSIS

The following describes the methods used to conduct assessment monitoring at the Plant Gaston Gypsum Pond.

5.1 Groundwater Flow Direction, Gradient, and Velocity

Prior to each sampling event, groundwater levels were measured and recorded to the nearest 0.01 foot within a 24-hour period from the certified well network and piezometers. Groundwater levels recorded during the monitoring events are summarized in **Table 3**, **Groundwater Elevations Summary 2018**. Groundwater levels and top of casing elevations were used to calculate groundwater elevation and develop the potentiometric surface elevation contour map provided as **Figures 4 through 6**, **Potentiometric Surface Contour Map(s)**. The general direction of groundwater flow is north to south. The groundwater flow pattern observed during the 2018 monitoring events is consistent with historic observations.

	Tab	le 3					
	Groundwater Elevat	ions Summar	y 2018				
		Groundwater Elevations					
Well ID	Top of Casing		(feet MSL)				
	Elevation						
		Feb-18	Jun-18	Oct-18			
	(feet MSL)						
GN-GSA-MW-1	426.35	399.65	398.46	394.85			
GN-GSA-MW-2	420.92	398.87	401.10	397.32			
GN-GSA-MW-3	424.75	401.54	404.58	399.30			
GN-GSA-MW-4	427.65	NM	NM	NM			
GN-GSA-MW-5	429.33	400.29	399.37	395.86			
GN-GSA-MW-6	427.40	399.56	398.60	395.70			
GN-GSA-MW-7	423.47	397.85	396.61	394.57			
GN-GSA-MW-8	417.31	396.91	395.80	393.81			
GN-GSA-MW-9	417.51	398.95	396.36	394.08			
GN-GSA-MW-10	417.73	397.08	395.93	393.71			
GN-GSA-MW-11	417.47	396.91	395.87	394.17			
GN-GSA-MW-12	416.71	397.96	396.48	394.56			
GN-GSA-MW-13	422.42	400.41	398.20	394.46			
GN-GSA-MW-14S	421.12	397.06	399.40	395.20			
GN-GSA-MW-15	423.06	403.63	404.53	397.04			

Groundwater flow rates at the site were calculated based on hydraulic gradients, hydraulic conductivity from previous slug test results, and an estimated effective porosity of the screened horizon. Based on slug test data at the site, the average hydraulic conductivity is 0.0256 ft/d or 1.49x 10⁻⁴ cm/second., which is used in the flow calculations. An effective porosity of 0.15 was used based on the default values for effective porosity recommended by USEPA for a silty sand-type soil (U.S. USEPA, 1996).

Horizontal flow velocity was calculated using the commonly-used derivative of Darcy's Law:

$$V = \frac{K * i}{n_e}$$

Where:

V =Groundwater flow velocity $\left(\frac{feet}{day}\right)$

 $K = \text{Average permeability of the aquifer } \left(\frac{feet}{day}\right)$

i = Horizontal hydraulic gradient

 n_e = Effective porosity

Using this equation, groundwater flow velocities are calculated for various areas of the site and are tabulated on **Table 4**, **Flow Rate Calculations**. **Table 4** presents the velocities calculated using groundwater elevation data from the most recent sampling event in 2018.

	TABLE 4. Flow Rate Calculations							
Date	К	η_{e}	MW-2	MW-8	Δh	L	i	v
6/4/2018	2.56 x 10 ⁻³	0.15	397.32	393.81	3.51	2,890	0.0012	2.04 x 10 ⁻⁴ ft/d

As presented on **Table 4** groundwater flow velocity at the site ranges from approximately 0.000204 feet/day (or approximately 0.07446 feet/year) across the gypsum pond. Calculated gradients and flow rates do not consider vertical flow gradients.

5.2 Groundwater Sampling

Groundwater samples were collected from monitoring wells using low-flow sampling procedures in accordance with §257.93(a) and ADEM Admin. Code r. 335-13-15-.06(4)(a). All monitoring wells at Plant Gaston are equipped with a dedicated pump. Monitoring wells were purged and sampled using low-flow sampling procedures whereby samples are collected when field water quality parameters (pH, turbidity, conductivity, and dissolved oxygen) were measured to determine stabilization. Groundwater samples were collected when the following stabilization criteria were met:

- 0.2 standard units for pH
- 5% for specific conductance
- 0.2 Mg/L or 10% for DO > 0.5 mg/l (whichever is greater)
- Turbidity measurements less than 5 NTU
- Temperature and ORP record only, no stabilization criteria

During purging and sampling a SmarTroll instrument was used to monitor and record field parameters. Once stabilization was achieved, samples were collected and submitted to the laboratory following standard chain-of-custody (COC) protocol.

5.3 Laboratory Analysis

Laboratory analyses was performed by the APC Environmental Laboratory (APCEL) in Calera, Alabama or Test America, Inc. (TAL), of Pensacola, Florida and St. Louis, Missouri. Both APCEL and TAL are accredited by National Environmental Laboratory Accreditation Program (NELAP) and maintain a NELAP certification for all parameters analyzed. Groundwater data and chain of custody records for the monitoring events are presented in **Appendix A**.

5.4 Quality Assurance/Quality Control

During each sampling event, quality assurance/quality control samples (QA/QC) were collected at a rate of one sample per every 10 detection samples. Equipment blanks and duplicate samples were also collected during each sampling event. QA/QC sample data was evaluated during data validation and is included in **Appendix A**.

Groundwater quality data for the most recent sampling event was validated for the most recent sampling event following guidance from the EPA Region IV Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (November 2001); the EPA Region IV Data Validation Standard

Operating Procedures (US EPA Region IV, September 2011); and the analytical methods. Data validation generally consisted of reviewing sample integrity, holding times, laboratory method blanks, laboratory control samples, matrix spikes/matrix spike duplicate recoveries and relative percent differences, post digestion spikes, laboratory and field duplicate RPDs, field and equipment blanks, and reporting limits.

Where appropriate, validation qualifiers and flags are applied to the data using the procedures in EPA National Functional Guidelines for Inorganic Data Review (USEPA, 2014), as guidance. Flagged data is identified in the statistical analysis reports.

6.0 STATISTICAL ANALYSIS

Statistical analysis of Appendix III and IV groundwater monitoring data was performed on samples collected from the certified groundwater monitoring network pursuant to 40 CFR §257.93 and ADEM Admin. Code r. 335-13-15-.06(4) and following the appropriate PE-certified method. The statistical method used at the site was developed by Groundwater Stats Consulting, LLC. (GSC), in accordance with 40 CFR §257.93(f) and ADEM Admin. Code r. 335-13-15-.06(4)(f), using methodology presented in *Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance*, March 2009, EPA 530/R-09-007 (USEPA, 2009).

6.1 Statistical Methods

The Sanitas groundwater statistical software was used to perform the statistical analyses. Sanitas is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by USEPA regulations. Although Assessment Monitoring has been implemented, statistical evaluation of Appendix III constituents is performed to determine if constituents have returned to background conditions. Statistical analysis was performed using methods described in the PE-certified statistical analysis plan for the site.

6.1.1 Appendix III Constituents

Statistical tests used to evaluate the groundwater monitoring data consist of intrawell and interwell prediction limit methods. The intrawell prediction limits, combined with the 1-of-3 verification resample plan, are used for calcium, chloride, sulfate, and total dissolved solids (TDS) to determine whether there has been a statistically significant increase (SSI) over background groundwater quality. Interwell prediction limits, combined with the 1-of-2 verification resample plan, are used to evaluate boron, fluoride, and pH. Intrawell prediction limits use historical data within a given well to establish limits for parameters at that well. The most recent sample from the same well is compared to its respective background to identify SSI over background. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The most recent sample from each downgradient well is compared to the background limit to identify SSIs.

A summary table of the statistical limits accompanies the prediction limits in **Appendix B**, **Statistical Data Evaluation**.

6.1.2 Assessment Monitoring Statistics

Parametric tolerance limits were used to calculate background limits from pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. The background limits were then used when determining the groundwater protection standard (GWPS).

As described in 40 CFR §257.95(h)(1-3) the GWPS is:

- (1) The maximum contaminant level established under §141.62 and 141.66 of this title (the "MCL").
- (2) Where an MCL has not been established:
 - (i) Cobalt 6 micrograms per liter (ug/l);
 - (ii) Lead 15 ug/l;
 - (iii) Lithium 40 ug/l; and
 - (iv) Molybdenum 100 ug/l.
- (3) Background levels for constituents where the background level is higher than the MCL or rule-specified GWPS.

Existing ADEM Admin Code r. 335-13-15 includes boron as an Appendix IV assessment monitoring parameter; therefore, it is included in the statistical analysis for the site. As explained in the Preamble to the federal CCR rule, the GWPSs listed above for cobalt, lead, lithium, and molybdenum are USEPA-established "Regional Screening Levels" (RSLs) that are used where an MCL has not been established. Following the procedure used by USEPA for the federal CCR rule, the USEPA-established RSL for boron (4.0 mg/L) was used as a GWPS for statistical comparison of boron data. **Table 5, Summary of Background Levels and Groundwater Protection Standards**, summarizes the background limit established at each monitoring well and the GWPS.

Table 5. Summary of Background Levels and Groundwater Protection Standards					
Analyte	Units	Background	GWPS		
Antimony	mg/L	0.003	0.006		
Arsenic	mg/L	0.005	0.01		
Barium	mg/L	0.06031, 0.0622	2		
Beryllium	mg/L	0.003	0.004		
Boron	mg/L	0.1	4.0		
Cadmium	mg/L	0.001	0.005		
Chromium	mg/L	0.01	0.1		
Cobalt	mg/L	0.01	0.006		
Fluoride	mg/L	0.3	4		
Lead	mg/L	0.005	0.015		
Lithium	mg/L	0.05, 0.02	0.04		
Mercury	mg/L	0.0005	0.002		
Molybdenum	mg/L	0.01	0.1		
Selenium	mg/L	0.01	0.05		
Thallium	mg/L	0.001	0.002		
Total Radium-226/228	pCi/L	1.6	5		

Notes:

6.2 Statistical Analysis Results

Analytical data from the 2018 semi-annual monitoring events in June and October were statistically analyzed in accordance with the PE-certified Statistical Analysis Plan (October 2017). Appendix III statistical analysis was performed to determine if constituents have returned to background levels. Appendix IV assessment monitoring parameters were evaluated to determine if concentrations statistically exceeded the established groundwater protection standard.

Based on review of the Appendix III statistical analysis presented in **Appendix B**, Appendix III constituents have not returned to background levels.

^{1.} Where 2 numbers are present, they denote the different background levels and background-derived GWPS for each of the 2 semi-annual monitoring events in the order that they were determined.

6.2.1 First Semi-Annual Groundwater Monitoring Event

Statistical analysis of Appendix IV data identified the following statistically significant levels (SSLs) over GWPS at the listed wells:

• GN-GSA-MW-1: Arsenic

6.2.2 Second Semi-Annual Groundwater Monitoring Event

Review of the Sanitas results presented in **Appendix B** did not identify any SSLs during the second semiannual detection monitoring event.

7.0 ALTERNATE SOURCE DEMONSTRATIONS

Section 257.95(g)(3)(ii) and ADEM Admin. Code r. 335-13-15-.06(6)(g)4 allows the owner or operator to demonstrate that a source other than the CCR Unit has caused an SSL and that the SSL was the result of an alternate source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

An Alternate Source Demonstration (ASD) report for SSLs identified is included as **Appendix C**, **Alternate Source Demonstration**. As discussed in the ASD report, the apparent SSLs are the result of natural groundwater chemistry variability not accounted for by site statistics. In accordance with §257.95(g)(3) and ADEM Admin. Code r. 335-13-15-.06(6)(g)4, this ASD demonstrates that the SSLs are not the result of a release from the CCR Landfill and no further action, such as implementing an assessment of corrective measures, is necessary.

8.0 MONITORING PROGRAM STATUS

In accordance with §257.94(e) and ADEM Admin. Code r. 335-13-15-.06(5)(e), APC implemented assessment monitoring in January 15, 2018. SSIs of Appendix III and SSLs of Appendix IV parameters were identified at the Plant Gaston Gypsum Pond during sampling events conducted in 2018. ASDs have been completed for every Appendix IV constituent exceeding the GWPS; therefore, in accordance with §257.95(g)(3)(ii) and Alabama Admin. Code r. 335-13-15-.06(6)(g)4(ii), APC will continue assessment monitoring and will not implement assessment of corrective measures required by §257.96 and ADEM Admin. Code r. 335-13-15-.06(7). A complete ASD report is provided in **Appendix C**.

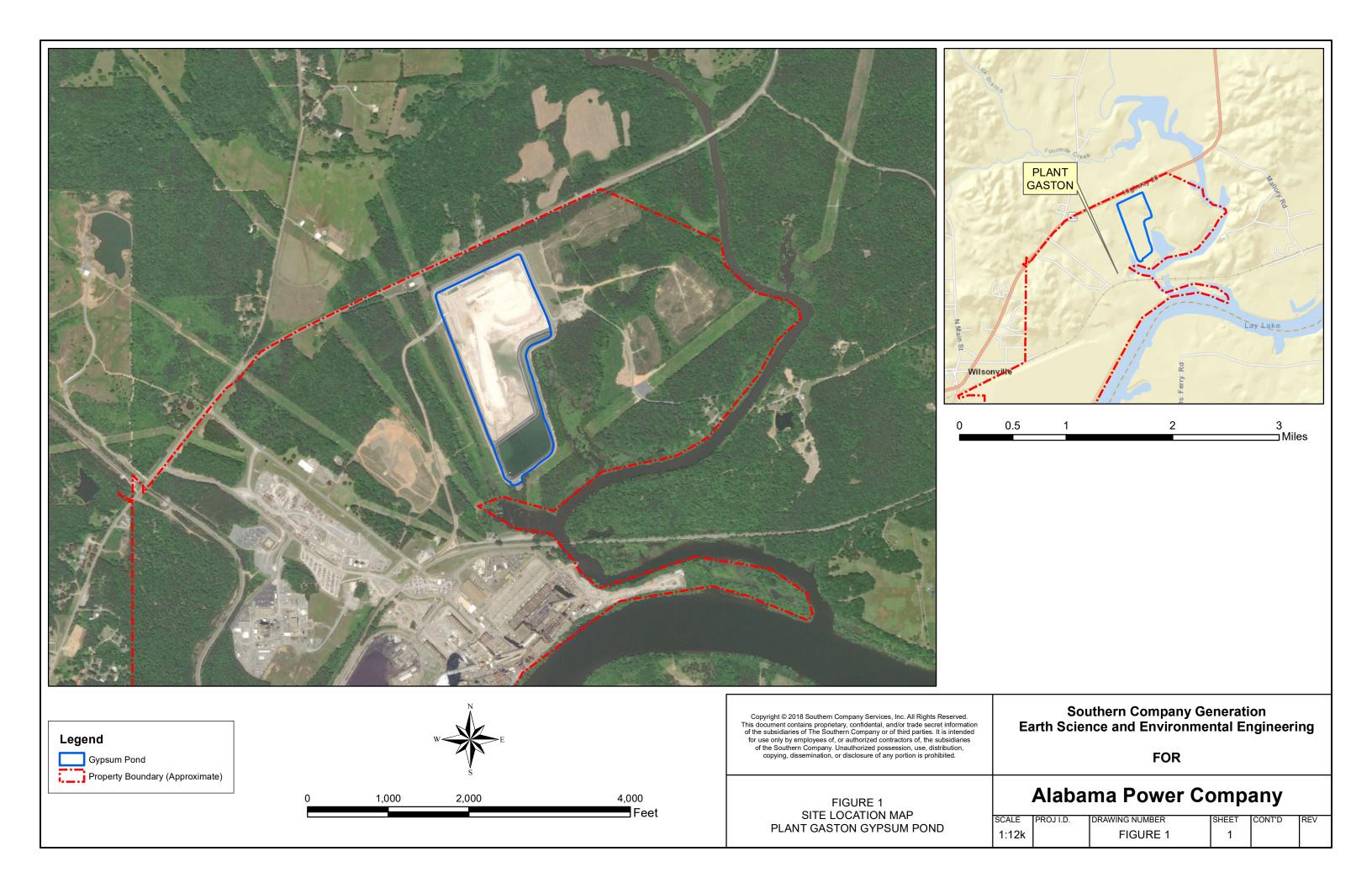
9.0 CONCLUSIONS AND FUTURE ACTIONS

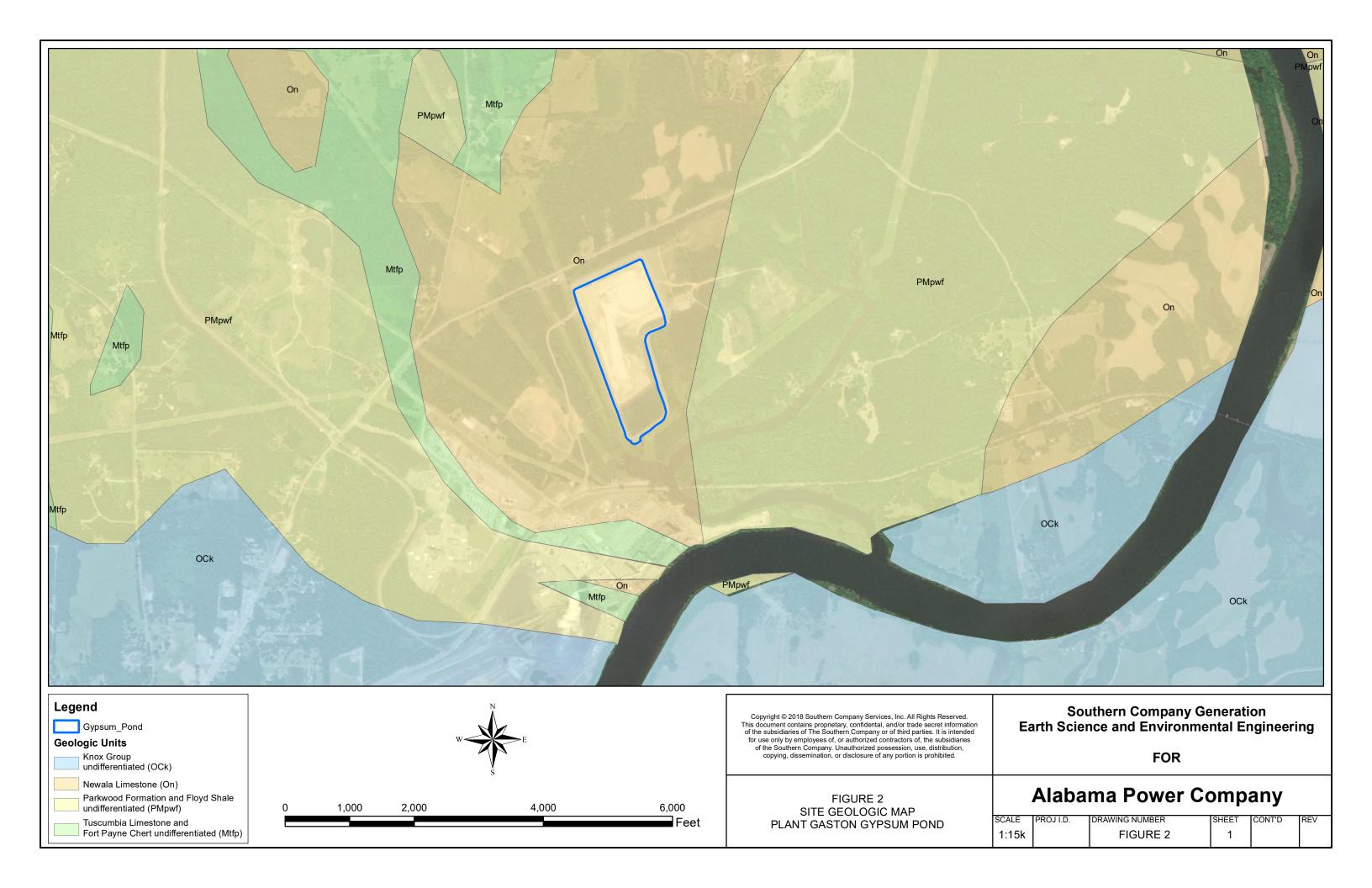
Based on results reported in the 2017 Annual Groundwater and Corrective Action Monitoring Report, APC initiated an assessment monitoring program on January 15, 2018. Groundwater samples were subsequently collected from the certified well network and analyzed for Appendix IV parameters.

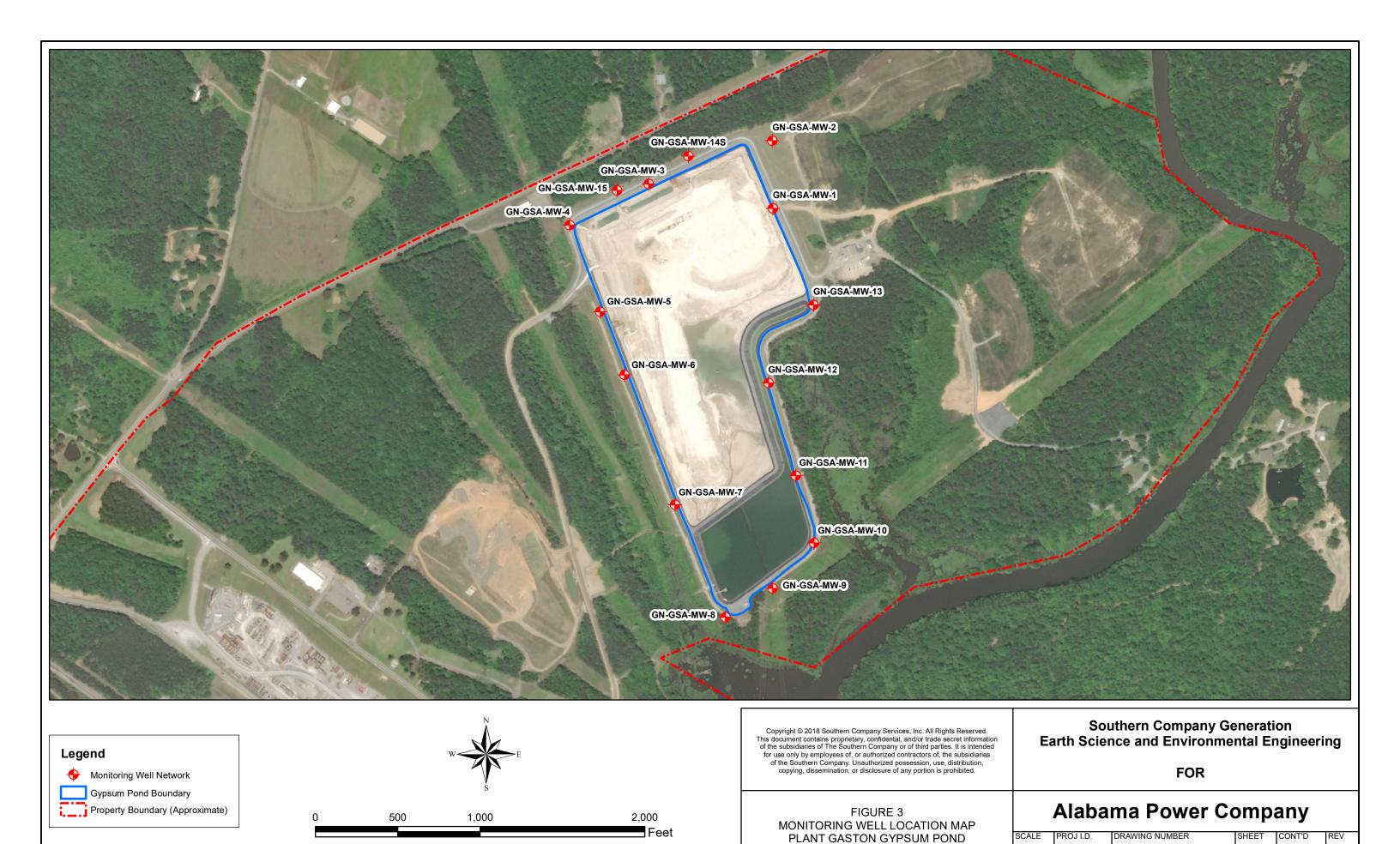
The certified compliance monitoring well network was resampled on a semi-annual basis, occurring in June and October 2018. The groundwater samples were analyzed for all Appendix III & IV parameters. The data from the semi-annual events were statistically evaluated relative to GWPS. Statistical evaluations of the June 2018 assessment monitoring data identified SSLs of Appendix IV constituents above the GWPS.

ASDs have been completed for the Appendix IV constituent exceeding the GWPS; therefore, in accordance with §257.95(g)(3)(ii) and ADEM Admin. Code r. 335-13-15-.06(6)(g)4(ii), APC will continue assessment monitoring and will not implement assessment of corrective measures described in §257.96 and ADEM Admin. Code r. 335-13-15-.06(7).

The first semi-annual assessment monitoring event is planned for April 2019.

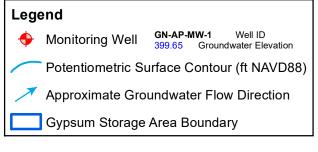

10.0 REFERENCES

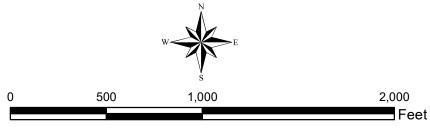

- ASTM Standard D5092, 2004(2010)e1, Standard Practice for Design and Installation of Groundwater Monitoring Wells, ASTM International, West Conshohocken, PA, DOI 10.1520/D5092-04R10E01, www.astm.org
- Frings, D.M., 1980. Report on the Geology of E.C. Gatson Steam Plant Dry Ash Disposal System. Provided by Southern Company Services, December, 2010.
- Frings, D.M., 1981. Report on the Geology of E.C. Gaston Steam Plant Office Annex Addition. Provided by Southern Company Services, December, 2010.
- Geological Survey of Alabama (GSA), 2010b, Digital Geologic Map of Alabama, URL:http://www.gsa.state.al.us/index.html, accessed November, 2010.
- Kopaska-Merkel, David C., Lewis S. Dean, and James D. Moore, 2005. Hydrogeology and Vulnerability to Contamination of Major Aquifers in Alabama: Area 4. Geological Survey of Alabama Circular 199D.
- McIntyre, M.R., J.C. Pashin, and G.M. McKinney, III, 2010. Report on Plant Geology, Prepared for Southern Company Services by the Geological Survey of Alabama.
- Sapp, C.D., and Emplaincourt, J., 1975, Physiographic regions of Alabama, Special Map 168, Geological Survey of Alabama
- Shamburger, V.M., and J.R. Harkins, 1980. Water Availability, Shelby County, Alabama. Geological Survey of Alabama Map 140.
- U.S. Environmental Protection Agency (EPA), 2004, Evaluation of Sampling and Field-Filtration Methods for the Analysis of Trace Metals In Groundwater Project Summary, EPA/600/SR-94/119
- U.S. Environmental Protection Agency (EPA Waste Management Division, Office of Solid Waste, 1989. EPA 530/SW-89-031 Interim Final RCRA Investigation (RFI) Guidance, Volumes I and II.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance.


 Office of Resource Conservation and Recovery Program Implementation and Information Division. March.
- USEPA. 2011. *Data Validation Standard Operating Procedures*. Science and Ecosystem Support Division. Region IV. Athens, GA. September.
- USEPA. 2014. National Functional Guidelines for Inorganic Superfund Data Review. Office of Superfund Remediation and Technology Innovation (OSRTI). August
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-RCRA-2009–0640; FRL–9919–44–OSWER]. RIN–2050–AE81. April.
- USEPA, 1986 RCRA Groundwater Monitoring Technical Enforcement Guidance Document.
- USEPA, 1993. Subpart E, Groundwater Monitoring and Corrective Action, in Chapter 5, Solid Waste Disposal Facility Criteria Technical Manual. EA530-R-93-017.
- United States Geological Survey (USGS), 1980b. Wilsonville, Alabama Quadrangle, 7.5 Minute Series Topographic Map.

- United States Geological Survey (USGS), 2005. Alabama Water Science Center, Water use by County in Alabama, Shelby County. URL: http://ga2.er.usgs.gov/alabama/waterusecounty.cfm?code=117. Accessed December, 2010.
- United States Geological Survey (USGS), 2010a. National Hydrography Dataset. URL: http://nhd.usgs.gov/data.html. Accessed December, 2010.
- United States Geological Survey (USGS), 2010b. National Water Information System: Web Interface. URL: http://waterdata.usgs.gov/nwis. Accessed December, 2010.

Figures





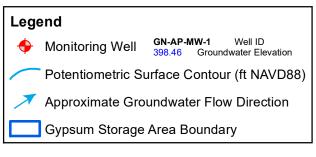
1:6k

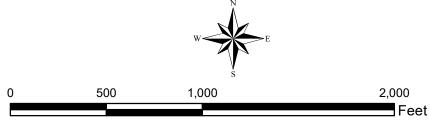
FIGURE 3

NOTE: NAVD88 indicates North American Vertical Datum of 1988.

Copyright © 2018 Southern Company Services, Inc. All Rights Reserved. This document contains proprietary, confidental, and/or trade secret information of the subsidiaries of The Southern Company or of third parties. It is intended for use only by employees of, or authorized contractors of, the subsidiaries of the Southern Company. Unauthorized possession, use, distribution, copying, dissemination, or disclosure of any portion is prohibited.

FIGURE 4 POTENTIOMETRIC SURFACE MAP FEBRUARY 2018 PLANT GASTON GYPSUM POND


Earth Science and Environmental Engineering


FOR

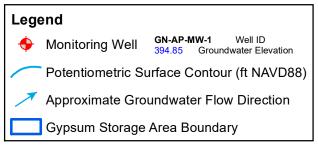
Alabama Power Company

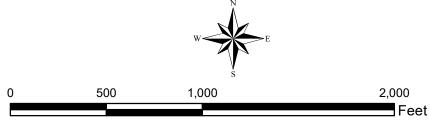
				_	
SCALE	PROJ I.D.	DRAWING NUMBER	SHEET	CONT'D	REV
1:6k		FIGURE 4	1		

NOTE: NAVD88 indicates North American Vertical Datum of 1988.

Copyright © 2018 Southern Company Services, Inc. All Rights Reserved. This document contains proprietary, confidental, and/or trade secret information of the subsidiaries of The Southern Company or of third parties. It is intended for use only by employees of, or authorized contractors of, the subsidiaries of the Southern Company. Unauthorized possession, use, distribution, copying, dissemination, or disclosure of any portion is prohibited.

FIGURE 5 POTENTIOMETRIC SURFACE MAP **JUNE 2018** PLANT GASTON GYPSUM POND


Earth Science and Environmental Engineering


FOR

Alabama Power Company

			_	_	
SCALE	PROJ I.D.	DRAWING NUMBER	SHEET	CONT'D	REV
1:6k		FIGURE 5	1		

NOTE: NAVD88 indicates North American Vertical Datum of 1988.

Copyright © 2018 Southern Company Services, Inc. All Rights Reserved. This document contains proprietary, confidental, and/or trade secret information of the subsidiaries of The Southern Company or of third parties. It is intended for use only by employees of, or authorized contractors of, the subsidiaries of the Southern Company. Unauthorized possession, use, distribution, copying, dissemination, or disclosure of any portion is prohibited.

FIGURE 6 POTENTIOMETRIC SURFACE MAP OCTOBER 2018 PLANT GASTON GYPSUM POND

Earth Science and Environmental Engineering

FOR

Alabama Power Company

			_	_	
SCALE	PROJ I.D.	DRAWING NUMBER	SHEET	CONT'D	REV
1:6k		FIGURE 6	1		

Appendix A

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Field Case Narrative

E. C. Gaston Gypsum Pond

Assessment Event 1

All samples were collected using methods defined in Alabama Power's Water Field Group Low-Flow Groundwater Sampling Procedure and the associated site-specific Sampling and Analysis Plan (SAP).

Field quality control procedures were performed as follows:

- Blanks and Sample Duplicates were collected as described in the SAP.
- Calibration verifications for all required field parameters were performed daily, before and after sample collection.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Analytical Report

Sample Group: WMWGASG_1134

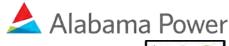
Project/Site: Gaston Gypsum

Wilsonville, AL 35186

For: Southern Company Services

42 Inverness Center Parkway Birmingham, AL 35242

Attention: Dustin Brooks & Greg Dyer


Released By: Sarah Copeland

sgcopela@southernco.com

(205) 664-6121

Case Narrative

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Fluoride

Gaston Gypsum

WMWGASG_1134

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt. All samples were received intact and properly preserved.
- 3. All samples were outsourced to Test America, Pensacola for analysis. There was no job narrative provided, as there were no issues found.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Metals ICP

Gaston Gypsum

WMWGASG_1134

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
AY03285	20180220K	WMWGASG_1134
AY03286	20180220K	WMWGASG_1134
AY03287	20180220K	WMWGASG_1134
AY03288	20180220K	WMWGASG_1134
AY03289	20180220K	WMWGASG_1134
AY03290	20180220K	WMWGASG_1134
AY03291	20180220K	WMWGASG_1134
AY03292	20180220K	WMWGASG_1134
AY03293	20180220K	WMWGASG_1134
AY03294	20180220K	WMWGASG_1134
AY03295	20180220AK	WMWGASG_1134
AY03296	20180220AK	WMWGASG_1134
AY03297	20180220AK	WMWGASG_1134
AY03298	20180220AK	WMWGASG_1134
AY03299	20180220AK	WMWGASG_1134
AY03300	20180220AK	WMWGASG_1134
AY03301	20180220AK	WMWGASG_1134
AY03302	20180220AK	WMWGASG_1134
AY03303	20180220AK	WMWGASG_1134

- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met before sample analysis.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- All sample internal standard criteria were met.
- The high standard readbacks associated with EPA 200.7 were within acceptance criteria.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed at a x2.03 dilution to compensate for any potential matrix effects.
- 8. The raw data results include results corrected for dilution.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Metals ICPMS

Gaston Gypsum

WMWGASG_1134

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
AY03285	612588	WMWGASG_1134
AY03286	612588	WMWGASG_1134
AY03287	612588	WMWGASG_1134
AY03288	612588	WMWGASG_1134
AY03289	612588	WMWGASG_1134
AY03290	612588	WMWGASG_1134
AY03291	612588	WMWGASG_1134
AY03292	612588	WMWGASG_1134
AY03293	612588	WMWGASG_1134
AY03294	612588	WMWGASG_1134
AY03295	612589	WMWGASG_1134
AY03296	612589	WMWGASG_1134
AY03297	612589	WMWGASG_1134
AY03298	612589	WMWGASG_1134
AY03299	612589	WMWGASG_1134
AY03300	612589	WMWGASG_1134
AY03301	612589	WMWGASG_1134
AY03302	612589	WMWGASG_1134
AY03303	612589	WMWGASG_1134

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed at a dilution of 1 to 5 to compensate for any matrix effects.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Mercury

Gaston Gypsum

WMWGASG_1134

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
AY03285	612674	WMWGASG_1134
AY03286	612674	WMWGASG_1134
AY03287	612674	WMWGASG_1134
AY03288	612674	WMWGASG_1134
AY03289	612674	WMWGASG_1134
AY03290	612674	WMWGASG_1134
AY03291	612674	WMWGASG_1134
AY03292	612674	WMWGASG_1134
AY03293	612674	WMWGASG_1134
AY03294	612674	WMWGASG_1134
AY03295	612675	WMWGASG_1134
AY03296	612675	WMWGASG_1134
AY03297	612675	WMWGASG_1134
AY03298	612675	WMWGASG_1134
AY03299	612675	WMWGASG_1134
AY03300	612675	WMWGASG_1134
AY03301	612675	WMWGASG_1134
AY03302	612675	WMWGASG_1134
AY03303	612675	WMWGASG_1134

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution.
- 8. The raw data results are shown with dilution factors included.

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 05-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-2

Laboratory ID Number: AY03285

Name	Analyst Test	Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols									
* Arsenic, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Barium, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.002	0.01		0.0325	mg/L
* Beryllium, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
* Cadmium, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
* Antimony, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
* Cobalt, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Chromium, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Mercury, Total by CVAA	ABB 2/16/	2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
* Lithium, Total	HRG 2/20/	2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
 Molybdenum, Total 	DLJ 2/14/	2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Lead, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Selenium, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Thallium, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics									
* Fluoride, Total, by Test America	SGC 2/20/	2018	SM 4500 F_C	1	0.032	0.10	J	0.040	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 05-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-2

Laboratory ID Number: AY03285

			MB		1			LCS	Rec		Pred
Analysis	Units	MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
Beryllium, Total	mg/L	0.00000896	0.00132	0.10	0.105	0.106	0.108	0.085 to 0.115	105 70 to 130	1.42	20
Cobalt, Total	mg/L	0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102 70 to 130	3.51	20
Barium, Total	mg/L	-0.00000193	0.0044	0.10	0.116	0.123	0.0951	0.085 to 0.115	91.5 70 to 130	5.97	20
Lithium, Total	mg/L	0.0000571	0.022	0.20	0.193	0.195	0.188	0.17 to 0.23	96.6 70 to 130	0.811	20
Thallium, Total	mg/L	0.0000117	0.00044	0.10	0.0992	0.102	0.100	0.085 to 0.115	99.2 70 to 130	2.36	20
Cadmium, Total	mg/L	0.000000557	0.00066	0.10	0.0941	0.0984	0.100	0.085 to 0.115	94.1 70 to 130	4.48	20
Lead, Total	mg/L	-0.00000465	0.0022	0.10	0.1000	0.103	0.101	0.085 to 0.115	100 70 to 130	3.26	20
Antimony, Total	mg/L	0.0000171	0.00132	0.10	0.0917	0.0956	0.0981	0.085 to 0.115	91.7 70 to 130	4.26	20
Arsenic, Total	mg/L	0.00000953	0.0022	0.10	0.0975	0.100	0.109	0.085 to 0.115	96.1 70 to 130	2.67	20
Chromium, Total	mg/L	0.00000759	0.0044	0.10	0.0995	0.103	0.102	0.085 to 0.115	99.5 70 to 130	3.66	20
Mercury, Total by CVAA	mg/L	-0.00000599	0.0005	0.004	0.00374	0.00377	0.00378	0.0034 to 0.0046	93.6 70 to 130	0.665	20
Molybdenum, Total	mg/L	0.0000204	0.0044	0.10	0.0950	0.0981	0.0948	0.085 to 0.115	91.7 70 to 130	3.16	20
Selenium, Total	mg/L	0.0000284	0.0044	0.10	0.0953	0.0990	0.109	0.085 to 0.115	95.3 70 to 130	3.83	20
	Beryllium, Total Cobalt, Total Barium, Total Lithium, Total Lithium, Total Cadmium, Total Lead, Total Antimony, Total Arsenic, Total Chromium, Total Mercury, Total by CVAA Molybdenum, Total	Beryllium, Total mg/L Cobalt, Total mg/L Barium, Total mg/L Lithium, Total mg/L Thallium, Total mg/L Cadmium, Total mg/L Lead, Total mg/L Antimony, Total mg/L Arsenic, Total mg/L Chromium, Total mg/L Mercury, Total by CVAA mg/L Molybdenum, Total mg/L	Beryllium, Total mg/L 0.00000896 Cobalt, Total mg/L 0.00000193 Barium, Total mg/L -0.00000193 Lithium, Total mg/L 0.0000571 Thallium, Total mg/L 0.00000117 Cadmium, Total mg/L 0.000000557 Lead, Total mg/L -0.00000465 Antimony, Total mg/L 0.0000171 Arsenic, Total mg/L 0.00000953 Chromium, Total mg/L -0.00000599 Mercury, Total by CVAA mg/L -0.0000204 Molybdenum, Total mg/L 0.0000204	Analysis Units MB Limit Beryllium, Total mg/L 0.00000896 0.00132 Cobalt, Total mg/L 0.00000193 0.0044 Barium, Total mg/L -0.00000193 0.0044 Lithium, Total mg/L 0.0000571 0.022 Thallium, Total mg/L 0.0000117 0.00044 Cadmium, Total mg/L -0.00000557 0.00066 Lead, Total mg/L -0.00000465 0.0022 Antimony, Total mg/L 0.0000071 0.00132 Arsenic, Total mg/L 0.00000759 0.0044 Mercury, Total by CVAA mg/L -0.00000599 0.0005 Molybdenum, Total mg/L 0.0000204 0.0044	Analysis Units MB Limit Spike Beryllium, Total mg/L 0.00000896 0.00132 0.10 Cobalt, Total mg/L 0.00000193 0.0044 0.10 Barium, Total mg/L -0.00000193 0.0044 0.10 Lithium, Total mg/L 0.0000571 0.022 0.20 Thallium, Total mg/L 0.00000117 0.00044 0.10 Cadmium, Total mg/L 0.00000557 0.00066 0.10 Lead, Total mg/L -0.00000465 0.0022 0.10 Antimony, Total mg/L 0.0000171 0.00132 0.10 Arsenic, Total mg/L 0.00000953 0.0022 0.10 Chromium, Total mg/L 0.00000599 0.0044 0.10 Mercury, Total by CVAA mg/L -0.00000599 0.0005 0.004 Molybdenum, Total mg/L 0.0000204 0.0044 0.10	Analysis Units MB Limit Spike MS Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 Barium, Total mg/L -0.00000193 0.0044 0.10 0.116 Lithium, Total mg/L 0.0000571 0.022 0.20 0.193 Thallium, Total mg/L 0.00000117 0.00044 0.10 0.0992 Cadmium, Total mg/L 0.00000557 0.00066 0.10 0.0941 Lead, Total mg/L -0.00000465 0.0022 0.10 0.1000 Antimony, Total mg/L 0.0000171 0.00132 0.10 0.0917 Arsenic, Total mg/L 0.00000953 0.0022 0.10 0.0975 Chromium, Total mg/L 0.00000759 0.0044 0.10 0.0995 Mercury, Total by CVAA mg/L 0.0000204 0.0044 0.10 0.0950	Analysis Units MB Limit Spike MS MSD Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 Barium, Total mg/L -0.00000193 0.0044 0.10 0.116 0.123 Lithium, Total mg/L 0.0000571 0.022 0.20 0.193 0.195 Thallium, Total mg/L 0.0000117 0.00044 0.10 0.0992 0.102 Cadmium, Total mg/L 0.000000557 0.00066 0.10 0.0941 0.0984 Lead, Total mg/L -0.00000465 0.0022 0.10 0.1000 0.103 Antimony, Total mg/L 0.0000171 0.00132 0.10 0.0917 0.0956 Arsenic, Total mg/L 0.00000759 0.0044 0.10 0.0995 0.103 Mercury, Total by CVAA mg/L 0.00000599 0.0005 0.004	Analysis Units MB Limit Spike MS MSD LCS Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 0.108 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 0.0977 Barium, Total mg/L -0.00000193 0.0044 0.10 0.116 0.123 0.0951 Lithium, Total mg/L 0.0000571 0.022 0.20 0.193 0.195 0.188 Thallium, Total mg/L 0.0000117 0.00044 0.10 0.0992 0.102 0.100 Cadmium, Total mg/L 0.00000557 0.00066 0.10 0.0941 0.0984 0.100 Lead, Total mg/L -0.00000465 0.0022 0.10 0.103 0.101 Arsenic, Total mg/L 0.00000759 0.0012 0.10 0.0917 0.0956 0.0981 Arsenic, Total mg/L 0.00000759 0.0044 0.10 0.0975 0.103 0.102 Mercury, Total by CVAA mg/L -0.00000599	Analysis Units MB Limit Spike MS MSD LCS Limit Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 0.108 0.085 to 0.115 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 0.0977 0.085 to 0.115 Barium, Total mg/L -0.00000193 0.0044 0.10 0.116 0.123 0.0951 0.085 to 0.115 Lithium, Total mg/L 0.0000571 0.022 0.20 0.193 0.195 0.188 0.17 to 0.23 Thallium, Total mg/L 0.00000117 0.00044 0.10 0.0992 0.102 0.100 0.085 to 0.115 Cadmium, Total mg/L 0.00000557 0.00066 0.10 0.0941 0.0984 0.100 0.085 to 0.115 Lead, Total mg/L -0.00000465 0.0022 0.10 0.1000 0.103 0.101 0.085 to 0.115 Antimony, Total mg/L 0.00000171 0.00132 0.10 0.0917 0.0956 0.0981 0.085 to 0.115 Arsenic, Total mg/L 0.00000759 0.0044 0.10 0.0995 0.103 0.102 0.085 to 0.115 Chromium, Total mg/L 0.00000759 0.0044 0.10 0.0995 0.103 0.102 0.085 to 0.115 Mercury, Total by CVAA mg/L -0.00000599 0.0005 0.004 0.00374 0.00377 0.00378 0.0034 to 0.0046 Molybdenum, Total mg/L 0.0000204 0.0044 0.10 0.0950 0.0981 0.0948 0.005 to 0.115	Analysis Units MB Limit Spike MS MSD LCS Limit Rec Limit Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 0.108 0.085 to 0.115 105 70 to 130 cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 0.0977 0.085 to 0.115 102 70 to 130 cobalt, Total mg/L 0.00000193 0.0044 0.10 0.116 0.123 0.0951 0.085 to 0.115 91.5 70 to 130 cobalt, Total mg/L 0.0000571 0.022 0.20 0.193 0.195 0.188 0.17 to 0.23 96.6 70 to 130 cobalt, Total mg/L 0.0000117 0.00044 0.10 0.0992 0.102 0.100 0.085 to 0.115 99.2 70 to 130 cobalt, Total mg/L 0.00000557 0.00066 0.10 0.0941 0.0984 0.100 0.085 to 0.115 94.1 70 to 130 cobalt, Total mg/L 0.00000171 0.00132 0.10 0.1000 0.103 0.101 0.085 to 0.115 91.7 70 to 130 cobalt, Total mg/L 0.00000171 0.00132 0.10 0.0917 0.0956 0.0981 0.085 to 0.115 91.7 70 to 130 cobalt, Total mg/L 0.00000559 0.0044 0.10 0.0995 0.103 0.102 0.085 to 0.115 99.5 70 to 130 cobalt mg/L 0.00000559 0.0005 0.004 0.00374 0.00377 0.00378 0.0034 to 0.0046 93.6 70 to 130 cobalt mg/L 0.00000599 0.0005 0.004 0.00374 0.00377 0.00378 0.0034 to 0.0046 93.6 70 to 130 cobalt mg/L 0.00000599 0.0005 0.004 0.00374 0.00377 0.00378 0.0034 to 0.0046 93.6 70 to 130 cobalt mg/L 0.00000599 0.0004 0.0044 0.10 0.0950 0.0081 0.0085 to 0.115 91.7 70 to 130 cobalt mg/L 0.00000599 0.0005 0.004 0.00374 0.00377 0.00378 0.0034 to 0.0046 93.6 70 to 130 cobalt mg/L 0.00000599 0.0004 0.0044 0.10 0.0950 0.0081 0.0085 to 0.115 91.7 70 to 130 cobalt mg/L 0.00000599 0.0005 0.0044 0.10 0.00550 0.0081 0.00378 0.0034 to 0.0046 93.6 70 to 130 cobalt mg/L 0.00000599 0.0005 0.0044 0.10 0.00550 0.0081 0.0048 0.0035 to 0.115 91.7 70 to 130 cobalt mg/L 0.00000599 0.0005 0.0044 0.10 0.00550 0.0081 0.0048 0.0035 to 0.115 91.7 70 to 130 cobalt mg/L 0.00000599 0.0005 0.0044 0.10 0.00550 0.0081 0.0048 0.0035 to 0.115 91.7 70 to 130 cobalt mg/L 0.00000599 0.0005 0.0044 0.00374 0.00377 0.00378 0.0034 to 0.0046 93.6 70 to 130 cobalt mg/L 0.00000599 0.0005 0.0044 0.10 0.00550 0.0081 0.0048 0.0035 to 0.115 91.7 70 to 130 cobalt mg/L 0.00000590 0.0044 0.10 0.00550 0.0081 0.003	Analysis Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 0.108 0.085 to 0.115 105 70 to 130 1.42 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 0.0977 0.085 to 0.115 102 70 to 130 3.51 Barium, Total mg/L 0.00000193 0.0044 0.10 0.116 0.123 0.0951 0.085 to 0.115 91.5 70 to 130 5.97 Lithium, Total mg/L 0.0000571 0.022 0.20 0.193 0.195 0.188 0.17 to 0.23 96.6 70 to 130 0.811 Thallium, Total mg/L 0.0000117 0.00044 0.10 0.0992 0.102 0.100 0.085 to 0.115 99.2 70 to 130 2.36 Cadmium, Total mg/L 0.00000557 0.00066 0.10 0.0941 0.0984 0.100 0.085 to 0.115 94.1 70 to 130 4.48 Lead, Total mg/L 0.00000465 0.0022 0.10 0.1000 0.103 0.101 0.085 to 0.115 91.7 70 to 130 4.26 Arsenic, Total mg/L 0.00000759 0.0044 0.10 0.0975 0.100 0.0981 0.085 to 0.115 91.7 70 to 130 4.26 Mercury, Total by CVAA mg/L 0.00000599 0.0005 0.0044 0.10 0.0950 0.0981 0.0037 0.00378 0.0034 to 0.0046 93.6 70 to 130 0.665 Molybdenum, Total mg/L 0.00000204 0.0044 0.10 0.0950 0.0981 0.00378 0.0034 to 0.0046 93.6 70 to 130 0.665 Molybdenum, Total mg/L 0.00000204 0.0044 0.10 0.0950 0.0981 0.0988 0.085 to 0.115 91.7 70 to 130 3.66

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 05-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-2

Laboratory ID Number: AY03285

	,								
			MB			Sample	LCS	Rec	Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplicate LCS	Limit	Rec Limit Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 05-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-13

Laboratory ID Number: AY03286

Name	Analyst Test	Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols									
* Arsenic, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Barium, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.002	0.01		0.0469	mg/L
* Beryllium, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
* Cadmium, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
* Antimony, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
* Cobalt, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Chromium, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Mercury, Total by CVAA	ABB 2/16/	2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
* Lithium, Total	HRG 2/20/	2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
 Molybdenum, Total 	DLJ 2/14/	2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Lead, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Selenium, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Thallium, Total	DLJ 2/14/	2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics									
* Fluoride, Total, by Test America	SGC 2/20/	2018	SM 4500 F_C	1	0.032	0.10	J	0.040	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 05-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-13

Laboratory ID Number: AY03286

Edbordtory ID Italiiber: A103200									
		MB					LCS	Rec	Р
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec Li
Y03294 Beryllium, Total	mg/L 0.00000896	0.00132	0.10	0.105	0.106	0.108	0.085 to 0.115	105 70 to 130 1	.42 20
Y03294 Barium, Total	mg/L -0.00000193	0.0044	0.10	0.116	0.123	0.0951	0.085 to 0.115	91.5 70 to 130 5	5.97 20
Y03294 Selenium, Total	mg/L 0.0000284	0.0044	0.10	0.0953	0.0990	0.109	0.085 to 0.115	95.3 70 to 130 3	3.83 20
Y03294 Cadmium, Total	mg/L 0.000000557	0.00066	0.10	0.0941	0.0984	0.100	0.085 to 0.115	94.1 70 to 130 4	1.48 20
Y03294 Lead, Total	mg/L -0.00000465	0.0022	0.10	0.1000	0.103	0.101	0.085 to 0.115	100 70 to 130 3	3.26 20
Y03294 Cobalt, Total	mg/L 0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102 70 to 130 3	3.51 20
Y03294 Antimony, Total	mg/L 0.0000171	0.00132	0.10	0.0917	0.0956	0.0981	0.085 to 0.115	91.7 70 to 130 4	1.26 20
Y03294 Arsenic, Total	mg/L 0.00000953	0.0022	0.10	0.0975	0.100	0.109	0.085 to 0.115	96.1 70 to 130 2	2.67 20
Y03294 Chromium, Total	mg/L 0.00000759	0.0044	0.10	0.0995	0.103	0.102	0.085 to 0.115	99.5 70 to 130 3	3.66 20
Y03294 Mercury, Total by CVAA	mg/L -0.00000599	0.0005	0.004	0.00374	0.00377	0.00378	0.0034 to 0.0046	93.6 70 to 130 (0.665 20
Y03294 Molybdenum, Total	mg/L 0.0000204	0.0044	0.10	0.0950	0.0981	0.0948	0.085 to 0.115	91.7 70 to 130 3	3.16 20
Y03294 Lithium, Total	mg/L 0.0000571	0.022	0.20	0.193	0.195	0.188	0.17 to 0.23	96.6 70 to 130 ().811 20
Y03294 Thallium, Total	mg/L 0.0000117	0.00044	0.10	0.0992	0.102	0.100	0.085 to 0.115	99.2 70 to 130 2	2.36 20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 05-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-13

Laboratory ID Number: AY03286

	,								
			MB			Sample	LCS	Rec	Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplicate LCS	Limit	Rec Limit Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 05-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-13 Dup

Laboratory ID Number: AY03287

Name	Analyst	Test Date	Reference	Vio Spec D	F	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols		,								
Arsenic, Total	DLJ	2/14/2018	EPA 200.8	5.0	75	0.001	0.005	U	Not Detected	mg/L
Barium, Total	DLJ	2/14/2018	EPA 200.8	5.0	75	0.002	0.01		0.0465	mg/L
Beryllium, Total	DLJ	2/14/2018	EPA 200.8	5.0	75	0.0006	0.003	U	Not Detected	mg/L
Cadmium, Total	DLJ	2/14/2018	EPA 200.8	5.0	75	0.0003	0.001	U	Not Detected	mg/L
Antimony, Total	DLJ	2/14/2018	EPA 200.8	5.0	75	0.0006	0.003	U	Not Detected	mg/L
Cobalt, Total	DLJ	2/14/2018	EPA 200.8	5.0	75	0.002	0.01	U	Not Detected	mg/L
Chromium, Total	DLJ	2/14/2018	EPA 200.8	5.0	75	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	ABB	2/16/2018	EPA 245.1	1		0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	HRG	2/20/2018	EPA 200.7	2.0)3	0.01	0.05	U	Not Detected	mg/L
Molybdenum, Total	DLJ	2/14/2018	EPA 200.8	5.0	75	0.002	0.01	U	Not Detected	mg/L
Lead, Total	DLJ	2/14/2018	EPA 200.8	5.0	75	0.001	0.005	U	Not Detected	mg/L
Selenium, Total	DLJ	2/14/2018	EPA 200.8	5.0	75	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	DLJ	2/14/2018	EPA 200.8	5.0	75	0.0002	0.001	U	Not Detected	mg/L
General Characteristics										
Fluoride, Total, by Test America	SGC	2/20/2018	SM 4500 F_C	1		0.032	0.10	J	0.040	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 05-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-13 Dup

Laboratory ID Number: AY03287

Laboratory ID Number. A103207										
		MB					LCS	Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
Y03294 Beryllium, Total	mg/L 0.00000896	0.00132	0.10	0.105	0.106	0.108	0.085 to 0.115	105 70 to 130	1.42	20
Y03294 Cobalt, Total	mg/L 0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102 70 to 130	3.51	20
Y03294 Selenium, Total	mg/L 0.0000284	0.0044	0.10	0.0953	0.0990	0.109	0.085 to 0.115	95.3 70 to 130	3.83	20
Y03294 Cadmium, Total	mg/L 0.000000557	7 0.00066	0.10	0.0941	0.0984	0.100	0.085 to 0.115	94.1 70 to 130	4.48	20
Y03294 Lead, Total	mg/L -0.00000465	0.0022	0.10	0.1000	0.103	0.101	0.085 to 0.115	100 70 to 130	3.26	20
Y03294 Barium, Total	mg/L -0.00000193	0.0044	0.10	0.116	0.123	0.0951	0.085 to 0.115	91.5 70 to 130	5.97	20
Y03294 Antimony, Total	mg/L 0.0000171	0.00132	0.10	0.0917	0.0956	0.0981	0.085 to 0.115	91.7 70 to 130	4.26	20
Y03294 Arsenic, Total	mg/L 0.00000953	0.0022	0.10	0.0975	0.100	0.109	0.085 to 0.115	96.1 70 to 130	2.67	20
Y03294 Chromium, Total	mg/L 0.00000759	0.0044	0.10	0.0995	0.103	0.102	0.085 to 0.115	99.5 70 to 130	3.66	20
Y03294 Mercury, Total by CVAA	mg/L -0.00000599	0.0005	0.004	0.00374	0.00377	0.00378	0.0034 to 0.0046	93.6 70 to 130	0.665	20
Y03294 Molybdenum, Total	mg/L 0.0000204	0.0044	0.10	0.0950	0.0981	0.0948	0.085 to 0.115	91.7 70 to 130	3.16	20
Y03294 Lithium, Total	mg/L 0.0000571	0.022	0.20	0.193	0.195	0.188	0.17 to 0.23	96.6 70 to 130	0.811	20
Y03294 Thallium, Total	mg/L 0.0000117	0.00044	0.10	0.0992	0.102	0.100	0.085 to 0.115	99.2 70 to 130	2.36	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 05-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-13 Dup

Laboratory ID Number: AY03287

		MB		Sample	LCS	Rec	Prec
Sample Analysis	Units MB	Limit	Spike LFM	Duplicate LCS	Limit	Rec Limit Pre	c Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 05-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-1

Laboratory ID Number: AY03288

Name	Analyst	Test Date	Reference	Vio Spec DF		MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols										
Arsenic, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.001	0.005		0.0140	mg/L
Barium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01		1.80	mg/L
Beryllium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.0006	0.003	U	Not Detected	mg/L
Cadmium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.0003	0.001	U	Not Detected	mg/L
Antimony, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.0006	0.003	U	Not Detected	mg/L
Cobalt, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	U	Not Detected	mg/L
Chromium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	ABB	2/16/2018	EPA 245.1	1		0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	HRG	2/20/2018	EPA 200.7	2.03		0.01	0.05	U	Not Detected	mg/L
Molybdenum, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	J	0.00908	mg/L
Lead, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.001	0.005	U	Not Detected	mg/L
Selenium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.0002	0.001	U	Not Detected	mg/L
General Characteristics										
Fluoride, Total, by Test America	SGC	2/20/2018	SM 4500 F_C	1		0.032	0.10		0.37	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 05-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-1

Laboratory ID Number: AY03288

Laboratory ID Number. A103200)										
		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y03294 Beryllium, Total	mg/L 0.00000896	0.00132	0.10	0.105	0.106	0.108	0.085 to 0.115	105	70 to 130	1.42	20
Y03294 Barium, Total	mg/L -0.00000193	0.0044	0.10	0.116	0.123	0.0951	0.085 to 0.115	91.5	70 to 130	5.97	20
Y03294 Cobalt, Total	mg/L 0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102	70 to 130	3.51	20
Y03294 Cadmium, Total	mg/L 0.000000557	0.00066	0.10	0.0941	0.0984	0.100	0.085 to 0.115	94.1	70 to 130	4.48	20
Y03294 Lead, Total	mg/L -0.00000465	0.0022	0.10	0.1000	0.103	0.101	0.085 to 0.115	100	70 to 130	3.26	20
Y03294 Antimony, Total	mg/L 0.0000171	0.00132	0.10	0.0917	0.0956	0.0981	0.085 to 0.115	91.7	70 to 130	4.26	20
AY03294 Arsenic, Total	mg/L 0.00000953	0.0022	0.10	0.0975	0.100	0.109	0.085 to 0.115	96.1	70 to 130	2.67	20
Y03294 Chromium, Total	mg/L 0.00000759	0.0044	0.10	0.0995	0.103	0.102	0.085 to 0.115	99.5	70 to 130	3.66	20
Y03294 Mercury, Total by CVAA	mg/L -0.00000599	0.0005	0.004	0.00374	0.00377	0.00378	0.0034 to 0.0046	93.6	70 to 130	0.665	20
Y03294 Molybdenum, Total	mg/L 0.0000204	0.0044	0.10	0.0950	0.0981	0.0948	0.085 to 0.115	91.7	70 to 130	3.16	20
Y03294 Lithium, Total	mg/L 0.0000571	0.022	0.20	0.193	0.195	0.188	0.17 to 0.23	96.6	70 to 130	0.811	20
Y03294 Thallium, Total	mg/L 0.0000117	0.00044	0.10	0.0992	0.102	0.100	0.085 to 0.115	99.2	70 to 130	2.36	20
Y03294 Selenium, Total	mg/L 0.0000284	0.0044	0.10	0.0953	0.0990	0.109	0.085 to 0.115	95.3	70 to 130	3.83	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 05-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-1

Laboratory ID Number: AY03288

_			MB		Sample	LCS	Rec	Prec
S	Sample Analysis	Units MB	Limit	Spike LFM	Duplicate LCS	Limit	Rec Limit Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 05-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-12

Laboratory ID Number: AY03289

Name	Analyst Test	Date	Reference	Vio Spec DF		MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols										
Arsenic, Total	DLJ 2/14/	/2018	EPA 200.8	5.075	5	0.001	0.005	J	0.00127	mg/L
Barium, Total	DLJ 2/14/	/2018	EPA 200.8	5.075	5	0.002	0.01		0.0254	mg/L
Beryllium, Total	DLJ 2/14/	/2018	EPA 200.8	5.075	5	0.0006	0.003	U	Not Detected	mg/L
Cadmium, Total	DLJ 2/14/	/2018	EPA 200.8	5.075	5	0.0003	0.001	U	Not Detected	mg/L
Antimony, Total	DLJ 2/14/	/2018	EPA 200.8	5.075	5	0.0006	0.003	U	Not Detected	mg/L
Cobalt, Total	DLJ 2/14/	/2018	EPA 200.8	5.075	5	0.002	0.01	U	Not Detected	mg/L
Chromium, Total	DLJ 2/14/	/2018	EPA 200.8	5.075	5	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	ABB 2/16/	/2018	EPA 245.1	1		0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	HRG 2/20/	/2018	EPA 200.7	2.03		0.01	0.05	U	Not Detected	mg/L
Molybdenum, Total	DLJ 2/14/	/2018	EPA 200.8	5.075	5	0.002	0.01	U	Not Detected	mg/L
Lead, Total	DLJ 2/14/	/2018	EPA 200.8	5.075	5	0.001	0.005	U	Not Detected	mg/L
* Selenium, Total	DLJ 2/14/	/2018	EPA 200.8	5.075	5	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	DLJ 2/14/	/2018	EPA 200.8	5.075	5	0.0002	0.001	U	Not Detected	mg/L
General Characteristics										
Fluoride, Total, by Test America	SGC 2/20/	/2018	SM 4500 F_C	1		0.032	0.10	J	0.080	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 05-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-12

Laboratory ID Number: AY03289

Laboratory ID Number. A103209										
		MB					LCS	Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limi
Y03294 Beryllium, Total	mg/L 0.00000896	0.00132	0.10	0.105	0.106	0.108	0.085 to 0.115	105 70 to 130	1.42	20
Y03294 Cobalt, Total	mg/L 0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102 70 to 130	3.51	20
Y03294 Selenium, Total	mg/L 0.0000284	0.0044	0.10	0.0953	0.0990	0.109	0.085 to 0.115	95.3 70 to 130	3.83	20
Y03294 Barium, Total	mg/L -0.00000193	0.0044	0.10	0.116	0.123	0.0951	0.085 to 0.115	91.5 70 to 130	5.97	20
Y03294 Cadmium, Total	mg/L 0.00000055	7 0.00066	0.10	0.0941	0.0984	0.100	0.085 to 0.115	94.1 70 to 130	4.48	20
Y03294 Lead, Total	mg/L -0.00000465	0.0022	0.10	0.1000	0.103	0.101	0.085 to 0.115	100 70 to 130	3.26	20
Y03294 Lithium, Total	mg/L 0.0000571	0.022	0.20	0.193	0.195	0.188	0.17 to 0.23	96.6 70 to 130	0.811	20
Y03294 Thallium, Total	mg/L 0.0000117	0.00044	0.10	0.0992	0.102	0.100	0.085 to 0.115	99.2 70 to 130	2.36	20
Y03294 Antimony, Total	mg/L 0.0000171	0.00132	0.10	0.0917	0.0956	0.0981	0.085 to 0.115	91.7 70 to 130	4.26	20
Y03294 Arsenic, Total	mg/L 0.00000953	0.0022	0.10	0.0975	0.100	0.109	0.085 to 0.115	96.1 70 to 130	2.67	20
Y03294 Chromium, Total	mg/L 0.00000759	0.0044	0.10	0.0995	0.103	0.102	0.085 to 0.115	99.5 70 to 130	3.66	20
Y03294 Mercury, Total by CVAA	mg/L -0.00000599	0.0005	0.004	0.00374	0.00377	0.00378	0.0034 to 0.0046	93.6 70 to 130	0.665	20
Y03294 Molybdenum, Total	mg/L 0.0000204	0.0044	0.10	0.0950	0.0981	0.0948	0.085 to 0.115	91.7 70 to 130	3.16	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 05-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-12

Laboratory ID Number: AY03289

	,								
			MB			Sample	LCS	Rec	Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplicate LCS	Limit	Rec Limit Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-5

Laboratory ID Number: AY03290

Name	Analyst Test	Date Refere	ence Vio Spec	DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols				,				
* Arsenic, Total	DLJ 2/14/2	2018 EPA 2	8.00	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	DLJ 2/14/2	2018 EPA 2	00.8	5.075	0.002	0.01	0.0418	mg/L
* Beryllium, Total	DLJ 2/14/2	2018 EPA 2	00.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Cadmium, Total	DLJ 2/14/2	2018 EPA 2	00.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	DLJ 2/14/2	2018 EPA 2	8.00	5.075	0.0006	0.003	U Not Detected	mg/L
* Cobalt, Total	DLJ 2/14/2	2018 EPA 2	8.00	5.075	0.002	0.01	J 0.00274	mg/L
* Chromium, Total	DLJ 2/14/2	2018 EPA 2	8.00	5.075	0.002	0.01	U Not Detected	mg/L
* Mercury, Total by CVAA	ABB 2/16/2	2018 EPA 2	45.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	HRG 2/20/2	2018 EPA 2	00.7	2.03	0.01	0.05	U Not Detected	mg/L
 Molybdenum, Total 	DLJ 2/14/2	2018 EPA 2	8.00	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	DLJ 2/14/2	2018 EPA 2	8.00	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 2/14/2	2018 EPA 2	8.00	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	DLJ 2/14/2	2018 EPA 2	8.00	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics								
* Fluoride, Total, by Test America	SGC 2/20/2	2018 SM 45	00 F_C	1	0.032	0.10	U <0.032	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-5

Laboratory ID Number: AY03290

				MB					LCS		Rec		Prec
Sample	Analysis	Units	MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y03294	Barium, Total	mg/L	-0.00000193	0.0044	0.10	0.116	0.123	0.0951	0.085 to 0.115	91.5	70 to 130	5.97	20
Y03294	Cobalt, Total	mg/L	0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102	70 to 130	3.51	20
Y03294	Selenium, Total	mg/L	0.0000284	0.0044	0.10	0.0953	0.0990	0.109	0.085 to 0.115	95.3	70 to 130	3.83	20
Y03294	Cadmium, Total	mg/L	0.000000557	0.00066	0.10	0.0941	0.0984	0.100	0.085 to 0.115	94.1	70 to 130	4.48	20
Y03294	Lead, Total	mg/L	-0.00000465	0.0022	0.10	0.1000	0.103	0.101	0.085 to 0.115	100	70 to 130	3.26	20
Y03294	Beryllium, Total	mg/L	0.00000896	0.00132	0.10	0.105	0.106	0.108	0.085 to 0.115	105	70 to 130	1.42	20
Y03294	Lithium, Total	mg/L	0.0000571	0.022	0.20	0.193	0.195	0.188	0.17 to 0.23	96.6	70 to 130	0.811	20
Y03294	Thallium, Total	mg/L	0.0000117	0.00044	0.10	0.0992	0.102	0.100	0.085 to 0.115	99.2	70 to 130	2.36	20
Y03294	Antimony, Total	mg/L	0.0000171	0.00132	0.10	0.0917	0.0956	0.0981	0.085 to 0.115	91.7	70 to 130	4.26	20
Y03294	Arsenic, Total	mg/L	0.00000953	0.0022	0.10	0.0975	0.100	0.109	0.085 to 0.115	96.1	70 to 130	2.67	20
Y03294	Chromium, Total	mg/L	0.00000759	0.0044	0.10	0.0995	0.103	0.102	0.085 to 0.115	99.5	70 to 130	3.66	20
Y03294	Mercury, Total by CVAA	mg/L	-0.0000599	0.0005	0.004	0.00374	0.00377	0.00378	0.0034 to 0.0046	93.6	70 to 130	0.665	20
Y03294	Molybdenum, Total	mg/L	0.0000204	0.0044	0.10	0.0950	0.0981	0.0948	0.085 to 0.115	91.7	70 to 130	3.16	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-5

Laboratory ID Number: AY03290

			MB			Sample	LCS	Rec	,	Prec
Sample	Analysis	Units M	B Limit	Spike	LFM	Duplicate LCS	S Limit	Rec Limit	Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY03291

Name	Analyst	Test Date	Reference	Vio Spec DF		MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols										
Arsenic, Total	DLJ :	2/14/2018	EPA 200.8	5.07	5	0.001	0.005	U	Not Detected	mg/L
Barium, Total	DLJ :	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	U	Not Detected	mg/L
Beryllium, Total	DLJ :	2/14/2018	EPA 200.8	5.07	5	0.0006	0.003	U	Not Detected	mg/L
Cadmium, Total	DLJ :	2/14/2018	EPA 200.8	5.07	5	0.0003	0.001	U	Not Detected	mg/L
Antimony, Total	DLJ :	2/14/2018	EPA 200.8	5.07	5	0.0006	0.003	U	Not Detected	mg/L
Cobalt, Total	DLJ :	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	U	Not Detected	mg/L
Chromium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	ABB	2/16/2018	EPA 245.1	1		0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	HRG	2/20/2018	EPA 200.7	2.03		0.01	0.05	U	Not Detected	mg/L
Molybdenum, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	U	Not Detected	mg/L
Lead, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.001	0.005	U	Not Detected	mg/L
Selenium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.0002	0.001	U	Not Detected	mg/L
General Characteristics										
Fluoride, Total, by Test America	SGC	2/20/2018	SM 4500 F_C	1		0.032	0.10	U	< 0.032	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY03291

Laboratory ID Number. A103291										
		MB					LCS	Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
Y03294 Beryllium, Total	mg/L 0.00000896	0.00132	0.10	0.105	0.106	0.108	0.085 to 0.115	105 70 to 130	1.42	20
Y03294 Selenium, Total	mg/L 0.0000284	0.0044	0.10	0.0953	0.0990	0.109	0.085 to 0.115	95.3 70 to 130	3.83	20
Y03294 Barium, Total	mg/L -0.0000019	3 0.0044	0.10	0.116	0.123	0.0951	0.085 to 0.115	91.5 70 to 130	5.97	20
Y03294 Cobalt, Total	mg/L 0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102 70 to 130	3.51	20
Y03294 Cadmium, Total	mg/L 0.00000055	0.00066	0.10	0.0941	0.0984	0.100	0.085 to 0.115	94.1 70 to 130	4.48	20
Y03294 Lead, Total	mg/L -0.0000046	5 0.0022	0.10	0.1000	0.103	0.101	0.085 to 0.115	100 70 to 130	3.26	20
Y03294 Lithium, Total	mg/L 0.0000571	0.022	0.20	0.193	0.195	0.188	0.17 to 0.23	96.6 70 to 130	0.811	20
Y03294 Thallium, Total	mg/L 0.0000117	0.00044	0.10	0.0992	0.102	0.100	0.085 to 0.115	99.2 70 to 130	2.36	20
Y03294 Antimony, Total	mg/L 0.0000171	0.00132	0.10	0.0917	0.0956	0.0981	0.085 to 0.115	91.7 70 to 130	4.26	20
Y03294 Arsenic, Total	mg/L 0.00000953	0.0022	0.10	0.0975	0.100	0.109	0.085 to 0.115	96.1 70 to 130	2.67	20
Y03294 Chromium, Total	mg/L 0.00000759	0.0044	0.10	0.0995	0.103	0.102	0.085 to 0.115	99.5 70 to 130	3.66	20
Y03294 Mercury, Total by CVAA	mg/L -0.0000059	9 0.0005	0.004	0.00374	0.00377	0.00378	0.0034 to 0.0046	93.6 70 to 130	0.665	20
Y03294 Molybdenum, Total	mg/L 0.0000204	0.0044	0.10	0.0950	0.0981	0.0948	0.085 to 0.115	91.7 70 to 130	3.16	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY03291

' <u></u>			MB			Sample	LCS	Rec	'	Prec
Sample	Analysis	Units M	B Limit	Spike	LFM	Duplicate LCS	S Limit	Rec Limit	Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-6

Laboratory ID Number: AY03292

Name	Analyst Test Dat	e Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.002	0.01	0.0156	mg/L
* Beryllium, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Cadmium, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Cobalt, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Chromium, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Mercury, Total by CVAA	ABB 2/16/201	8 EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	HRG 2/20/201	8 EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
 Molybdenum, Total 	DLJ 2/14/201	8 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Fluoride, Total, by Test America	SGC 2/20/201	8 SM 4500 F_C	1	0.032	0.10	U <0.032	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-6

Laboratory ID Number: AY03292

			MB					LCS	Rec		Pred
Sample	Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limi
Y03294	Beryllium, Total	mg/L 0.00000896	0.00132	0.10	0.105	0.106	0.108	0.085 to 0.115	105 70 to 130	1.42	20
Y03294	Barium, Total	mg/L -0.00000193	0.0044	0.10	0.116	0.123	0.0951	0.085 to 0.115	91.5 70 to 130	5.97	20
Y03294	Cobalt, Total	mg/L 0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102 70 to 130	3.51	20
Y03294	Cadmium, Total	mg/L 0.000000557	0.00066	0.10	0.0941	0.0984	0.100	0.085 to 0.115	94.1 70 to 130	4.48	20
Y03294	Lead, Total	mg/L -0.00000465	0.0022	0.10	0.1000	0.103	0.101	0.085 to 0.115	100 70 to 130	3.26	20
Y03294	Lithium, Total	mg/L 0.0000571	0.022	0.20	0.193	0.195	0.188	0.17 to 0.23	96.6 70 to 130	0.811	20
Y03294	Thallium, Total	mg/L 0.0000117	0.00044	0.10	0.0992	0.102	0.100	0.085 to 0.115	99.2 70 to 130	2.36	20
Y03294	Antimony, Total	mg/L 0.0000171	0.00132	0.10	0.0917	0.0956	0.0981	0.085 to 0.115	91.7 70 to 130	4.26	20
Y03294	Arsenic, Total	mg/L 0.00000953	0.0022	0.10	0.0975	0.100	0.109	0.085 to 0.115	96.1 70 to 130	2.67	20
Y03294	Chromium, Total	mg/L 0.00000759	0.0044	0.10	0.0995	0.103	0.102	0.085 to 0.115	99.5 70 to 130	3.66	20
Y03294	Mercury, Total by CVAA	mg/L -0.00000599	0.0005	0.004	0.00374	0.00377	0.00378	0.0034 to 0.0046	93.6 70 to 130	0.665	20
Y03294	Molybdenum, Total	mg/L 0.0000204	0.0044	0.10	0.0950	0.0981	0.0948	0.085 to 0.115	91.7 70 to 130	3.16	20
Y03294	Selenium, Total	mg/L 0.0000284	0.0044	0.10	0.0953	0.0990	0.109	0.085 to 0.115	95.3 70 to 130	3.83	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-6

Laboratory ID Number: AY03292

	,								
			MB			Sample	LCS	Rec	Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplicate LCS	Limit	Rec Limit Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-7

Laboratory ID Number: AY03293

Name	Analyst Test D	ate Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	DLJ 2/14/2	018 EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	DLJ 2/14/2	018 EPA 200.8	5.075	0.002	0.01	0.0183	mg/L
* Beryllium, Total	DLJ 2/14/2	018 EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Cadmium, Total	DLJ 2/14/2	018 EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	DLJ 2/14/2	018 EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Cobalt, Total	DLJ 2/14/2	018 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Chromium, Total	DLJ 2/14/2	018 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Mercury, Total by CVAA	ABB 2/16/2	018 EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	HRG 2/20/2	018 EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
 Molybdenum, Total 	DLJ 2/14/2	018 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	DLJ 2/14/2	018 EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 2/14/2	018 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	DLJ 2/14/2	018 EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Fluoride, Total, by Test America	SGC 2/20/2	018 SM 4500 F_	C 1	0.032	0.10	J 0.080	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-7

Laboratory ID Number: AY03293

			MB				···	LCS	Re	С	Р	Prec
Analysis	Units	MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Lim	nit P	ec L	_imi
Beryllium, Total	mg/L	0.00000896	0.00132	0.10	0.105	0.106	0.108	0.085 to 0.115	105 70 to	130 1.	42 20	0
Cobalt, Total	mg/L	0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102 70 to	130 3.	51 20	0
Barium, Total	mg/L	-0.00000193	0.0044	0.10	0.116	0.123	0.0951	0.085 to 0.115	91.5 70 to	130 5.	97 20	:0
Selenium, Total	mg/L	0.0000284	0.0044	0.10	0.0953	0.0990	0.109	0.085 to 0.115	95.3 70 to	130 3.	33 20	:0
Cadmium, Total	mg/L	0.000000557	0.00066	0.10	0.0941	0.0984	0.100	0.085 to 0.115	94.1 70 to	130 4.	48 20	0
Lead, Total	mg/L	-0.00000465	0.0022	0.10	0.1000	0.103	0.101	0.085 to 0.115	100 70 to	130 3.	26 20	0
Antimony, Total	mg/L	0.0000171	0.00132	0.10	0.0917	0.0956	0.0981	0.085 to 0.115	91.7 70 to	130 4.	26 20	0
Arsenic, Total	mg/L	0.00000953	0.0022	0.10	0.0975	0.100	0.109	0.085 to 0.115	96.1 70 to	130 2.	67 20	.0
Chromium, Total	mg/L	0.00000759	0.0044	0.10	0.0995	0.103	0.102	0.085 to 0.115	99.5 70 to	130 3.	66 20	0
Mercury, Total by CVAA	mg/L	-0.00000599	0.0005	0.004	0.00374	0.00377	0.00378	0.0034 to 0.0046	93.6 70 to	130 0.	665 20	0
Molybdenum, Total	mg/L	0.0000204	0.0044	0.10	0.0950	0.0981	0.0948	0.085 to 0.115	91.7 70 to	130 3.	16 20	.0
Lithium, Total	mg/L	0.0000571	0.022	0.20	0.193	0.195	0.188	0.17 to 0.23	96.6 70 to	130 0.	311 20	.0
Thallium, Total	mg/L	0.0000117	0.00044	0.10	0.0992	0.102	0.100	0.085 to 0.115	99.2 70 to	130 2.	36 20	:0
	Analysis Beryllium, Total Cobalt, Total Barium, Total Selenium, Total Cadmium, Total Lead, Total Antimony, Total Arsenic, Total Chromium, Total Mercury, Total by CVAA Molybdenum, Total Lithium, Total Thallium, Total	Beryllium, Total mg/L Cobalt, Total mg/L Barium, Total mg/L Selenium, Total mg/L Cadmium, Total mg/L Lead, Total mg/L Antimony, Total mg/L Arsenic, Total mg/L Chromium, Total mg/L Mercury, Total by CVAA mg/L Molybdenum, Total mg/L Lithium, Total mg/L	Beryllium, Total mg/L 0.00000896 Cobalt, Total mg/L 0.00000193 Barium, Total mg/L -0.00000193 Selenium, Total mg/L 0.0000284 Cadmium, Total mg/L 0.00000557 Lead, Total mg/L -0.00000465 Antimony, Total mg/L 0.0000171 Arsenic, Total mg/L 0.00000953 Chromium, Total mg/L -0.00000599 Molybdenum, Total mg/L 0.0000204 Lithium, Total mg/L 0.0000571	Analysis Units MB Limit Beryllium, Total mg/L 0.00000896 0.00132 Cobalt, Total mg/L 0.00000193 0.0044 Barium, Total mg/L -0.00000193 0.0044 Selenium, Total mg/L 0.0000284 0.0044 Cadmium, Total mg/L 0.00000557 0.00066 Lead, Total mg/L 0.00000171 0.00132 Antimony, Total mg/L 0.00000953 0.0022 Chromium, Total mg/L 0.00000759 0.0044 Mercury, Total by CVAA mg/L 0.0000204 0.0044 Molybdenum, Total mg/L 0.0000571 0.0022 Lithium, Total mg/L 0.0000571 0.0022	Analysis Units MB Limit Spike Beryllium, Total mg/L 0.00000896 0.00132 0.10 Cobalt, Total mg/L 0.00000193 0.0044 0.10 Barium, Total mg/L -0.00000193 0.0044 0.10 Selenium, Total mg/L 0.00000284 0.0044 0.10 Cadmium, Total mg/L 0.00000557 0.00066 0.10 Lead, Total mg/L 0.00000465 0.0022 0.10 Antimony, Total mg/L 0.00000751 0.00132 0.10 Arsenic, Total mg/L 0.00000953 0.0022 0.10 Chromium, Total mg/L 0.00000759 0.0044 0.10 Mercury, Total by CVAA mg/L 0.0000204 0.0044 0.10 Molybdenum, Total mg/L 0.0000571 0.0022 0.20	Analysis Units MB Limit Spike MS Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 Barium, Total mg/L -0.00000193 0.0044 0.10 0.116 Selenium, Total mg/L 0.00000284 0.0044 0.10 0.0953 Cadmium, Total mg/L 0.00000557 0.0066 0.10 0.0941 Lead, Total mg/L 0.00000465 0.0022 0.10 0.0917 Antimony, Total mg/L 0.0000071 0.00132 0.10 0.0917 Arsenic, Total mg/L 0.00000759 0.0044 0.10 0.0995 Chromium, Total mg/L 0.00000759 0.0044 0.10 0.00374 Molybdenum, Total mg/L 0.0000204 0.0044 0.10 0.0950 Lithium, Total mg/L 0.0000571 0.0022 0.20 0.193	Analysis Units MB Limit Spike MS MSD Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 Barium, Total mg/L -0.00000193 0.0044 0.10 0.116 0.123 Selenium, Total mg/L 0.00000284 0.0044 0.10 0.0953 0.0990 Cadmium, Total mg/L 0.000000557 0.0066 0.10 0.0941 0.0984 Lead, Total mg/L 0.00000465 0.0022 0.10 0.1000 0.103 Antimony, Total mg/L 0.00000751 0.00132 0.10 0.0917 0.0956 Arsenic, Total mg/L 0.00000953 0.0022 0.10 0.0975 0.100 Chromium, Total mg/L 0.00000759 0.0044 0.10 0.0995 0.103 Mercury, Total by CVAA mg/L 0.00000599 0.0044 0.10 0.0950 0.0981 Lithium, Total mg/L 0.00000571 0.0022	Analysis Units MB Limit Spike MS MSD LCS Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 0.108 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 0.0977 Barium, Total mg/L 0.00000193 0.0044 0.10 0.116 0.123 0.0951 Selenium, Total mg/L 0.00000284 0.0044 0.10 0.0953 0.0990 0.109 Cadmium, Total mg/L 0.00000557 0.0066 0.10 0.0941 0.0984 0.100 Lead, Total mg/L 0.00000465 0.0022 0.10 0.1000 0.103 0.101 Antimony, Total mg/L 0.00000751 0.00132 0.10 0.0917 0.0956 0.0981 Arsenic, Total mg/L 0.00000759 0.0044 0.10 0.0975 0.100 0.102 Chromium, Total mg/L 0.00000599 0.0044 0.10 0.09374 0.00377 0.00378 Molybdenum, Total <td< td=""><td>Analysis Units MB Limit Spike MS MSD LCS Limit Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 0.108 0.085 to 0.115 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 0.0977 0.085 to 0.115 Barium, Total mg/L 0.00000284 0.0044 0.10 0.0953 0.0990 0.109 0.085 to 0.115 Cadmium, Total mg/L 0.000000557 0.00066 0.10 0.0941 0.0984 0.100 0.085 to 0.115 Lead, Total mg/L 0.00000465 0.0022 0.10 0.1000 0.103 0.101 0.085 to 0.115 Antimony, Total mg/L 0.00000751 0.00132 0.10 0.0917 0.0956 0.0981 0.085 to 0.115 Arsenic, Total mg/L 0.00000953 0.0022 0.10 0.0975 0.100 0.109 0.085 to 0.115 Chromium, Total mg/L 0.00000759 0.0044 0.10 0.0995 0.103 0.102 0.085 to 0</td><td>Analysis Units MB Limit Spike MS MSD LCS Limit Rec Limit Spike Different Spike MS MSD LCS Limit Rec Limit Rec Limit Spike MS MSD LCS Limit Rec Limit Rec Limit Spike MS MSD LCS Limit Rec Limit Rec Limit Rec Limit Spike MS MSD LCS Limit Rec Limit Rec Limit Rec Limit Spike MS MSD LCS Limit Rec Limi</td><td>Analysis Units MB Limit Spike MS MSD LCS Limit Rec Limit Property Property Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 0.108 0.085 to 0.115 105 70 to 130 1.20 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 0.0977 0.085 to 0.115 102 70 to 130 3.80 Barium, Total mg/L 0.00000284 0.0044 0.10 0.116 0.123 0.0951 0.085 to 0.115 91.5 70 to 130 3.80 Selenium, Total mg/L 0.00000284 0.0044 0.10 0.0953 0.0990 0.109 0.085 to 0.115 91.5 70 to 130 3.80 Cadmium, Total mg/L 0.000000557 0.0066 0.10 0.0941 0.0984 0.100 0.085 to 0.115 91.7 70 to 130 3.80 Antimony, Total mg/L 0.00000171 0.00132 0.10 0.0917</td></td<> <td>Analysis Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec L Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 0.108 0.085 to 0.115 105 70 to 130 1.42 2 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 0.0977 0.085 to 0.115 102 70 to 130 3.51 2 Barium, Total mg/L -0.00000193 0.0044 0.10 0.116 0.123 0.0951 0.085 to 0.115 91.5 70 to 130 5.97 2 Selenium, Total mg/L 0.0000284 0.0044 0.10 0.0953 0.0990 0.109 0.085 to 0.115 95.3 70 to 130 5.97 2 Selenium, Total mg/L 0.000000557 0.0066 0.10 0.0941 0.0984 0.100 0.085 to 0.115 94.1 70 to 130 3.83 2 Lead, Total mg/L</td>	Analysis Units MB Limit Spike MS MSD LCS Limit Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 0.108 0.085 to 0.115 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 0.0977 0.085 to 0.115 Barium, Total mg/L 0.00000284 0.0044 0.10 0.0953 0.0990 0.109 0.085 to 0.115 Cadmium, Total mg/L 0.000000557 0.00066 0.10 0.0941 0.0984 0.100 0.085 to 0.115 Lead, Total mg/L 0.00000465 0.0022 0.10 0.1000 0.103 0.101 0.085 to 0.115 Antimony, Total mg/L 0.00000751 0.00132 0.10 0.0917 0.0956 0.0981 0.085 to 0.115 Arsenic, Total mg/L 0.00000953 0.0022 0.10 0.0975 0.100 0.109 0.085 to 0.115 Chromium, Total mg/L 0.00000759 0.0044 0.10 0.0995 0.103 0.102 0.085 to 0	Analysis Units MB Limit Spike MS MSD LCS Limit Rec Limit Spike Different Spike MS MSD LCS Limit Rec Limit Rec Limit Spike MS MSD LCS Limit Rec Limit Rec Limit Spike MS MSD LCS Limit Rec Limit Rec Limit Rec Limit Spike MS MSD LCS Limit Rec Limit Rec Limit Rec Limit Spike MS MSD LCS Limit Rec Limi	Analysis Units MB Limit Spike MS MSD LCS Limit Rec Limit Property Property Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 0.108 0.085 to 0.115 105 70 to 130 1.20 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 0.0977 0.085 to 0.115 102 70 to 130 3.80 Barium, Total mg/L 0.00000284 0.0044 0.10 0.116 0.123 0.0951 0.085 to 0.115 91.5 70 to 130 3.80 Selenium, Total mg/L 0.00000284 0.0044 0.10 0.0953 0.0990 0.109 0.085 to 0.115 91.5 70 to 130 3.80 Cadmium, Total mg/L 0.000000557 0.0066 0.10 0.0941 0.0984 0.100 0.085 to 0.115 91.7 70 to 130 3.80 Antimony, Total mg/L 0.00000171 0.00132 0.10 0.0917	Analysis Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec L Beryllium, Total mg/L 0.00000896 0.00132 0.10 0.105 0.106 0.108 0.085 to 0.115 105 70 to 130 1.42 2 Cobalt, Total mg/L 0.00000193 0.0044 0.10 0.102 0.105 0.0977 0.085 to 0.115 102 70 to 130 3.51 2 Barium, Total mg/L -0.00000193 0.0044 0.10 0.116 0.123 0.0951 0.085 to 0.115 91.5 70 to 130 5.97 2 Selenium, Total mg/L 0.0000284 0.0044 0.10 0.0953 0.0990 0.109 0.085 to 0.115 95.3 70 to 130 5.97 2 Selenium, Total mg/L 0.000000557 0.0066 0.10 0.0941 0.0984 0.100 0.085 to 0.115 94.1 70 to 130 3.83 2 Lead, Total mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-7

Laboratory ID Number: AY03293

		MB		Sample	LCS	Rec	Prec
Sample Analysis	Units MB	Limit	Spike LFM	Duplicate LCS	Limit	Rec Limit Pred	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-8

Laboratory ID Number: AY03294

Name	Analys	t Test Date	Reference	Vio Spec DF	N	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols		,								
* Arsenic, Total	DLJ	2/14/2018	EPA 200.8	5.075	0	.001	0.005	J	0.00131	mg/L
* Barium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0	.002	0.01		0.0248	mg/L
* Beryllium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0	.0006	0.003	U	Not Detected	mg/L
* Cadmium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0	.0003	0.001	U	Not Detected	mg/L
* Antimony, Total	DLJ	2/14/2018	EPA 200.8	5.075	0	.0006	0.003	U	Not Detected	mg/L
* Cobalt, Total	DLJ	2/14/2018	EPA 200.8	5.075	0	.002	0.01	U	Not Detected	mg/L
* Chromium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0	.002	0.01	U	Not Detected	mg/L
* Mercury, Total by CVAA	ABB	2/16/2018	EPA 245.1	1	0	.00025	0.0005	U	Not Detected	mg/L
* Lithium, Total	HRG	2/20/2018	EPA 200.7	2.03	0	.01	0.05	U	Not Detected	mg/L
 Molybdenum, Total 	DLJ	2/14/2018	EPA 200.8	5.075	0	.002	0.01	J	0.00331	mg/L
* Lead, Total	DLJ	2/14/2018	EPA 200.8	5.075	0	.001	0.005	U	Not Detected	mg/L
* Selenium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0	.002	0.01	U	Not Detected	mg/L
* Thallium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0	.0002	0.001	U	Not Detected	mg/L
General Characteristics										
* Fluoride, Total, by Test America	SGC	2/20/2018	SM 4500 F_C	1	0	.032	0.10		0.15	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-8

Laboratory ID Number: AY03294

				MB					LCS	F	Rec		Prec
Sample A	nalysis	Units	MB	Limit	Spike	MS	MSD	LCS	Limit	Rec L	Limit	Prec	Limit
AY03294 Be	eryllium, Total	mg/L	0.00000896	0.00132	0.10	0.105	0.106	0.108	0.085 to 0.115	105 70	to 130	1.42	20
AY03294 Co	obalt, Total	mg/L	0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102 70	to 130	3.51	20
AY03294 Se	elenium, Total	mg/L	0.0000284	0.0044	0.10	0.0953	0.0990	0.109	0.085 to 0.115	95.3 70	to 130	3.83	20
AY03294 Ba	arium, Total	mg/L	-0.00000193	0.0044	0.10	0.116	0.123	0.0951	0.085 to 0.115	91.5 70	to 130	5.97	20
AY03294 Li	ithium, Total	mg/L	0.0000571	0.022	0.20	0.193	0.195	0.188	0.17 to 0.23	96.6 70	to 130	0.811	20
AY03294 Th	hallium, Total	mg/L	0.0000117	0.00044	0.10	0.0992	0.102	0.100	0.085 to 0.115	99.2 70	to 130	2.36	20
AY03294 Ca	admium, Total	mg/L	0.000000557	0.00066	0.10	0.0941	0.0984	0.100	0.085 to 0.115	94.1 70	to 130	4.48	20
AY03294 Le	ead, Total	mg/L	-0.00000465	0.0022	0.10	0.1000	0.103	0.101	0.085 to 0.115	100 70	to 130	3.26	20
AY03294 Ar	ntimony, Total	mg/L	0.0000171	0.00132	0.10	0.0917	0.0956	0.0981	0.085 to 0.115	91.7 70	to 130	4.26	20
AY03294 Ar	rsenic, Total	mg/L	0.00000953	0.0022	0.10	0.0975	0.100	0.109	0.085 to 0.115	96.1 70	to 130	2.67	20
AY03294 CI	hromium, Total	mg/L	0.00000759	0.0044	0.10	0.0995	0.103	0.102	0.085 to 0.115	99.5 70	to 130	3.66	20
AY03294 M	lercury, Total by CVAA	mg/L	-0.0000599	0.0005	0.004	0.00374	0.00377	0.00378	0.0034 to 0.0046	93.6 70	to 130	0.665	20
AY03294 M	lolybdenum, Total	mg/L	0.0000204	0.0044	0.10	0.0950	0.0981	0.0948	0.085 to 0.115	91.7 70	to 130	3.16	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-8

Laboratory ID Number: AY03294

			MB			Sample	LCS	Rec		Prec
Sample	Analysis	Units M	B Limit	Spike	LFM	Duplicate LCS	S Limit	Rec Limit	Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-9

Laboratory ID Number: AY03295

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
Arsenic, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	0.0232	mg/L
Beryllium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cadmium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cobalt, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Chromium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	ABB 2/16/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	HRG 2/20/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
Molybdenum, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Selenium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
Fluoride, Total, by Test America	SGC 2/20/2018	SM 4500 F_C	1	0.032	0.10	J 0.040	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-9

Laboratory ID Number: AY03295

	MB					LCS		Rec		Prec
Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
mg/L -0.00000679	0.0005	0.004	0.00377	0.00381	0.00380	0.0034 to 0.0046	94.1	70 to 130	1.13	20
mg/L 0.0000284	0.0044	0.10	0.0937	0.0962	0.109	0.085 to 0.115	93.7	70 to 130	2.64	20
mg/L 0.00000759	0.0044	0.10	0.0991	0.102	0.102	0.085 to 0.115	99.1	70 to 130	3.24	20
mg/L 0.0000204	0.0044	0.10	0.0903	0.0933	0.0948	0.085 to 0.115	90.3	70 to 130	3.20	20
mg/L 0.000000557	0.00066	0.10	0.0947	0.0975	0.100	0.085 to 0.115	94.7	70 to 130	2.92	20
mg/L -0.00000465	0.0022	0.10	0.1000	0.102	0.101	0.085 to 0.115	100	70 to 130	2.47	20
mg/L 0.0000171	0.00132	0.10	0.0926	0.0942	0.0981	0.085 to 0.115	92.6	70 to 130	1.71	20
mg/L 0.0000117	0.00044	0.10	0.0989	0.101	0.100	0.085 to 0.115	98.9	70 to 130	1.69	20
mg/L -0.00000193	0.0044	0.10	0.0926	0.0939	0.0951	0.085 to 0.115	92.6	70 to 130	1.32	20
mg/L 0.00000896	0.00132	0.10	0.107	0.108	0.108	0.085 to 0.115	107	70 to 130	0.418	20
mg/L 0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102	70 to 130	2.49	20
mg/L 0.00000953	0.0022	0.10	0.0952	0.0977	0.109	0.085 to 0.115	95.2	70 to 130	2.59	20
mg/L -0.0000144	0.022	0.20	0.198	0.196	0.186	0.17 to 0.23	98.8	70 to 130	0.831	20
	mg/L -0.00000679 mg/L 0.0000284 mg/L 0.0000204 mg/L 0.00000557 mg/L 0.00000465 mg/L 0.0000171 mg/L 0.0000117 mg/L -0.00000193 mg/L 0.00000193 mg/L 0.00000193 mg/L 0.00000193	Units MB Limit mg/L -0.00000679 0.0005 mg/L 0.0000284 0.0044 mg/L 0.0000759 0.0044 mg/L 0.0000204 0.0044 mg/L 0.00000557 0.00066 mg/L -0.00000465 0.0022 mg/L 0.0000171 0.00132 mg/L -0.00000193 0.0044 mg/L 0.00000896 0.00132 mg/L 0.00000193 0.0044 mg/L 0.00000193 0.0044 mg/L 0.00000193 0.0044 mg/L 0.00000193 0.0042	Units MB Limit Spike mg/L -0.0000679 0.0005 0.004 mg/L 0.0000284 0.0044 0.10 mg/L 0.00000759 0.0044 0.10 mg/L 0.00000204 0.0044 0.10 mg/L 0.000000557 0.00066 0.10 mg/L -0.00000465 0.0022 0.10 mg/L 0.0000171 0.00044 0.10 mg/L -0.00000117 0.00044 0.10 mg/L 0.00000896 0.00132 0.10 mg/L 0.00000193 0.0044 0.10 mg/L 0.00000193 0.0044 0.10 mg/L 0.00000193 0.0044 0.10 mg/L 0.00000193 0.0022 0.10	Units MB Limit Spike MS mg/L -0.00000679 0.0005 0.004 0.00377 mg/L 0.0000284 0.0044 0.10 0.0997 mg/L 0.00000759 0.0044 0.10 0.0991 mg/L 0.00000204 0.0044 0.10 0.0903 mg/L 0.00000557 0.00066 0.10 0.0947 mg/L -0.00000465 0.0022 0.10 0.1000 mg/L 0.0000171 0.00132 0.10 0.0926 mg/L -0.00000193 0.0044 0.10 0.0926 mg/L 0.00000896 0.00132 0.10 0.0926 mg/L 0.00000193 0.0044 0.10 0.107 mg/L 0.00000193 0.0044 0.10 0.102 mg/L 0.00000953 0.0022 0.10 0.102	Units MB Limit Spike MS MSD mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 mg/L 0.00000759 0.0044 0.10 0.0991 0.102 mg/L 0.0000204 0.0044 0.10 0.0903 0.0933 mg/L 0.00000557 0.00066 0.10 0.0947 0.0975 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 mg/L 0.00000117 0.0044 0.10 0.0926 0.0939 mg/L 0.00000193 0.0044 0.10 0.0926 0.0939 mg/L 0.00000193 0.0044 0.10 0.107 0.108 mg/L 0.00000193 0.0044 0.10 0.102 0.105 mg/L 0.00000193 0.0044 0.10 0.102 0.105 mg/L 0.00000193 0.0044 0.10 0.102 0.105	Units MB Limit Spike MS MSD LCS mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 mg/L 0.00000759 0.0044 0.10 0.0991 0.102 0.102 mg/L 0.00000204 0.0044 0.10 0.0903 0.0933 0.0948 mg/L 0.00000557 0.00066 0.10 0.0947 0.0975 0.100 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 0.101 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 mg/L 0.00000173 0.0044 0.10 0.0926 0.0939 0.0951 mg/L 0.00000193 0.0044 0.10 0.107 0.108 0.108 mg/L 0.00000193 0.0044 0.10 0.102 0.105 0.0977 mg/L 0.00000953 0.0022 0.10 0.102 0.105 0.0977 mg/L 0.	Units MB Limit Spike MS MSD LCS Limit mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 mg/L 0.00000759 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 mg/L 0.00000204 0.0044 0.10 0.0903 0.0933 0.0948 0.085 to 0.115 mg/L 0.00000557 0.00066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 0.101 0.085 to 0.115 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 mg/L 0.00000193 0.0044 0.10 0.0926 0.0939 0.0951 0.085 to 0.115 mg/L 0.00000193 0.0044 0.10 0.102 0.108 0.108 to 0.115 mg/L 0.00000193 0.0044	Units MB Limit Spike MS MSD LCS Limit Rec mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 94.1 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 93.7 mg/L 0.00000759 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 99.1 mg/L 0.00000204 0.0044 0.10 0.0993 0.0933 0.0948 0.085 to 0.115 90.3 mg/L 0.000000557 0.00066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 94.7 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 0.101 0.085 to 0.115 92.6 mg/L 0.0000171 0.000132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 98.9 mg/L 0.00000193 0.0044 0.10 0.0926 0.0939 0.0951 0.085 to 0.115 92.6 mg/L 0.00000193 <	Units MB Limit Spike MS MSD LCS Limit Rec Limit mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 94.1 70 to 130 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 93.7 70 to 130 mg/L 0.0000204 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 99.1 70 to 130 mg/L 0.00000204 0.0044 0.10 0.0993 0.0933 0.0948 0.085 to 0.115 90.3 70 to 130 mg/L 0.00000557 0.0066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 94.7 70 to 130 mg/L 0.00000465 0.0022 0.10 0.1000 0.102 0.101 0.085 to 0.115 92.6 70 to 130 mg/L 0.0000171 0.00044 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 98.9 70 to 130 mg/L 0.00000193 0.0044	Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 94.1 70 to 130 1.13 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 99.1 70 to 130 2.64 mg/L 0.0000204 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 99.1 70 to 130 3.24 mg/L 0.00000204 0.0044 0.10 0.0993 0.0933 0.0948 0.085 to 0.115 99.3 70 to 130 3.20 mg/L 0.00000557 0.0066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 94.7 70 to 130 2.92 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 0.101 0.085 to 0.115 92.6 70 to 130 1.71 mg/L 0.0000171 0.00044 0.10 0.0989 0.101 0.100

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-9

Laboratory ID Number: AY03295

	· ,									
			MB			Sample	LCS	Rec		Prec
Sample /	Analysis	Units M	B Limit	Spike	LFM	Duplicate LCS	S Limit	Rec Limit	Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-10

Laboratory ID Number: AY03296

Name	Analyst Test Dat	e Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols				,			
* Arsenic, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.002	0.01	0.0337	mg/L
* Beryllium, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Cadmium, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Cobalt, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Chromium, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Mercury, Total by CVAA	ABB 2/16/201	8 EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	HRG 2/20/201	8 EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
 Molybdenum, Total 	DLJ 2/14/201	8 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	DLJ 2/14/201	8 EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Fluoride, Total, by Test America	SGC 2/20/201	8 SM 4500 F_C	1	0.032	0.10	U <0.032	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-10

Laboratory ID Number: AY03296

Rec 15 93.7	Rec Limit	Prec	Pred
	Limit	Droo	
15 02 7		FIEC	Limi
15 93.7	70 to 130	2.64	20
15 99.1	70 to 130	3.24	20
15 90.3	70 to 130	3.20	20
.0046 94.1	70 to 130	1.13	20
15 92.6	70 to 130	1.71	20
15 98.9	70 to 130	1.69	20
15 94.7	70 to 130	2.92	20
15 100	70 to 130	2.47	20
15 92.6	70 to 130	1.32	20
15 107	70 to 130	0.418	20
15 102	70 to 130	2.49	20
15 95.2	70 to 130	2.59	20
988	70 to 130	0.831	20
	92.6 15 107 115 102 15 95.2	92.6 70 to 130 15 107 70 to 130 15 102 70 to 130 15 95.2 70 to 130	92.6 70 to 130 1.32 15 107 70 to 130 0.418 15 102 70 to 130 2.49 15 95.2 70 to 130 2.59

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-10

Laboratory ID Number: AY03296

			MB			Sample	LCS	Rec	,	Prec
Sample	Analysis	Units M	B Limit	Spike	LFM	Duplicate LCS	S Limit	Rec Limit	Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-11

Laboratory ID Number: AY03297

Name	Analyst Test	Date	Reference	Vio Spec D)F	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols					,	,			
* Arsenic, Total	DLJ 2/14/	2018	EPA 200.8	5.0	075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	DLJ 2/14/	2018	EPA 200.8	5.0	075	0.002	0.01	J 0.00614	mg/L
* Beryllium, Total	DLJ 2/14/	2018	EPA 200.8	5.0	075	0.0006	0.003	U Not Detected	mg/L
* Cadmium, Total	DLJ 2/14/	2018	EPA 200.8	5.0	075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	DLJ 2/14/	2018	EPA 200.8	5.0	075	0.0006	0.003	U Not Detected	mg/L
* Cobalt, Total	DLJ 2/14/	2018	EPA 200.8	5.0	075	0.002	0.01	J 0.00324	mg/L
* Chromium, Total	DLJ 2/14/	2018	EPA 200.8	5.0	075	0.002	0.01	U Not Detected	mg/L
* Mercury, Total by CVAA	ABB 2/16/	2018	EPA 245.1	1		0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	HRG 2/20/	2018	EPA 200.7	2.0	03	0.01	0.05	U Not Detected	mg/L
 Molybdenum, Total 	DLJ 2/14/	2018	EPA 200.8	5.0	075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	DLJ 2/14/	2018	EPA 200.8	5.0	075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 2/14/	2018	EPA 200.8	5.0	075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	DLJ 2/14/	2018	EPA 200.8	5.0	075	0.0002	0.001	U Not Detected	mg/L
General Characteristics									
* Fluoride, Total, by Test America	SGC 2/20/	2018	SM 4500 F_C	1		0.032	0.10	U <0.032	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-11

Laboratory ID Number: AY03297

Edboratory ID Number: A103231											
		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
AY03303 Mercury, Total by CVAA	mg/L -0.00000679	0.0005	0.004	0.00377	0.00381	0.00380	0.0034 to 0.0046	94.1	70 to 130	1.13	20
AY03303 Selenium, Total	mg/L 0.0000284	0.0044	0.10	0.0937	0.0962	0.109	0.085 to 0.115	93.7	70 to 130	2.64	20
AY03303 Chromium, Total	mg/L 0.00000759	0.0044	0.10	0.0991	0.102	0.102	0.085 to 0.115	99.1	70 to 130	3.24	20
AY03303 Molybdenum, Total	mg/L 0.0000204	0.0044	0.10	0.0903	0.0933	0.0948	0.085 to 0.115	90.3	70 to 130	3.20	20
AY03303 Antimony, Total	mg/L 0.0000171	0.00132	0.10	0.0926	0.0942	0.0981	0.085 to 0.115	92.6	70 to 130	1.71	20
AY03303 Thallium, Total	mg/L 0.0000117	0.00044	0.10	0.0989	0.101	0.100	0.085 to 0.115	98.9	70 to 130	1.69	20
AY03303 Arsenic, Total	mg/L 0.00000953	0.0022	0.10	0.0952	0.0977	0.109	0.085 to 0.115	95.2	70 to 130	2.59	20
AY03303 Lithium, Total	mg/L -0.0000144	0.022	0.20	0.198	0.196	0.186	0.17 to 0.23	98.8	70 to 130	0.831	20
AY03303 Cadmium, Total	mg/L 0.000000557	0.00066	0.10	0.0947	0.0975	0.100	0.085 to 0.115	94.7	70 to 130	2.92	20
AY03303 Lead, Total	mg/L -0.00000465	0.0022	0.10	0.1000	0.102	0.101	0.085 to 0.115	100	70 to 130	2.47	20
AY03303 Barium, Total	mg/L -0.00000193	0.0044	0.10	0.0926	0.0939	0.0951	0.085 to 0.115	92.6	70 to 130	1.32	20
AY03303 Beryllium, Total	mg/L 0.00000896	0.00132	0.10	0.107	0.108	0.108	0.085 to 0.115	107	70 to 130	0.418	20
AY03303 Cobalt, Total	mg/L 0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102	70 to 130	2.49	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-11

Laboratory ID Number: AY03297

			MB			Sample	LCS	Rec		Prec
Sample	Analysis	Units M	B Limit	Spike	LFM	Duplicate LCS	S Limit	Rec Limit	Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-14S

Laboratory ID Number: AY03298

Name	Analyst	Test Date	Reference	Vio Spec DF	N	ИDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols										
Arsenic, Total	DLJ	2/14/2018	EPA 200.8	5.075	5 0	.001	0.005	U	Not Detected	mg/L
Barium, Total	DLJ	2/14/2018	EPA 200.8	5.075	5 0	.002	0.01		0.0340	mg/L
Beryllium, Total	DLJ	2/14/2018	EPA 200.8	5.075	5 0	.0006	0.003	U	Not Detected	mg/L
Cadmium, Total	DLJ	2/14/2018	EPA 200.8	5.075	5 0	.0003	0.001	U	Not Detected	mg/L
Antimony, Total	DLJ	2/14/2018	EPA 200.8	5.075	5 0	.0006	0.003	U	Not Detected	mg/L
Cobalt, Total	DLJ	2/14/2018	EPA 200.8	5.075	5 0	.002	0.01	U	Not Detected	mg/L
Chromium, Total	DLJ	2/14/2018	EPA 200.8	5.075	5 0	.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	ABB	2/16/2018	EPA 245.1	1	0	.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	HRG	2/20/2018	EPA 200.7	2.03	0	.01	0.05	U	Not Detected	mg/L
Molybdenum, Total	DLJ	2/14/2018	EPA 200.8	5.075	5 0	.002	0.01	U	Not Detected	mg/L
Lead, Total	DLJ	2/14/2018	EPA 200.8	5.075	5 0	.001	0.005	U	Not Detected	mg/L
Selenium, Total	DLJ	2/14/2018	EPA 200.8	5.075	5 0	.002	0.01	U	Not Detected	mg/L
Thallium, Total	DLJ	2/14/2018	EPA 200.8	5.075	5 0	.0002	0.001	U	Not Detected	mg/L
General Characteristics										
Fluoride, Total, by Test America	SGC	2/20/2018	SM 4500 F_C	1	0	.032	0.10	J	0.060	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-14S

Laboratory ID Number: AY03298

	MB					LCS		Rec		Pred
Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
A mg/L -0.00000679	0.0005	0.004	0.00377	0.00381	0.00380	0.0034 to 0.0046	94.1	70 to 130	1.13	20
mg/L 0.0000284	0.0044	0.10	0.0937	0.0962	0.109	0.085 to 0.115	93.7	70 to 130	2.64	20
mg/L 0.0000171	0.00132	0.10	0.0926	0.0942	0.0981	0.085 to 0.115	92.6	70 to 130	1.71	20
mg/L 0.0000117	0.00044	0.10	0.0989	0.101	0.100	0.085 to 0.115	98.9	70 to 130	1.69	20
mg/L 0.000000557	0.00066	0.10	0.0947	0.0975	0.100	0.085 to 0.115	94.7	70 to 130	2.92	20
mg/L -0.00000465	0.0022	0.10	0.1000	0.102	0.101	0.085 to 0.115	100	70 to 130	2.47	20
mg/L 0.00000759	0.0044	0.10	0.0991	0.102	0.102	0.085 to 0.115	99.1	70 to 130	3.24	20
mg/L 0.0000204	0.0044	0.10	0.0903	0.0933	0.0948	0.085 to 0.115	90.3	70 to 130	3.20	20
mg/L 0.00000953	0.0022	0.10	0.0952	0.0977	0.109	0.085 to 0.115	95.2	70 to 130	2.59	20
mg/L -0.0000144	0.022	0.20	0.198	0.196	0.186	0.17 to 0.23	98.8	70 to 130	0.831	20
mg/L -0.00000193	0.0044	0.10	0.0926	0.0939	0.0951	0.085 to 0.115	92.6	70 to 130	1.32	20
mg/L 0.00000896	0.00132	0.10	0.107	0.108	0.108	0.085 to 0.115	107	70 to 130	0.418	20
mg/L 0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102	70 to 130	2.49	20
A	mg/L -0.00000679 mg/L 0.0000284 mg/L 0.0000171 mg/L 0.0000117 mg/L 0.00000557 mg/L -0.00000465 mg/L 0.00000759 mg/L 0.0000204 mg/L 0.0000953 mg/L -0.0000144 mg/L -0.00000193 mg/L 0.00000896	Units MB Limit AA mg/L -0.00000679 0.0005 mg/L 0.0000284 0.0044 mg/L 0.0000171 0.00132 mg/L 0.0000117 0.00044 mg/L 0.000000557 0.00066 mg/L -0.00000465 0.0022 mg/L 0.00000759 0.0044 mg/L 0.0000204 0.0044 mg/L 0.0000953 0.0022 mg/L -0.0000144 0.022 mg/L -0.0000193 0.0044 mg/L 0.00000896 0.00132	Units MB Limit Spike AA mg/L -0.00000679 0.0005 0.0004 mg/L 0.0000284 0.0044 0.10 mg/L 0.0000171 0.00132 0.10 mg/L 0.0000117 0.00044 0.10 mg/L 0.000000557 0.00066 0.10 mg/L -0.00000465 0.0022 0.10 mg/L 0.00000759 0.0044 0.10 mg/L 0.0000204 0.0044 0.10 mg/L 0.00000953 0.0022 0.10 mg/L -0.0000144 0.022 0.20 mg/L -0.0000193 0.0044 0.10 mg/L 0.00000896 0.00132 0.10	Units MB Limit Spike MS AA mg/L -0.00000679 0.0005 0.004 0.00377 mg/L 0.0000284 0.0044 0.10 0.0937 mg/L 0.0000171 0.00132 0.10 0.0926 mg/L 0.0000117 0.00044 0.10 0.0989 mg/L 0.00000557 0.00066 0.10 0.0947 mg/L -0.0000045 0.0022 0.10 0.1000 mg/L 0.0000759 0.0044 0.10 0.0991 mg/L 0.0000204 0.0044 0.10 0.0903 mg/L 0.0000953 0.0022 0.10 0.0952 mg/L -0.0000144 0.022 0.20 0.198 mg/L -0.0000193 0.0044 0.10 0.0926 mg/L 0.00000896 0.00132 0.10 0.107	Units MB Limit Spike MS MSD AA mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 mg/L 0.00000177 0.00044 0.10 0.0989 0.101 mg/L 0.000000557 0.00066 0.10 0.0947 0.0975 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 mg/L 0.00000759 0.0044 0.10 0.0991 0.102 mg/L 0.0000204 0.0044 0.10 0.0903 0.0933 mg/L 0.00000953 0.0022 0.10 0.198 0.196 mg/L -0.00000193 0.0044 0.10 0.0926 0.0939 mg/L 0.00000896 0.00132 0.10 0.107 0.108	Units MB Limit Spike MS MSD LCS AA mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 mg/L 0.00000557 0.00066 0.10 0.0947 0.0975 0.100 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 0.101 mg/L 0.00000759 0.0044 0.10 0.0991 0.102 0.102 mg/L 0.0000204 0.0044 0.10 0.0993 0.0933 0.0948 mg/L 0.00000953 0.0022 0.10 0.0952 0.0977 0.109 mg/L -0.0000144 0.022 0.20 0.198 0.196 0.186 mg/L -0.00000193 0.0044 0.10 0.0926 0.0939 0.0951 mg/L 0.00000896 0.00132 0.10 0.107 0.108 0.108	Units MB Limit Spike MS MSD LCS Limit Mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 mg/L 0.0000117 0.00044 0.10 0.0989 0.101 0.100 0.085 to 0.115 mg/L 0.00000557 0.00066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 0.101 0.085 to 0.115 mg/L 0.00000759 0.0044 0.10 0.0991 0.102 0.101 0.085 to 0.115 mg/L 0.0000204 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 mg/L 0.0000204 0.0044 0.10 0.0903 0.0933 0.0948 0.085 to 0.115 mg/L 0.0000953 0.0022 0.10 0.0952 0.0977 0.109 0.085 to 0.115 mg/L -0.0000144 0.022 0.20 0.198 0.196 0.186 0.17 to 0.23 mg/L -0.0000193 0.0044 0.10 0.0926 0.0939 0.0951 0.085 to 0.115 mg/L 0.00000896 0.00132 0.10 0.107 0.108 0.108 0.085 to 0.115	Units MB Limit Spike MS MSD LCS Limit Rec MS MSD LSS Limit Rec MS MS MS D .0085 to 0.115 93.7 MS LSS Limit Rec MS LSS LSS Limit Rec MS LSS LSS LSS LSS LSS LSS LSS LSS LSS L	Units MB Limit Spike MS MSD LCS Limit Rec Limit Mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 94.1 70 to 130 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 93.7 70 to 130 mg/L 0.0000117 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 92.6 70 to 130 mg/L 0.0000117 0.00044 0.10 0.0989 0.101 0.100 0.085 to 0.115 98.9 70 to 130 mg/L 0.000000557 0.00066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 94.7 70 to 130 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 0.101 0.085 to 0.115 94.7 70 to 130 mg/L 0.00000759 0.0044 0.10 0.0991 0.102 0.101 0.085 to 0.115 99.1 70 to 130 mg/L 0.0000204 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 99.1 70 to 130 mg/L 0.00000953 0.0022 0.10 0.0903 0.0933 0.0948 0.085 to 0.115 95.2 70 to 130 mg/L -0.0000144 0.022 0.20 0.198 0.196 0.186 0.17 to 0.23 98.8 70 to 130 mg/L -0.00000193 0.0044 0.10 0.0926 0.0939 0.0951 0.085 to 0.115 92.6 70 to 130 mg/L 0.00000896 0.00132 0.10 0.107 0.108 0.108 0.085 to 0.115 107 70 to 130 mg/L 0.00000896 0.00132 0.10 0.0926 0.0939 0.0951 0.085 to 0.115 92.6 70 to 130 mg/L 0.00000896 0.00132 0.10 0.107 0.108 0.108 0.085 to 0.115 107 70 to 130	Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec AA mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 94.1 70 to 130 1.13 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 93.7 70 to 130 1.71 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 98.9 70 to 130 1.71 mg/L 0.00000177 0.00064 0.10 0.0989 0.101 0.100 0.085 to 0.115 98.9 70 to 130 1.69 mg/L 0.00000557 0.0066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 94.7 70 to 130 2.92 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 0.101 0.085 to 0.115 99.1 70 to 130 3.24 mg/L 0.00000759 0.0044 0.10 0.0991 0.102

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-14S

Laboratory ID Number: AY03298

			MB			Sample	LCS	Rec		Prec
Sample	Analysis	Units M	B Limit	Spike	LFM	Duplicate LCS	S Limit	Rec Limit	Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-3

Laboratory ID Number: AY03299

Name	Analyst	Test Date	Reference	Vio Spec DF	MDI	RL	Q	Results	Units
Metals, Cyanide, Total Phenols									
Arsenic, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.00	1 0.005	U	Not Detected	mg/L
Barium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.00	2 0.01		0.0341	mg/L
Beryllium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.00	06 0.003	U	Not Detected	mg/L
Cadmium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.00	0.001	U	Not Detected	mg/L
Antimony, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.00	0.003	U	Not Detected	mg/L
Cobalt, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.00	2 0.01	U	Not Detected	mg/L
Chromium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.00	2 0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	ABB	2/16/2018	EPA 245.1	1	0.00	0.0005	U	Not Detected	mg/L
Lithium, Total	HRG	2/20/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
Molybdenum, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.00	2 0.01	U	Not Detected	mg/L
Lead, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.00	1 0.005	U	Not Detected	mg/L
Selenium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.00	2 0.01	U	Not Detected	mg/L
Thallium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.00	02 0.001	U	Not Detected	mg/L
General Characteristics									
Fluoride, Total, by Test America	SGC	2/20/2018	SM 4500 F_C	1	0.03	2 0.10	J	0.060	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-3

Laboratory ID Number: AY03299

Euboratory ID Italiber: A10323	<u> </u>										
		MB					LCS		Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limi
AY03303 Mercury, Total by CVAA	mg/L -0.00000679	0.0005	0.004	0.00377	0.00381	0.00380	0.0034 to 0.0046	94.1	70 to 130	1.13	20
AY03303 Selenium, Total	mg/L 0.0000284	0.0044	0.10	0.0937	0.0962	0.109	0.085 to 0.115	93.7	70 to 130	2.64	20
Y03303 Chromium, Total	mg/L 0.00000759	0.0044	0.10	0.0991	0.102	0.102	0.085 to 0.115	99.1	70 to 130	3.24	20
Y03303 Molybdenum, Total	mg/L 0.0000204	0.0044	0.10	0.0903	0.0933	0.0948	0.085 to 0.115	90.3	70 to 130	3.20	20
Y03303 Antimony, Total	mg/L 0.0000171	0.00132	0.10	0.0926	0.0942	0.0981	0.085 to 0.115	92.6	70 to 130	1.71	20
Y03303 Thallium, Total	mg/L 0.0000117	0.00044	0.10	0.0989	0.101	0.100	0.085 to 0.115	98.9	70 to 130	1.69	20
Y03303 Barium, Total	mg/L -0.00000193	0.0044	0.10	0.0926	0.0939	0.0951	0.085 to 0.115	92.6	70 to 130	1.32	20
Y03303 Beryllium, Total	mg/L 0.00000896	0.00132	0.10	0.107	0.108	0.108	0.085 to 0.115	107	70 to 130	0.418	20
Y03303 Cobalt, Total	mg/L 0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102	70 to 130	2.49	20
Y03303 Cadmium, Total	mg/L 0.000000557	0.00066	0.10	0.0947	0.0975	0.100	0.085 to 0.115	94.7	70 to 130	2.92	20
Y03303 Lead, Total	mg/L -0.00000465	0.0022	0.10	0.1000	0.102	0.101	0.085 to 0.115	100	70 to 130	2.47	20
Y03303 Arsenic, Total	mg/L 0.00000953	0.0022	0.10	0.0952	0.0977	0.109	0.085 to 0.115	95.2	70 to 130	2.59	20
Y03303 Lithium, Total	mg/L -0.0000144	0.022	0.20	0.198	0.196	0.186	0.17 to 0.23	98.8	70 to 130	0.831	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-3

Laboratory ID Number: AY03299

	,								
			MB			Sample	LCS	Rec	Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplicate LCS	Limit	Rec Limit Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-8 Dup

Laboratory ID Number: AY03300

Name	Analys	t Test Date	Reference	Vio Spec DF		MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols		'				,				
* Arsenic, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.001	0.005	J	0.00131	mg/L
* Barium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01		0.0260	mg/L
* Beryllium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.0006	0.003	U	Not Detected	mg/L
* Cadmium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.0003	0.001	U	Not Detected	mg/L
* Antimony, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.0006	0.003	U	Not Detected	mg/L
* Cobalt, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	U	Not Detected	mg/L
* Chromium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	U	Not Detected	mg/L
* Mercury, Total by CVAA	ABB	2/16/2018	EPA 245.1	1		0.00025	0.0005	U	Not Detected	mg/L
* Lithium, Total	HRG	2/20/2018	EPA 200.7	2.03	}	0.01	0.05	U	Not Detected	mg/L
 Molybdenum, Total 	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	J	0.00321	mg/L
* Lead, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.001	0.005	U	Not Detected	mg/L
* Selenium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.002	0.01	U	Not Detected	mg/L
* Thallium, Total	DLJ	2/14/2018	EPA 200.8	5.07	5	0.0002	0.001	U	Not Detected	mg/L
General Characteristics										
* Fluoride, Total, by Test America	SGC	2/20/2018	SM 4500 F_C	1		0.032	0.10		0.14	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-8 Dup

Laboratory ID Number: AY03300

		MB				1	LCS		Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limi
Y03303 Mercury, Total by CVAA	mg/L -0.00000679	0.0005	0.004	0.00377	0.00381	0.00380	0.0034 to 0.0046	94.1	70 to 130	1.13	20
Y03303 Selenium, Total	mg/L 0.0000284	0.0044	0.10	0.0937	0.0962	0.109	0.085 to 0.115	93.7	70 to 130	2.64	20
Y03303 Chromium, Total	mg/L 0.00000759	0.0044	0.10	0.0991	0.102	0.102	0.085 to 0.115	99.1	70 to 130	3.24	20
Y03303 Molybdenum, Total	mg/L 0.0000204	0.0044	0.10	0.0903	0.0933	0.0948	0.085 to 0.115	90.3	70 to 130	3.20	20
Y03303 Barium, Total	mg/L -0.00000193	0.0044	0.10	0.0926	0.0939	0.0951	0.085 to 0.115	92.6	70 to 130	1.32	20
Y03303 Beryllium, Total	mg/L 0.00000896	0.00132	0.10	0.107	0.108	0.108	0.085 to 0.115	107	70 to 130	0.418	20
Y03303 Cobalt, Total	mg/L 0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102	70 to 130	2.49	20
Y03303 Cadmium, Total	mg/L 0.000000557	0.00066	0.10	0.0947	0.0975	0.100	0.085 to 0.115	94.7	70 to 130	2.92	20
Y03303 Lead, Total	mg/L -0.00000465	0.0022	0.10	0.1000	0.102	0.101	0.085 to 0.115	100	70 to 130	2.47	20
Y03303 Antimony, Total	mg/L 0.0000171	0.00132	0.10	0.0926	0.0942	0.0981	0.085 to 0.115	92.6	70 to 130	1.71	20
Y03303 Thallium, Total	mg/L 0.0000117	0.00044	0.10	0.0989	0.101	0.100	0.085 to 0.115	98.9	70 to 130	1.69	20
Y03303 Arsenic, Total	mg/L 0.00000953	0.0022	0.10	0.0952	0.0977	0.109	0.085 to 0.115	95.2	70 to 130	2.59	20
Y03303 Lithium, Total	mg/L -0.0000144	0.022	0.20	0.198	0.196	0.186	0.17 to 0.23	98.8	70 to 130	0.831	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-8 Dup

Laboratory ID Number: AY03300

	, , , , , , , , , , , , , , , , , , , ,								
			MB			Sample	LCS	Rec	Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplicate LCS	Limit	Rec Limit Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 06-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY03301

Name	Analys	t Test Date	Reference	Vio Spec DF	MDL	RL	Q F	Results	Units
Metals, Cyanide, Total Phenols		·							
Arsenic, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.001	0.005	UI	Not Detected	mg/L
Barium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.002	0.01	UI	Not Detected	mg/L
Beryllium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.0006	0.003	UI	Not Detected	mg/L
Cadmium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.0003	0.001	UI	Not Detected	mg/L
Antimony, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.0006	0.003	UI	Not Detected	mg/L
Cobalt, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Chromium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	ABB	2/16/2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	HRG	2/20/2018	EPA 200.7	2.03	0.01	0.05	UI	Not Detected	mg/L
Molybdenum, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.002	0.01	UI	Not Detected	mg/L
Lead, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.001	0.005	UI	Not Detected	mg/L
Selenium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	DLJ	2/14/2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics									
Fluoride, Total, by Test America	SGC	2/20/2018	SM 4500 F_C	1	0.032	0.10	U ·	<0.032	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY03301

	MB					LCS		Rec		Pred
Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limi
mg/L -0.00000679	0.0005	0.004	0.00377	0.00381	0.00380	0.0034 to 0.0046	94.1	70 to 130	1.13	20
mg/L 0.0000284	0.0044	0.10	0.0937	0.0962	0.109	0.085 to 0.115	93.7	70 to 130	2.64	20
mg/L 0.00000759	0.0044	0.10	0.0991	0.102	0.102	0.085 to 0.115	99.1	70 to 130	3.24	20
mg/L 0.0000204	0.0044	0.10	0.0903	0.0933	0.0948	0.085 to 0.115	90.3	70 to 130	3.20	20
mg/L 0.0000171	0.00132	0.10	0.0926	0.0942	0.0981	0.085 to 0.115	92.6	70 to 130	1.71	20
mg/L 0.0000117	0.00044	0.10	0.0989	0.101	0.100	0.085 to 0.115	98.9	70 to 130	1.69	20
mg/L 0.000000557	0.00066	0.10	0.0947	0.0975	0.100	0.085 to 0.115	94.7	70 to 130	2.92	20
mg/L -0.00000465	0.0022	0.10	0.1000	0.102	0.101	0.085 to 0.115	100	70 to 130	2.47	20
mg/L 0.00000953	0.0022	0.10	0.0952	0.0977	0.109	0.085 to 0.115	95.2	70 to 130	2.59	20
mg/L -0.0000144	0.022	0.20	0.198	0.196	0.186	0.17 to 0.23	98.8	70 to 130	0.831	20
mg/L -0.00000193	0.0044	0.10	0.0926	0.0939	0.0951	0.085 to 0.115	92.6	70 to 130	1.32	20
mg/L 0.00000896	0.00132	0.10	0.107	0.108	0.108	0.085 to 0.115	107	70 to 130	0.418	20
mg/L 0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102	70 to 130	2.49	20
	mg/L -0.00000679 mg/L 0.0000284 mg/L 0.0000204 mg/L 0.0000171 mg/L 0.0000117 mg/L 0.00000557 mg/L -0.00000465 mg/L 0.0000953 mg/L -0.0000144 mg/L -0.00000193 mg/L 0.00000896	Units MB Limit mg/L -0.00000679 0.0005 mg/L 0.0000284 0.0044 mg/L 0.0000759 0.0044 mg/L 0.0000204 0.0044 mg/L 0.0000171 0.00132 mg/L 0.0000117 0.00044 mg/L 0.00000557 0.00066 mg/L -0.00000465 0.0022 mg/L -0.0000144 0.022 mg/L -0.0000193 0.0044 mg/L -0.00000193 0.0044 mg/L 0.00000896 0.00132	Units MB Limit Spike mg/L -0.00000679 0.0005 0.004 mg/L 0.0000284 0.0044 0.10 mg/L 0.00000759 0.0044 0.10 mg/L 0.0000204 0.0044 0.10 mg/L 0.0000171 0.00132 0.10 mg/L 0.00000177 0.00044 0.10 mg/L 0.00000557 0.00066 0.10 mg/L -0.00000465 0.0022 0.10 mg/L 0.00000953 0.0022 0.10 mg/L -0.0000144 0.022 0.20 mg/L -0.00000193 0.0044 0.10 mg/L 0.00000896 0.00132 0.10	Units MB Limit Spike MS mg/L -0.00000679 0.0005 0.004 0.00377 mg/L 0.0000284 0.0044 0.10 0.0997 mg/L 0.00000759 0.0044 0.10 0.0991 mg/L 0.0000171 0.00132 0.10 0.0926 mg/L 0.0000171 0.00044 0.10 0.0989 mg/L 0.00000557 0.00066 0.10 0.0947 mg/L -0.00000465 0.0022 0.10 0.1000 mg/L 0.00000953 0.0022 0.10 0.0952 mg/L -0.0000144 0.022 0.20 0.198 mg/L -0.0000193 0.0044 0.10 0.0926 mg/L -0.00000896 0.00132 0.10 0.0926	Units MB Limit Spike MS MSD mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 mg/L 0.00000759 0.0044 0.10 0.0991 0.102 mg/L 0.0000204 0.0044 0.10 0.0903 0.0933 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 mg/L 0.00000557 0.00066 0.10 0.0947 0.0975 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 mg/L 0.00000953 0.0022 0.10 0.0952 0.0977 mg/L -0.0000144 0.022 0.20 0.198 0.196 mg/L -0.00000193 0.0044 0.10 0.0926 0.0939 mg/L 0.00000896 0.00132 0.10 0.107 0.108	Units MB Limit Spike MS MSD LCS mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 mg/L 0.0000759 0.0044 0.10 0.0991 0.102 0.102 mg/L 0.0000204 0.0044 0.10 0.0903 0.0933 0.0948 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 mg/L 0.00000177 0.00044 0.10 0.0989 0.101 0.100 mg/L 0.000000557 0.00066 0.10 0.0947 0.0975 0.100 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 0.101 mg/L -0.0000144 0.022 0.10 0.0952 0.0977 0.109 mg/L -0.0000144 0.022 0.20 0.198 0.196 0.186 mg/L -0.00000193 0.0044 0.10 0.0926 0.0939 0.0951 mg/L -0	Units MB Limit Spike MS MSD LCS Limit mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 mg/L 0.0000204 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 mg/L 0.0000171 0.00044 0.10 0.0989 0.101 0.100 0.085 to 0.115 mg/L 0.00000171 0.00044 0.10 0.0989 0.101 0.100 0.085 to 0.115 mg/L 0.00000557 0.00066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 mg/L -0.00000465 0.0022 0.10 0.1020 0.102 0.101 0.085 to 0.115 mg/L -0.0000144 0.022 0.20 0.198 0.196 0.186 0.17 to 0.23 mg/L -0.0000193 0.00	Units MB Limit Spike MS MSD LCS Limit Rec mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 94.1 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 93.7 mg/L 0.0000204 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 99.1 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 92.6 mg/L 0.0000117 0.00044 0.10 0.0986 0.101 0.100 0.085 to 0.115 98.9 mg/L 0.00000557 0.00066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 94.7 mg/L 0.00000465 0.0022 0.10 0.1020 0.102 0.101 0.085 to 0.115 95.2 mg/L -0.0000144 0.022 0.20 0.198 0.196 0.186 0.17 to 0.23 98.8 mg/L -0.00000193 0.0044 </td <td>Units MB Limit Spike MS MSD LCS Limit Rec Limit mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 94.1 70 to 130 mg/L 0.00000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 93.7 70 to 130 mg/L 0.0000204 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 99.1 70 to 130 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 92.6 70 to 130 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 92.6 70 to 130 mg/L 0.00000177 0.00044 0.10 0.0989 0.101 0.100 0.085 to 0.115 98.9 70 to 130 mg/L 0.000000557 0.00066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 94.7 70 to 130 mg/L 0.000000453 0.0022<td>Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 94.1 70 to 130 1.13 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 99.1 70 to 130 2.64 mg/L 0.0000204 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 99.1 70 to 130 3.24 mg/L 0.0000171 0.00132 0.10 0.0933 0.0948 0.085 to 0.115 90.3 70 to 130 3.20 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 92.6 70 to 130 1.71 mg/L 0.00000177 0.00066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 98.7 70 to 130 2.92 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 0.101 0.085 to 0.115<</td></td>	Units MB Limit Spike MS MSD LCS Limit Rec Limit mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 94.1 70 to 130 mg/L 0.00000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 93.7 70 to 130 mg/L 0.0000204 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 99.1 70 to 130 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 92.6 70 to 130 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 92.6 70 to 130 mg/L 0.00000177 0.00044 0.10 0.0989 0.101 0.100 0.085 to 0.115 98.9 70 to 130 mg/L 0.000000557 0.00066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 94.7 70 to 130 mg/L 0.000000453 0.0022 <td>Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 94.1 70 to 130 1.13 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 99.1 70 to 130 2.64 mg/L 0.0000204 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 99.1 70 to 130 3.24 mg/L 0.0000171 0.00132 0.10 0.0933 0.0948 0.085 to 0.115 90.3 70 to 130 3.20 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 92.6 70 to 130 1.71 mg/L 0.00000177 0.00066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 98.7 70 to 130 2.92 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 0.101 0.085 to 0.115<</td>	Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec mg/L -0.00000679 0.0005 0.004 0.00377 0.00381 0.00380 0.0034 to 0.0046 94.1 70 to 130 1.13 mg/L 0.0000284 0.0044 0.10 0.0937 0.0962 0.109 0.085 to 0.115 99.1 70 to 130 2.64 mg/L 0.0000204 0.0044 0.10 0.0991 0.102 0.102 0.085 to 0.115 99.1 70 to 130 3.24 mg/L 0.0000171 0.00132 0.10 0.0933 0.0948 0.085 to 0.115 90.3 70 to 130 3.20 mg/L 0.0000171 0.00132 0.10 0.0926 0.0942 0.0981 0.085 to 0.115 92.6 70 to 130 1.71 mg/L 0.00000177 0.00066 0.10 0.0947 0.0975 0.100 0.085 to 0.115 98.7 70 to 130 2.92 mg/L -0.00000465 0.0022 0.10 0.1000 0.102 0.101 0.085 to 0.115<

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB 06-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY03301

	, , , , , , , , , , , , , , , , , , , ,									
			MB			Sample	LCS	Rec		Prec
Sample	Analysis	Units M	B Limit	Spike	LFM	Duplicate LCS	S Limit	Rec Limit	Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 07-Feb-18

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-15

Laboratory ID Number: AY03302

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
Arsenic, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	J 0.00897	mg/L
Beryllium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cadmium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cobalt, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Chromium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	ABB 2/16/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	HRG 2/20/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
Molybdenum, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Selenium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
Fluoride, Total, by Test America	SGC 2/20/2018	SM 4500 F_C	1	0.032	0.10	U <0.032	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 07-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-15

Laboratory ID Number: AY03302

			MB					LCS		Rec		Prec
Sample Analysis	Units	MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y03303 Mercury, Tot	al by CVAA mg/L	-0.00000679	0.0005	0.004	0.00377	0.00381	0.00380	0.0034 to 0.0046	94.1	70 to 130	1.13	20
Y03303 Selenium, To	otal mg/L	0.0000284	0.0044	0.10	0.0937	0.0962	0.109	0.085 to 0.115	93.7	70 to 130	2.64	20
Y03303 Chromium,	Γotal mg/L	0.00000759	0.0044	0.10	0.0991	0.102	0.102	0.085 to 0.115	99.1	70 to 130	3.24	20
Y03303 Molybdenum	n, Total mg/L	0.0000204	0.0044	0.10	0.0903	0.0933	0.0948	0.085 to 0.115	90.3	70 to 130	3.20	20
Y03303 Antimony, To	otal mg/L	0.0000171	0.00132	0.10	0.0926	0.0942	0.0981	0.085 to 0.115	92.6	70 to 130	1.71	20
Y03303 Thallium, To	tal mg/L	0.0000117	0.00044	0.10	0.0989	0.101	0.100	0.085 to 0.115	98.9	70 to 130	1.69	20
Y03303 Cadmium, T	otal mg/L	0.00000557	0.00066	0.10	0.0947	0.0975	0.100	0.085 to 0.115	94.7	70 to 130	2.92	20
Y03303 Lead, Total	mg/L	-0.00000465	0.0022	0.10	0.1000	0.102	0.101	0.085 to 0.115	100	70 to 130	2.47	20
Y03303 Arsenic, Total	al mg/L	0.00000953	0.0022	0.10	0.0952	0.0977	0.109	0.085 to 0.115	95.2	70 to 130	2.59	20
Y03303 Lithium, Tota	al mg/L	-0.0000144	0.022	0.20	0.198	0.196	0.186	0.17 to 0.23	98.8	70 to 130	0.831	20
Y03303 Barium, Tota	al mg/L	-0.00000193	0.0044	0.10	0.0926	0.0939	0.0951	0.085 to 0.115	92.6	70 to 130	1.32	20
Y03303 Beryllium, To	otal mg/L	0.00000896	0.00132	0.10	0.107	0.108	0.108	0.085 to 0.115	107	70 to 130	0.418	20
Y03303 Cobalt, Tota	I mg/L	0.00000193	0.0044	0.10	0.102	0.105	0.0977	0.085 to 0.115	102	70 to 130	2.49	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 07-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum - MW-15

Laboratory ID Number: AY03302

_			MB		Sample	LCS	Rec	Prec
S	ample Analysis	Units MB	Limit	Spike LFM	Duplicate LCS	Limit	Rec Limit Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGEB 07-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum Equipment Blank

Laboratory ID Number: AY03303

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols				,			
Arsenic, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Beryllium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cadmium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cobalt, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Chromium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	ABB 2/16/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	HRG 2/20/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
Molybdenum, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Selenium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	DLJ 2/14/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
Fluoride, Total, by Test America	SGC 2/20/2018	SM 4500 F_C	1	0.032	0.10	U <0.032	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGEB 07-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum Equipment Blank

Laboratory ID Number: AY03303

Rec Limit 94.1 70 to 130 93.7 70 to 130	_	Limit 20
93.7 70 to 130	_	_
	2.64	
		20
94.7 70 to 130	2.92	20
100 70 to 130	2.47	20
92.6 70 to 130	1.71	20
98.9 70 to 130	1.69	20
99.1 70 to 130	3.24	20
90.3 70 to 130	3.20	20
92.6 70 to 130	1.32	20
107 70 to 130	0.418	20
102 70 to 130	2.49	20
95.2 70 to 130	2.59	20
98.8 70 to 130	0.831	20
	107 70 to 130 102 70 to 130 95.2 70 to 130	107 70 to 130 0.418 102 70 to 130 2.49 95.2 70 to 130 2.59 98.8 70 to 130 0.831

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2018

Comments: Test America, Pensacola NELAP ID: E81010

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGEB 07-Feb-18 Sample Date:

Customer ID:

Delivery Date: 08-Feb-18

Description: Gaston Gypsum Equipment Blank

Laboratory ID Number: AY03303

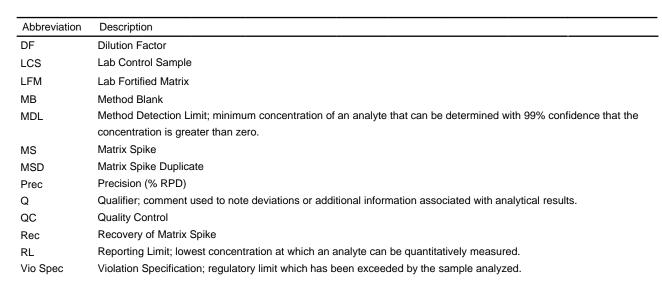
			MB			Sample	LCS	Rec	Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplicate LCS	Limit	Rec Limit Prec	Limit

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2018


Comments: Test America, Pensacola NELAP ID: E81010

CC:

Definitions

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Qualifier	Description
В	Analyte found in reagent blank. Indicates possible reagent or background contamination.
Е	Estimated reported value exceeded calibration range.
J	Reported value is an estimate because concentration is less than reporting limit.
N	Organic constituents tentatively identified. Confirmation is needed.
R	Matrix spike recovery is out of range.
U	Compound was analyzed, but not detected.
Р	Precision is out of range.
С	Analyte was verified by re-analysis.
Н	The holding time for this test is immediately following sample collection. The samples were analyzed as soon as
	possible after receipt by the laboratory.
L	Check standard is outside of the required specification limit.
D	All samples were stored at less than or equal to 6 °C and for no longer than 48 hours from time of sampling, unless
	otherwise noted.
F	Water Field Group (WFG) qualifier; see comments for more information

Field Complete

Lab Complete

APC General Testing Laboratory General Service Complex Building 8

Lab ETA 02/08/2018 07:00

Requested Complete Date	Routine	Results To	Dustin Brooks, Greg Dyer
Site Representative	Tanisha Fenderson	Requested By	Greg Dyer
Collector	Anthony Goggins	Location	Gaston Gypsum

Analysis Requested

Bottle 1 (500mL): Metals, Bottle 2 (250mL): Hg, Bottle 3 (250mL): Anions

Comments

Fluoride outsourced to Test America, Pensacola for analysis. There is no temperature preservation requirement for analyses requested.

			Bottle		Lab	
Sample #	Date	Time	Count	Description	Filter	Lab Id
MW-2	02/05/2018	11:43	3	Groundwater		AY03285
MW-13	02/05/2018	12:45	3	Groundwater		AY03286
MW-13DUP	02/05/2018	12:45	3	Sample Duplicate		AY03287
MW-1	02/05/2018	14:14	3	Groundwater		AY03288
MW-12	02/05/2018	15:35	3	Groundwater		AY03289
MW-5	02/06/2018	09:03	3	Groundwater		AY03290
FB-1	02/06/2018	08:46	3	Field Blank		AY03291
MW-6	02/06/2018	10:21	3	Groundwater		AY03292
MW-7	02/06/2018	11:21	3	Groundwater		AY03293
MW-8	02/06/2018	12:21	3	Groundwater		AY03294
MW-9	02/06/2018	13:39	3	Groundwater		AY03295
MW-10	02/06/2018	14:25	3	Groundwater		AY03296
MW-11	02/06/2018	15:31	3	Groundwater		AY03297
MW-14s	02/06/2018	16:14	3	Groundwater		AY03298
MW-3	02/06/2018	17:48	3	Groundwater		AY03299
MW-8DUP	02/06/2018	12:21	3	Sample Duplicate		AY03300
FB-2	02/06/2018	17:22	3	Field Blank		AY03301
MW-15	02/07/2018	14:36	3	Groundwater		AY03302
EB-1	02/07/2018	14:57	3	Equipment Blank		AY03303

Relinquished By	Received By	Date/Time
and of the second	Sarah Copeland Digitally signed by Sarah Copeland Dix cm-Sarah Copeland, o, ou, enail-sopoelasoutherenc.com, c=US pate: 2018.02.08 07:49:16 - 0600'	02/08/2018 07:49

SmarTroll ID | 514<u>1-26150-1-1</u> Turbidity ID | 4677-23343-4-2

All metals and radiological bottles have pH < 2 Cooler Temp NA Thermometer ID NA pH Strip ID 5881-30151-10-5

/ Field Complete

✓ Lab Complete

APC General Testing Laboratory General Service Complex Building 8

Lab ETA 02/08/2018 07:00

Requested Complete Date	Routine	Results To	Dustin Brooks, Greg Dyer
Site Representative	Tanisha Fenderson	Requested By	Greg Dyer
Collector	Anthony Goggins	Location	Gaston Gypsum

Analysis Requested

Bottle 1 (1L): Radiological

Comments

Radium Duplicate collected at MW-5. There is no temperature preservation requirement for Radium. Time correction for FB-1

Sample #	Date	Time	Bottle Count	Description	Lab Filter	Lab Id
MW-2	02/05/2018	11:43	1	Groundwater		AY03304
MW-13	02/05/2018	12:45	1	Groundwater		AY03305
MW-13DUP	02/05/2018	12:45	1	Sample Duplicate		AY03306
MW-1	02/05/2018	14:14	1	Groundwater		AY03307
MW-12	02/05/2018	15:35	1	Groundwater		AY03308
MW-5	02/06/2018	09:03	3	Groundwater		AY03309
FB-1	02/06/2018	08:46	1	Field Blank		AY03310
MW-6	02/06/2018	10:21	1	Groundwater		AY03311
MW-7	02/06/2018	11:21	1	Groundwater		AY03312
MW-8	02/06/2018	12:21	1	Groundwater		AY03313
MW-9	02/06/2018	13:39	1	Groundwater		AY03314
MW-10	02/06/2018	14:25	1	Groundwater		AY03315
MW-11	02/06/2018	15:31	1	Groundwater		AY03316
MW-14S	02/06/2018	16:14	1	Groundwater		AY03317
MW-3	02/06/2018	17:48	1	Groundwater		AY03318
MW-8DUP	02/06/2018	12:21	1	Sample Duplicate		AY03319
MW-15	02/07/2018	14:36	1	Groundwater		AY03320
EB-1	02/07/2018	14:57	1	Equipment Blank		AY03321
FB-2	02/06/2018	17:22	1	Field Blank		AY03322

Relinquished By	Received By	Date/Time
and of	Sarah Copeland Digitally signed by Sarah Copeland Dix cn-Sarah Copeland, O, ou, Date: 2018.02.08 07.4657-0600	02/08/2018 07:46

SmarTroll ID 5141-26150-1-1 Turbidity ID 4677-23343-4-2

All metals and radiological bottles have pH < 2

Cooler Temp NA

Thermometer ID NA

pH Strip ID 5881-30151-10-5

5 2

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-149575-1

TestAmerica Sample Delivery Group: Gaston Gypsum 1134 Client Project/Site: CCR Plant Gaston

For:

Alabama Power General Test Laboratory 744 County Rd 87 GSC #8 Calera, Alabama 35040

Attn: Sarah Copeland

Chayenaxishitmin

Authorized for release by: 2/19/2018 4:46:45 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

chevenne.whitmire@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Detection Summary	3
Method Summary	5
Sample Summary	6
Client Sample Results	7
Definitions	10
Chronicle	11
QC Association	15
QC Sample Results	16
Chain of Custody	18
Receipt Checklists	20
Certification Summary	21

6

8

9

10

12

1:

Detection Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

Client Sample ID: AY03285 MW-2 Lab Sample ID: 400-149575-1 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type SM 4500 F C 0.040 J 0.10 Total/NA Fluoride 0.032 mg/L Lab Sample ID: 400-149575-2 Client Sample ID: AY03286 MW-13 **MDL** Unit Dil Fac D Method **Analyte** Result Qualifier RL **Prep Type** Fluoride 0.040 J 0.10 0.032 mg/L SM 4500 F C Total/NA Client Sample ID: AY03287 MW-13 DUP Lab Sample ID: 400-149575-3 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type Fluoride 0.040 J 0.10 0.032 mg/L SM 4500 F C Total/NA Client Sample ID: AY03288 MW-1 Lab Sample ID: 400-149575-4 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type SM 4500 F C Fluoride 0.37 0.10 0.032 mg/L Total/NA Client Sample ID: AY03289 MW-12 Lab Sample ID: 400-149575-5 **MDL** Unit **Analyte** Result Qualifier RL Dil Fac D Method **Prep Type** Fluoride 0.080 J 0.10 0.032 mg/L SM 4500 F C Total/NA Client Sample ID: AY03290 MW-5 Lab Sample ID: 400-149575-6 No Detections. Client Sample ID: AY03291 FB-1 Lab Sample ID: 400-149575-7 No Detections. Client Sample ID: AY03292 MW-6 Lab Sample ID: 400-149575-8 No Detections. Client Sample ID: AY03293 MW-7 Lab Sample ID: 400-149575-9 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type Fluoride 0.080 J 0.10 0.032 mg/L SM 4500 F C Total/NA Client Sample ID: AY03294 MW-8 Lab Sample ID: 400-149575-10 Analyte Result Qualifier RI **MDL** Unit Dil Fac D Method **Prep Type** 0.10 SM 4500 F C Total/NA Fluoride 0.15 0.032 mg/L Client Sample ID: AY03295 MW-9 Lab Sample ID: 400-149575-11 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** Fluoride 0.040 J 0.10 0.032 mg/L SM 4500 F C Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

2/19/2018

Page 3 of 21

J

F

6

8

10

12

1,

Detection Summary

Client: Alabama Power General Test Laboratory

Client Sample ID: AY03296 MW-10

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149575-1

SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149575-12

No Detections.

Client Sample ID: AY03297 MW-11

Lab Sample ID: 400-149575-13

No Detections.

Client Sample ID: AY03298 MW-14S Lab Sample ID: 400-149575-14

Analyte Result Qualifier RL MDL Unit Dil Fac D Method **Prep Type** Fluoride 0.060 J 0.10 0.032 mg/L SM 4500 F C Total/NA

Client Sample ID: AY03299 MW-3 Lab Sample ID: 400-149575-15

Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type 0.060 J 0.10 SM 4500 F C Fluoride 0.032 mg/L Total/NA

Client Sample ID: AY03300 MW-8 DUP Lab Sample ID: 400-149575-16

Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** 0.032 mg/L 0.14 0.10 SM 4500 F C Fluoride Total/NA

Client Sample ID: AY03301 FB-2 Lab Sample ID: 400-149575-17

No Detections.

Client Sample ID: AY03302 MW-15 Lab Sample ID: 400-149575-18

No Detections.

Client Sample ID: AY03303 EB-1 Lab Sample ID: 400-149575-19

No Detections.

This Detection Summary does not include radiochemical test results.

3

2/19/2018

Method Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

Method
SM 4500 F CMethod DescriptionProtocol
SMLaboratory
TAL PEN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater",

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

TestAmerica Pensacola

Page 5 of 21 2/19/2018

Sample Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-149575-1	AY03285 MW-2	Water	02/05/18 11:43	02/09/18 14:30
400-149575-2	AY03286 MW-13	Water	02/05/18 12:45	02/09/18 14:30
400-149575-3	AY03287 MW-13 DUP	Water	02/05/18 12:45 0	02/09/18 14:30
400-149575-4	AY03288 MW-1	Water	02/05/18 14:14 0	02/09/18 14:30
400-149575-5	AY03289 MW-12	Water	02/05/18 15:35 0	02/09/18 14:30
400-149575-6	AY03290 MW-5	Water	02/06/18 09:03 0	02/09/18 14:30
400-149575-7	AY03291 FB-1	Water	02/06/18 08:46 0	02/09/18 14:30
400-149575-8	AY03292 MW-6	Water	02/06/18 10:21 0	02/09/18 14:30
400-149575-9	AY03293 MW-7	Water	02/06/18 11:21 0	02/09/18 14:30
400-149575-10	AY03294 MW-8	Water	02/06/18 12:21 0	02/09/18 14:30
400-149575-11	AY03295 MW-9	Water	02/06/18 13:39 (02/09/18 14:30
400-149575-12	AY03296 MW-10	Water	02/06/18 14:25 0	02/09/18 14:30
400-149575-13	AY03297 MW-11	Water	02/06/18 15:31 0	02/09/18 14:30
400-149575-14	AY03298 MW-14S	Water	02/06/18 16:14 0	02/09/18 14:30
400-149575-15	AY03299 MW-3	Water	02/06/18 17:48 0	02/09/18 14:30
400-149575-16	AY03300 MW-8 DUP	Water	02/06/18 12:21 0	02/09/18 14:30
400-149575-17	AY03301 FB-2	Water	02/06/18 17:22 0	02/09/18 14:30
400-149575-18	AY03302 MW-15	Water	02/07/18 14:36 0	02/09/18 14:30
400-149575-19	AY03303 EB-1	Water	02/07/18 14:57 (02/09/18 14:30

5

7

8

9

10

1 0

13

RL

0.10

MDL Unit

0.032 mg/L

Result Qualifier

<0.032

General Chemistry

Analyte

Fluoride

TestAmerica Pensacola

Analyzed

02/15/18 13:02

Dil Fac

6

Page 7 of 21 2/19/2018

D

Prepared

TestAmerica Pensacola

Analyzed

02/15/18 13:43

Prepared

RL

0.10

MDL Unit

0.032 mg/L

Result Qualifier

0.060 J

Date Collected: 02/06/18 16:14

Date Received: 02/09/18 14:30

General Chemistry

Analyte

Fluoride

Dil Fac

Matrix: Water

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

Client Sample ID: AY03299 MW-3

Date Collected: 02/06/18 17:48 Date Received: 02/09/18 14:30

Lab Sample ID: 400-149575-15

Matrix: Water

General Chemistry

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 0.10 0.032 mg/L 02/15/18 13:45 Fluoride 0.060 J

Client Sample ID: AY03300 MW-8 DUP

Date Collected: 02/06/18 12:21

Lab Sample ID: 400-149575-16

Matrix: Water

6

General Chemistry

Analyte Result Qualifier RL**MDL** Unit Prepared Analyzed Dil Fac 0.10 0.14 0.032 mg/L 02/15/18 13:48 Fluoride

Client Sample ID: AY03301 FB-2

Date Collected: 02/06/18 17:22 Date Received: 02/09/18 14:30

Date Received: 02/09/18 14:30

Lab Sample ID: 400-149575-17

Matrix: Water

General Chemistry

Analyte Result Qualifier RL **MDL** Unit Dil Fac D Prepared Analyzed Fluoride < 0.032 0.10 0.032 mg/L 02/15/18 13:52

Client Sample ID: AY03302 MW-15

Date Collected: 02/07/18 14:36 Date Received: 02/09/18 14:30

Lab Sample ID: 400-149575-18

Matrix: Water

General Chemistry Analyte RL **MDL** Unit Result Qualifier D Prepared Analyzed Dil Fac Fluoride <0.032 0.10 02/15/18 14:32 0.032 mg/L

Client Sample ID: AY03303 EB-1

Date Collected: 02/07/18 14:57 Date Received: 02/09/18 14:30 Lab Sample ID: 400-149575-19 **Matrix: Water**

General Chemistry

Analyte RL Result Qualifier **MDL** Unit D Prepared Analyzed Dil Fac 0.032 mg/L Fluoride <0.032 0.10 02/15/18 14:21

Definitions/Glossary

Client: Alabama Power General Test Laboratory

Method Detection Limit

Minimum Level (Dioxin)

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Not Detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Not Calculated

Quality Control

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

Qualifiers

General Chemistry

Qualifier D	escription
	Qualifier D

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

MDL

ML

NC

ND

PQL

QC

RER

RPD

TEF

TEQ

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

Client Sample ID: AY03285 MW-2

Date Collected: 02/05/18 11:43

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149575-1

Matrix: Water

Matrix: Water

Date Received: 02/09/18 14:30

Batch Dilution Batch Prepared Batch Method Run Factor Number or Analyzed **Prep Type** Type **Analyst** Lab TAL PEN Total/NA Analysis SM 4500 F C 386695 02/15/18 12:44 BAB

Client Sample ID: AY03286 MW-13 Lab Sample ID: 400-149575-2

Date Collected: 02/05/18 12:45 **Matrix: Water**

Date Received: 02/09/18 14:30

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis SM 4500 F C 386695 02/15/18 12:47 BAB TAL PEN

Client Sample ID: AY03287 MW-13 DUP Lab Sample ID: 400-149575-3

Date Collected: 02/05/18 12:45 **Matrix: Water**

Date Received: 02/09/18 14:30

Date Received: 02/09/18 14:30

Dilution Batch Batch Batch **Prepared** Method **Factor** Number or Analyzed **Prep Type** Type Run Analyst Lab Total/NA Analysis SM 4500 F C 386695 02/15/18 12:50 BAB TAL PEN

Client Sample ID: AY03288 MW-1 Lab Sample ID: 400-149575-4

Date Collected: 02/05/18 14:14

SM 4500 F C

Batch Batch Dilution Batch **Prepared**

Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab SM 4500 F C 386695 02/15/18 12:52 BAB TAL PEN Total/NA Analysis

Client Sample ID: AY03289 MW-12 Lab Sample ID: 400-149575-5

Date Collected: 02/05/18 15:35 **Matrix: Water**

Date Received: 02/09/18 14:30

Analysis

Dilution Batch **Batch** Batch Prepared Prep Type Method Factor Number or Analyzed Type Run Analyst TAI PEN Total/NA Analysis SM 4500 F C 386695 02/15/18 12:55 BAB

Client Sample ID: AY03290 MW-5 Lab Sample ID: 400-149575-6

Date Collected: 02/06/18 09:03 **Matrix: Water** Date Received: 02/09/18 14:30

386695

02/15/18 12:58

Batch Batch Dilution Batch Prepared Method Number **Prep Type** Factor or Analyzed Type Run Analyst Lab Total/NA BAB TAL PEN

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149575-7

Matrix: Water

Date Collected: 02/06/18 08:46 Date Received: 02/09/18 14:30

Client Sample ID: AY03291 FB-1

Batch Batch

Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis SM 4500 F C 386695 02/15/18 13:02 BAB TAL PEN

Lab Sample ID: 400-149575-8 Client Sample ID: AY03292 MW-6

Date Collected: 02/06/18 10:21

Matrix: Water

Date Received: 02/09/18 14:30

Dilution Batch Batch Batch **Prepared** Method Number Prep Type Type Run **Factor** or Analyzed Lab Analyst SM 4500 F C 02/15/18 13:25 BAB TAL PEN Total/NA 386695 Analysis

Client Sample ID: AY03293 MW-7 Lab Sample ID: 400-149575-9

Date Collected: 02/06/18 11:21

Matrix: Water

Date Received: 02/09/18 14:30

Ratch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab SM 4500 F C 386695 02/15/18 13:32 BAB TAL PEN Total/NA Analysis

Client Sample ID: AY03294 MW-8 Lab Sample ID: 400-149575-10

Date Collected: 02/06/18 12:21

Matrix: Water Date Received: 02/09/18 14:30

Batch Batch Dilution Batch **Prepared** Type Method Number or Analyzed **Prep Type** Run **Factor Analyst** Lab BAB TAL PEN Total/NA SM 4500 F C 386695 02/15/18 12:36 Analysis

Client Sample ID: AY03295 MW-9 Lab Sample ID: 400-149575-11

Date Collected: 02/06/18 13:39 Date Received: 02/09/18 14:30

Dilution Batch **Batch** Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA SM 4500 F C 386695 02/15/18 13:35 BAB TAL PEN

Client Sample ID: AY03296 MW-10 Lab Sample ID: 400-149575-12

Date Collected: 02/06/18 14:25

Analysis

Matrix: Water

Date Received: 02/09/18 14:30

Dilution Batch Batch Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis SM 4500 F C 02/15/18 13:38 BAB TAL PEN **Matrix: Water**

Date Received: 02/09/18 14:30

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149575-13

Client Sample ID: AY03297 MW-11 Date Collected: 02/06/18 15:31

Matrix: Water

Batch Dilution Batch Batch **Prepared**

Prep Type Type Method Run Factor Number or Analyzed Analyst Lab

Total/NA Analysis SM 4500 F C 386695 02/15/18 13:40 BAB TAL PEN

Client Sample ID: AY03298 MW-14S Lab Sample ID: 400-149575-14

Date Collected: 02/06/18 16:14 **Matrix: Water**

Date Received: 02/09/18 14:30

Dilution Batch Batch Batch **Prepared** Method Number Prep Type Type Run **Factor** or Analyzed Lab Analyst SM 4500 F C 02/15/18 13:43 BAB TAL PEN Total/NA 386695 Analysis

Client Sample ID: AY03299 MW-3 Lab Sample ID: 400-149575-15

Date Collected: 02/06/18 17:48 **Matrix: Water** Date Received: 02/09/18 14:30

Ratch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab

SM 4500 F C 386695 02/15/18 13:45 BAB TAL PEN Total/NA Analysis

Client Sample ID: AY03300 MW-8 DUP Lab Sample ID: 400-149575-16

Date Collected: 02/06/18 12:21 **Matrix: Water**

Date Received: 02/09/18 14:30

Batch Batch Dilution Batch **Prepared** Type Method **Factor** or Analyzed **Prep Type** Run Number **Analyst** Lab BAB TAL PEN Total/NA SM 4500 F C 386695 02/15/18 13:48 Analysis

Client Sample ID: AY03301 FB-2 Lab Sample ID: 400-149575-17

Date Collected: 02/06/18 17:22 **Matrix: Water**

Date Received: 02/09/18 14:30

Dilution Batch **Batch** Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis SM 4500 F C 386695 02/15/18 13:52 BAB TAL PEN

Client Sample ID: AY03302 MW-15 Lab Sample ID: 400-149575-18

Date Collected: 02/07/18 14:36 **Matrix: Water** Date Received: 02/09/18 14:30

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis SM 4500 F C 02/15/18 14:32 BAB TAL PEN

Lab Chronicle

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

Client Sample ID: AY03303 EB-1 Lab Sample ID: 400-149575-19

Date Collected: 02/07/18 14:57 Matrix: Water

Date Received: 02/09/18 14:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 F C		1	386704	02/15/18 14:21	BAB	TAL PEN

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

7

0

44

111

QC Association Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

General Chemistry

Analysis Batch: 386695

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-149575-1	AY03285 MW-2	Total/NA	Water	SM 4500 F C	
400-149575-2	AY03286 MW-13	Total/NA	Water	SM 4500 F C	
400-149575-3	AY03287 MW-13 DUP	Total/NA	Water	SM 4500 F C	
400-149575-4	AY03288 MW-1	Total/NA	Water	SM 4500 F C	
400-149575-5	AY03289 MW-12	Total/NA	Water	SM 4500 F C	
400-149575-6	AY03290 MW-5	Total/NA	Water	SM 4500 F C	
400-149575-7	AY03291 FB-1	Total/NA	Water	SM 4500 F C	
400-149575-8	AY03292 MW-6	Total/NA	Water	SM 4500 F C	
400-149575-9	AY03293 MW-7	Total/NA	Water	SM 4500 F C	
400-149575-10	AY03294 MW-8	Total/NA	Water	SM 4500 F C	
400-149575-11	AY03295 MW-9	Total/NA	Water	SM 4500 F C	
400-149575-12	AY03296 MW-10	Total/NA	Water	SM 4500 F C	
400-149575-13	AY03297 MW-11	Total/NA	Water	SM 4500 F C	
400-149575-14	AY03298 MW-14S	Total/NA	Water	SM 4500 F C	
400-149575-15	AY03299 MW-3	Total/NA	Water	SM 4500 F C	
400-149575-16	AY03300 MW-8 DUP	Total/NA	Water	SM 4500 F C	
400-149575-17	AY03301 FB-2	Total/NA	Water	SM 4500 F C	
MB 400-386695/15	Method Blank	Total/NA	Water	SM 4500 F C	
LCS 400-386695/14	Lab Control Sample	Total/NA	Water	SM 4500 F C	
400-149575-10 MS	AY03294 MW-8	Total/NA	Water	SM 4500 F C	
400-149575-10 MSD	AY03294 MW-8	Total/NA	Water	SM 4500 F C	
400-149575-8 DU	AY03292 MW-6	Total/NA	Water	SM 4500 F C	

Analysis Batch: 386704

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-149575-18	AY03302 MW-15	Total/NA	Water	SM 4500 F C	
400-149575-19	AY03303 EB-1	Total/NA	Water	SM 4500 F C	
MB 400-386704/3	Method Blank	Total/NA	Water	SM 4500 F C	
LCS 400-386704/4	Lab Control Sample	Total/NA	Water	SM 4500 F C	
400-149575-19 MS	AY03303 EB-1	Total/NA	Water	SM 4500 F C	
400-149575-19 MSD	AY03303 EB-1	Total/NA	Water	SM 4500 F C	

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: AY03294 MW-8

Client Sample ID: AY03294 MW-8

Client Sample ID: AY03292 MW-6

Client Sample ID: Method Blank

Client Sample ID: AY03303 EB-1

Prep Type: Total/NA

Method: SM 4500 F C - Fluoride

Lab Sample ID: MB 400-386695/15

Matrix: Water

Analysis Batch: 386695

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared 0.10 Fluoride <0.032 0.032 mg/L 02/15/18 12:13

Lab Sample ID: LCS 400-386695/14

Matrix: Water

Analysis Batch: 386695

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Fluoride 4.00 3.94 mg/L 99 90 - 110

Lab Sample ID: 400-149575-10 MS

Matrix: Water

Analysis Batch: 386695

Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier Added Limits Analyte Unit D %Rec Fluoride 0.15 1.00 1.19 mg/L 104 75 - 125

Lab Sample ID: 400-149575-10 MSD

Matrix: Water

Analysis Batch: 386695

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Fluoride 0.15 1.00 1.19 104 75 - 125 mg/L

Lab Sample ID: 400-149575-8 DU

Matrix: Water

Analysis Batch: 386695

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Fluoride <0.032 <0.032 mg/L NC

Lab Sample ID: MB 400-386704/3

Matrix: Water

Analysis Batch: 386704

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.10 Fluoride < 0.032 0.032 mg/L 02/15/18 14:08

Lab Sample ID: LCS 400-386704/4

Matrix: Water

Analysis Batch: 386704

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit %Rec Limits Fluoride 4.00 3.94 mg/L 99 90 - 110

Lab Sample ID: 400-149575-19 MS

Matrix: Water

Analysis Batch: 386704

Sample Sample Spike EB EB %Rec. Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Fluoride < 0.032 1.00 108 75 - 125 1.08 mg/L

TestAmerica Pensacola

2/19/2018

Page 16 of 21

10

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Client: Alabama Power General Test Laboratory

Lab Sample ID: 400-149575-19 MSD

Project/Site: CCR Plant Gaston

Analysis Batch: 386704

Matrix: Water

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

Client Sample ID: AY03303 EB-1

Prep Type: Total/NA

•	Sample	Sample	Spike	EB	EB				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluoride	<0.032		1.00	1.04		mg/L		104	75 - 125	4	4

Chain of Custody Record

Phone (850) 474-1001 Fax (850) 478-2671

Pensacola, FL 32514 3355 McLemore Drive

TestAmerica Pensacola

TestAmerica

Special Instructions/Note: Page 1 of 2 Job # 400 - 149575 MW-13 Dup (Sample Duplicate) Sample Disposal (A fee may be assessed if samples are rotained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Special Instructions/QC Requirements: COC No: 400-56525-24537.1 FB-1 (Field Blank) A - HCL
C - Zn Acentre
C - Zn Acentre
C - Zn Acentre
D - Mitrio Acid
E - Na HSO4
F - MeOH
H - Ascorbic Acid
H - Ascorbic Acid
H - Ascorbic Acid
H - EDA
K - EDA
L - EDA MW-14S MW-11 MW-10 MW-12 MW-9 MW-8 MW-5 MW-7 MW-1 MW-6 Total Number of containers PetaTione Date/Time: ethod of Shipme 400-149575 COC Cooler Temperature(s) °C and Other Remarks: Analysis Requested Lab FM:
Whitmine, Cheyenne R
E-Mail:
Cheyenne.whitmire@testamericainc.com Received by: 3 400 0054 MS 2 4 4 5 00 CI E × × × × × m MS/MSD (Yes of No) Matrix (wewate Swolld, Owntenhold grab) BT-Theore, A-Air)
Preservation Code: Water Company APC Company Radiological Type (C=comp, G=grab) O O O 0 O O 0 O O O 0 O O O Routine Sample 1614 1425 1531 1339 1535 0903 0846 1021 1121 1245 1221 1143 1245 1414 Date: Dete/Time: 2/8/2018; 0930 Unknown TAT Requested (days): Sampler. Anthony Goggins Phone: Due Date Requested: Sample Date 2/6/18 2/6/18 Poison B 2/6/18 2/6/18 2/6/18 2/6/18 2/6/18 2/5/18 2/6/18 2/6/18 2/5/18 2/5/18 2/5/18 2/5/18 Date/Time: Date/Time: Project #: 40007143 SSOW#: Skin Irritant Oeliverable Requested: I, III, IV, Other (specify) Custody Seals Intact: Custody Seal No.: Company: Alabama Power General Test Laboratory Empty Kit Relinquished by: sgcopela@southernco.com Project Name: CCR equished by. Sereh Copela Address: 744 County Rd 87 GSC #8 Sample Identification Gaston Gypsum 1134 Client Information Non-Hazard 205-664-6121(Tel) Inquished by: rquished by: Sarah Copeland AY03294 AY03296 AY03297 AY03298 AY03293 AY03295 State, Zip: AL, 35040 AY03288 AY03289 AY03290 AY03292 AY03287 AY03291 4Y03285 AY03286 Calera

Chain of Custody Record

FestAmerica Pensacola

3355 McLemore Drive

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions/Note: Sample Disposet (A fee may be assessed if samples are retained longer than 1 month)

Return To Cilent Disposal By Lab Archive For Mont Special Instructions/QC Requirements: S1574-00-149575 MW-8 Dup (Sample Duplicate) EB-1 (Equipment Blank) 400-56525-24537.1 A-HCL
B-NaOH
C-Zn-Acetate
D-Nërre Acid
E-NaOH
F-MaOH
G-Amchior
H-Ascorbe Acid
I-loe
J- Di Water
L-EDA FB-2 (Field Blank) Page: Page 2 of 2 MW-15 Total Number of containers Date/Time: Wethod of Shipment: Cooler Temperature(s) "C and Other Remarks: Analysis Requested Lab PM: Whitmire, Cheyenne R E-Mait: cheyenne,whitmire@testamericainc.com Received by: 3 POS 0099 WS × × > (Perform MSMSD (Yes or No) (Field Filtered Sample (Yes of No) Matrix (www.sesseld) Preservation Code: Water Water Water Water Water АРС Сотрану Radiological Sample Type (C=comp, G=grab) 0 0 Ø O O Routine Unknown 1722 1436 1748 1457 1221 Darte: ate/Time: 2/8/2018; 0930 TAT Requested (days): Sampler. Anthony Goggins Phone. Due Date Requested: Sample Date Poison B 2/6/18 27718 277/18 2/6/18 2/6/18 Date/Time: Date/Time: Project #: 40007143 SSOW#: WO# Skin Inttent On-Hazard Planmable Skin Intle Skin Intle Peliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671 Alabama Power General Test Laboratory mpty Kit Relinquished by: Inquished by. Sarah Copeland Custody Seals Intact: Δ Yes Δ No sgcopela@southernco.com 744 County Rd 87 GSC #8 Sample Identification Client Information Gaston Gypsum 1134 205-664-6121(Tel) slinquished by. quished by. Sarah Copeland AY03302 AY03301 AY03303 AL, 35040 AY03299 AY03300

Login Sample Receipt Checklist

Client: Alabama Power General Test Laboratory

Job Number: 400-149575-1 SDG Number: Gaston Gypsum 1134

Login Number: 149575 List Source: TestAmerica Pensacola

List Number: 1

Creator: Siddoway, Benjamin

Creator. Siddoway, Berljailliii		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	19.1°C IR-8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

5

7

10

15

Accreditation/Certification Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149575-1 SDG: Gaston Gypsum 1134

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-18
Arizona	State Program	9	AZ0710	01-12-19
Arkansas DEQ	State Program	6	88-0689	09-01-18
California	ELAP	9	2510	03-31-18
Florida	NELAP	4	E81010	06-30-18
Georgia	State Program	4	N/A	06-30-18
Illinois	NELAP	5	200041	10-09-18
Iowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	10-31-18
Kentucky (UST)	State Program	4	53	06-30-18
Kentucky (WW)	State Program	4	98030	12-31-18
L-A-B	ISO/IEC 17025		L2471	02-22-20
Louisiana	NELAP	6	30976	06-30-18
Louisiana (DW)	NELAP	6	LA170005	12-31-18
Maryland	State Program	3	233	09-30-18
Massachusetts	State Program	1	M-FL094	06-30-18
Michigan	State Program	5	9912	06-30-18
New Jersey	NELAP	2	FL006	06-30-18
North Carolina (WW/SW)	State Program	4	314	12-31-18
Oklahoma	State Program	6	9810	08-31-18
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-17 *
South Carolina	State Program	4	96026	06-30-18
Tennessee	State Program	4	TN02907	06-30-18
Texas	NELAP	6	T104704286-17-12	09-30-18
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-18
Washington	State Program	10	C915	05-15-18
West Virginia DEP	State Program	3	136	06-30-18

•

4

8

3

11

12

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-149577-1

TestAmerica Sample Delivery Group: Gaston Gypsum 1134 Client Project/Site: CCR Plant Gaston

For:

Alabama Power General Test Laboratory 744 County Rd 87 GSC #8 Calera, Alabama 35040

Attn: Sarah Copeland

Chayendewhitmin

Authorized for release by: 3/14/2018 5:26:25 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions	25
Chronicle	26
QC Association	31
QC Sample Results	32
Chain of Custody	34
Receipt Checklists	36
Certification Summary	38

4

6

8

9

1 U

12

Case Narrative

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Job ID: 400-149577-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-149577-1

RAD

Method(s) PrecSep 0: Radium 228 Prep Batch 160-351875: Sample aliquots reduced due to limited sample volume. AY03304 MW-2 (400-149577-1), AY03305 MW-13 (400-149577-2), AY03306 MW-13 DUP (400-149577-3), AY03307 MW-1 (400-149577-4), AY03308 MW-12 (400-149577-5), AY03309 MW-5 (400-149577-6), AY03309 MW-5 (400-149577-6[DU]), AY03310 FB-1 (400-149577-7), AY03311 MW-6 (400-149577-8), AY03312 MW-7 (400-149577-9), AY03313 MW-8 (400-149577-10), AY03314 MW-9 (400-149577-11), AY03315 MW-10 (400-149577-12), AY03316 MW-11 (400-149577-13), AY03317 MW-14S (400-149577-14), AY03318 MW-3 (400-149577-15), AY03319 MW-8 DUP (400-149577-16), AY03320 MW-15 (400-149577-17), AY03321 EB-1 (400-149577-18) and AY03322 FB-2 (400-149577-19)

Method(s) PrecSep-21: Radium 226 Prep Batch 160-351873: Sample aliquots reduced due to limited sample volume. AY03304 MW-2 (400-149577-1), AY03305 MW-13 (400-149577-2), AY03306 MW-13 DUP (400-149577-3), AY03307 MW-1 (400-149577-4), AY03308 MW-12 (400-149577-5), AY03309 MW-5 (400-149577-6), AY03309 MW-5 (400-149577-6[DU]), AY03310 FB-1 (400-149577-7), AY03311 MW-6 (400-149577-8), AY03312 MW-7 (400-149577-9), AY03313 MW-8 (400-149577-10), AY03314 MW-9 (400-149577-11), AY03315 MW-10 (400-149577-12), AY03316 MW-11 (400-149577-13), AY03317 MW-14S (400-149577-14), AY03318 MW-3 (400-149577-15), AY03319 MW-8 DUP (400-149577-16), AY03320 MW-15 (400-149577-17), AY03321 EB-1 (400-149577-18) and AY03322 FB-2 (400-149577-19)

Method Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Protocol	Laboratory
SW846	TAL SL
CIMOAC	TAL CI

Method	Method Description	Protocol	Laboratory
9315	Radium-226 (GFPC)	SW846	TAL SL
9320	Radium-228 (GFPC)	SW846	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Sample Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-149577-1	AY03304 MW-2	Water	02/05/18 11:43	02/09/18 14:30
400-149577-2	AY03305 MW-13	Water	02/05/18 12:45	02/09/18 14:30
400-149577-3	AY03306 MW-13 DUP	Water	02/05/18 12:45	02/09/18 14:30
400-149577-4	AY03307 MW-1	Water	02/05/18 14:14	02/09/18 14:30
400-149577-5	AY03308 MW-12	Water	02/05/18 15:35	02/09/18 14:30
400-149577-6	AY03309 MW-5	Water	02/06/18 09:03	02/09/18 14:30
400-149577-7	AY03310 FB-1	Water	02/06/18 08:46	02/09/18 14:30
400-149577-8	AY03311 MW-6	Water	02/06/18 10:21	02/09/18 14:30
400-149577-9	AY03312 MW-7	Water	02/06/18 11:21	02/09/18 14:30
400-149577-10	AY03313 MW-8	Water	02/06/18 12:21	02/09/18 14:30
400-149577-11	AY03314 MW-9	Water	02/06/18 13:39	02/09/18 14:30
400-149577-12	AY03315 MW-10	Water	02/06/18 14:25	02/09/18 14:30
400-149577-13	AY03316 MW-11	Water	02/06/18 15:31	02/09/18 14:30
400-149577-14	AY03317 MW-14S	Water	02/06/18 16:14	02/09/18 14:30
400-149577-15	AY03318 MW-3	Water	02/06/18 17:48	02/09/18 14:30
400-149577-16	AY03319 MW-8 DUP	Water	02/06/18 12:21	02/09/18 14:30
400-149577-17	AY03320 MW-15	Water	02/07/18 14:36	02/09/18 14:30
400-149577-18	AY03321 EB-1	Water	02/07/18 14:57	02/09/18 14:30
400-149577-19	AY03322 FB-2	Water	02/06/18 17:22	02/09/18 14:30

6

8

9

11

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-1

Matrix: Water

Client Sample ID: AY03304 MW-2

Date Collected: 02/05/18 11:43 Date Received: 02/09/18 14:30

Method: 9315 - F	Naululli-220 (GIFC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.118		0.0782	0.0789	1.00	0.101	pCi/L	02/19/18 12:37	03/13/18 08:36	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.1	-	40 - 110					02/19/18 12:37	03/13/18 08:36	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0874	U	0.313	0.313	1.00	0.544	pCi/L	02/19/18 13:08	02/27/18 14:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.1		40 - 110					02/19/18 13:08	02/27/18 14:25	1
Y Carrier	83.0		40 - 110					02/19/18 13:08	02/27/18 14:25	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.206	U	0.323	0.323	5.00	0.544	pCi/L		03/14/18 15:36	1

+ 228

3/14/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

Client Sample ID: AY03305 MW-13

Date Collected: 02/05/18 12:45 Date Received: 02/09/18 14:30 TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-2

Matrix: Water

Method: 9315 - Ra	ndium-226 ((GFPC)	Count Uncert.	Total Uncert.					
Analyte Radium-226	Result 0.0496	Qualifier U	(2σ+/-) 0.0619	(2σ+/-) 0.0620	RL 1.00	MDC 0.102	 Prepared 02/19/18 12:37	Analyzed 03/13/18 08:36	Dil Fac
Carrier Ba Carrier	% Yield 98.5	Qualifier	Limits 40 - 110				Prepared 02/19/18 12:37	Analyzed 03/13/18 08:36	Dil Fac

		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0858	U	0.256	0.256	1.00	0.480	pCi/L	02/19/18 13:08	02/27/18 14:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.5		40 - 110					02/19/18 13:08	02/27/18 14:25	1
Y Carrier	82.6		40 - 110					02/19/18 13:08	02/27/18 14:25	1

Method: Ra226 Ra2	228 - Con	nbined Ra	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.0362	U	0.263	0.263	5.00	0.480	pCi/L		03/14/18 15:36	1

3

4

6

8

9

11

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

SDG: Gaston Gypsum 1134

TestAmerica Job ID: 400-149577-1

Client Sample ID: AY03306 MW-13 DUP

Date Collected: 02/05/18 12:45 Date Received: 02/09/18 14:30 Lab Sample ID: 400-149577-3 Matrix: Water

Method: 9315 - R	adium-226 (GFPC)								
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.119		0.0734	0.0742	1.00	0.0886	pCi/L	02/19/18 12:37	03/13/18 08:36	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.2		40 - 110					02/19/18 12:37	03/13/18 08:36	1

Ba Carrier —	98.2		40 - 110					02/19/18 12:37	03/13/18 08:36	7
	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.389	U	0.306	0.308	1.00	0.482	pCi/L	02/19/18 13:08	02/27/18 14:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.2		40 - 110					02/19/18 13:08	02/27/18 14:25	1
Y Carrier	82.2		40 - 110					02/19/18 13:08	02/27/18 14:25	1
_										

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.508		0.315	0.317	5.00	0.482	pCi/L		03/14/18 15:36	1

3/14/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-4

Client Sample ID: AY03307 MW-1

Date Collected: 02/05/18 14:14

Date Received: 02/09/18 14:30

Matrix: Water

Method: 9315 - Radium-226 (GFPC) Total Count Uncert. Uncert. Analyte Result Qualifier **MDC** Unit Dil Fac $(2\sigma + / -)$ $(2\sigma + / -)$ RL Prepared Analyzed 02/19/18 12:37 03/13/18 08:36 0.136 0.145 1.00 0.0971 pCi/L Radium-226 0.558 Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac 108 40 - 110 02/19/18 12:37 03/13/18 08:36 Ba Carrier

Method: 9320 - Radium-228 (GFPC) Count Total Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 0.0374 U 0.295 0.295 1.00 0.517 pCi/L 02/19/18 13:08 02/27/18 14:25 Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 108 40 - 110 02/19/18 13:08 02/27/18 14:25 Y Carrier 86.4 40 - 110 02/19/18 13:08 02/27/18 14:25

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228 Count Total Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac **Combined Radium** 0.596 0.325 0.329 5.00 0.517 pCi/L 03/14/18 15:36 226 + 228

3/14/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-5

Client Sample ID: AY03308 MW-12 Date Collected: 02/05/18 15:35

Date Received: 02/09/18 14:30

Method: 9315 - Ra	dium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0910	U	0.0721	0.0726	1.00	0.101	pCi/L	02/19/18 12:37	03/13/18 08:36	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.5		40 - 110					02/19/18 12:37	03/13/18 08:36	1

Method: 9320 - I	·	,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.230	U	0.341	0.342	1.00	0.573	pCi/L	02/19/18 13:08	02/27/18 14:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.5		40 - 110					02/19/18 13:08	02/27/18 14:26	1
Y Carrier	80.7		40 - 110					02/19/18 13:08	02/27/18 14:26	1

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.321	U	0.349	0.350	5.00	0.573	pCi/L		03/14/18 15:36	1

+ 228

3

Matrix: Water

4

6

8

10

11

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Client Sample ID: AY03309 MW-5

Date Collected: 02/06/18 09:03 Date Received: 02/09/18 14:30 Lab Sample ID: 400-149577-6

Matrix: Water

Method: 9315 - R	adium-226 (GFPC)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.146		0.0821	0.0831	1.00	0.0964	pCi/L	02/19/18 12:37	03/13/18 08:36	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.1		40 - 110					02/19/18 12:37	03/13/18 08:36	1

	Radium-228 /	(GEPC)								
Analyte		Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0818	U	0.315	0.315	1.00	0.575	pCi/L	02/19/18 13:08	02/27/18 14:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.1	-	40 - 110					02/19/18 13:08	02/27/18 14:26	1
Y Carrier	81.1		40 - 110					02/19/18 13:08	02/27/18 14:26	1

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radiun	n- 228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.0645	U	0.326	0.326	5.00	0.575	pCi/L		03/14/18 15:36	1

+ 228

3

4

6

Ω

9

1 U

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

SDG: Gaston Gypsum 1134

TestAmerica Job ID: 400-149577-1

Client Sample ID: AY03310 FB-1

Date Collected: 02/06/18 08:46 Date Received: 02/09/18 14:30 Lab Sample ID: 400-149577-7

Matrix: Water

Method: 9315 - R	adium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.166		0.0802	0.0816	1.00	0.0795	pCi/L	02/19/18 12:37	03/13/18 08:32	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					02/19/18 12:37	03/13/18 08:32	1

Ba Carrier	101		40 - 110					02/19/10 12.37	03/13/10 00.32	,
Method: 9320 - Ra	adium-228 (GFPC)								
	·		Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.340	Ū	0.312	0.313	1.00	0.503	pCi/L	02/19/18 13:08	02/27/18 14:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					02/19/18 13:08	02/27/18 14:26	1
Y Carrier	83.7		40 - 110					02/19/18 13:08	02/27/18 14:26	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.506		0.322	0.323	5.00	0.503	pCi/L		03/14/18 15:36	1

3

5

6

8

9

10

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

Lab Sample ID: 400-149577-8

TestAmerica Job ID: 400-149577-1

SDG: Gaston Gypsum 1134

Client Sample ID: AY03311 MW-6

Date Collected: 02/06/18 10:21 Date Received: 02/09/18 14:30 Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.000	U	0.0418	0.0418	1.00	0.0931	pCi/L	02/19/18 12:37	03/13/18 08:32	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	100		40 - 110					02/19/18 12:37	03/13/18 08:32	1

Method: 9320 - I			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.140	U	0.279	0.280	1.00	0.523	pCi/L	02/19/18 13:08	02/27/18 14:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	100		40 - 110					02/19/18 13:08	02/27/18 14:26	1
Y Carrier	84.1		40 - 110					02/19/18 13:08	02/27/18 14:26	1

Method: Ra226 Ra2	228 - Con	nbined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.140	Ū	0.282	0.283	5.00	0.523	pCi/L		03/14/18 15:36	1

3

4

6

8

9

10

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-9

Client Sample ID: AY03312 MW-7 Date Collected: 02/06/18 11:21 Date Received: 02/09/18 14:30

Method: 9315 -	Radium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0836	U	0.0658	0.0662	1.00	0.0895	pCi/L	02/19/18 12:37	03/13/18 08:32	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.9		40 - 110					02/19/18 12:37	03/13/18 08:32	1

	ıdium-228 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0849	Ū	0.328	0.328	1.00	0.570	pCi/L	02/19/18 13:08	02/27/18 14:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.9		40 - 110					02/19/18 13:08	02/27/18 14:26	1
Y Carrier	84.9		40 - 110					02/19/18 13:08	02/27/18 14:26	1

Method: Ra226 Ra2	228 - Con	nbined Ra	idium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.168	Ū	0.335	0.335	5.00	0.570	pCi/L		03/14/18 15:36	1

Matrix: Water

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-10

Matrix: Water

Client Sample ID: AY03313 MW-8 Date Collected: 02/06/18 12:21

Date Received: 02/09/18 14:30

Method: 9315 -	Radium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0394	U	0.0493	0.0495	1.00	0.0803	pCi/L	02/19/18 12:37	03/13/18 08:32	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103	-	40 - 110					02/19/18 12:37	03/13/18 08:32	1

		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0504	U	0.307	0.307	1.00	0.552	pCi/L	02/19/18 13:08	02/27/18 14:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					02/19/18 13:08	02/27/18 14:26	1
Y Carrier	83.7		40 - 110					02/19/18 13:08	02/27/18 14:26	1

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.0110	Ū	0.311	0.311	5.00	0.552	pCi/L		03/14/18 15:36	1

4

6

7

9

11

12

Ш

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-11

Client Sample ID: AY03314 MW-9

Date Collected: 02/06/18 13:39
Date Received: 02/09/18 14:30

Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte		Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC		Prepared	Analyzed	Dil Fac
Radium-226	0.0281	U	0.0481	0.0482	1.00	0.0860	pCi/L	02/19/18 12:37	03/13/18 08:32	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.1		40 - 110					02/19/18 12:37	03/13/18 08:32	1

000 <i>(</i>									
iium-228 (GFPC)								
·	·	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.300	U	0.329	0.331	1.00	0.540	pCi/L	02/19/18 13:08	02/27/18 14:27	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
99.1		40 - 110					02/19/18 13:08	02/27/18 14:27	1
84.9		40 - 110					02/19/18 13:08	02/27/18 14:27	1
	Result 0.300 %Yield 99.1		Result 0.300 Qualifier Uncert. (2σ+/-) 0.329 %Yield 99.1 Qualifier Limits 40 - 110	Count Uncert. Uncert.	Count Uncert. Uncert. Uncert.	Count Uncert. Uncert. Vincert. Vincer	Count Uncert. Uncert. Count Uncert. Cou	Count Uncert. Uncert. Uncert. Count Uncer	Count Uncert. Uncert. Uncert. Vincert. Vincert.

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.328	U	0.332	0.334	5.00	0.540	pCi/L		03/14/18 15:36	1

+ 228

2

1

5

7

9

10

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-12

Matrix: Water

Client Sample ID: AY03315 MW-10

Date Collected: 02/06/18 14:25 Date Received: 02/09/18 14:30

Method: 9315 - Ra	dium-226 ((GFPC)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0720	U	0.0600	0.0603	1.00	0.0824	pCi/L	02/19/18 12:37	03/13/18 08:32	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					02/19/18 12:37	03/13/18 08:32	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.203	U	0.308	0.308	1.00	0.517	pCi/L	02/19/18 13:08	02/27/18 14:27	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					02/19/18 13:08	02/27/18 14:27	1
Y Carrier	82.6		40 - 110					02/19/18 13:08	02/27/18 14:27	1

Method: Ra226 Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.275	U	0.314	0.314	5.00	0.517	pCi/L		03/14/18 15:36	1

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Client Sample ID: AY03316 MW-11

Date Collected: 02/06/18 15:31 Date Received: 02/09/18 14:30 Lab Sample ID: 400-149577-13

Matrix: Water

Method: 9315 - Ra	adium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0430	U	0.0535	0.0536	1.00	0.0872	pCi/L	02/19/18 12:37	03/13/18 08:32	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.6		40 - 110					02/19/18 12:37	03/13/18 08:32	1

Ва	Carrier	97.6		40 - 110					02/19/18 12:37	03/13/18 08:32	1
Me	ethod: 9320 - Rad	ium-228 (GFPC)								
				Count	Total						
				Uncert.	Uncert.						
An	alyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Ra	dium-228	-0.226	U	0.286	0.287	1.00	0.550	pCi/L	02/19/18 13:08	02/27/18 14:27	1
Ca	rrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ва	Carrier	97.6		40 - 110					02/19/18 13:08	02/27/18 14:27	1
YC	Carrier	81.5		40 - 110					02/19/18 13:08	02/27/18 14:27	1

Method: Ra226_Ra2	228 - Con	bined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.183	Ū	0.291	0.292	5.00	0.550	pCi/L	-	03/14/18 15:36	1

2

--

6

8

9

11

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-14

Matrix: Water

Client Sample ID: AY03317 MW-14S

Date Collected: 02/06/18 16:14 Date Received: 02/09/18 14:30

Method: 9315 - Ra	adium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.193		0.0898	0.0914	1.00	0.0901	pCi/L	02/19/18 12:37	03/13/18 08:33	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.0		40 - 110					02/19/18 12:37	03/13/18 08:33	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.114	U	0.296	0.296	1.00	0.512	pCi/L	02/19/18 13:08	02/27/18 14:27	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.0		40 - 110					02/19/18 13:08	02/27/18 14:27	1
Y Carrier	81.5		40 - 110					02/19/18 13:08	02/27/18 14:27	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.308	U	0.309	0.310	5.00	0.512	pCi/L		03/14/18 15:36	1

+ 228

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

Client Sample ID: AY03318 MW-3

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-15

Date Collected: 02/06/18 17:48 Date Received: 02/09/18 14:30

	adium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.240		0.0984	0.101	1.00	0.0847	pCi/L	02/19/18 12:37	03/13/18 08:33	1

Allalyte	Nesuit	Qualifici	(2017-)	(2017-)	IXL	IVIDO	Ollit	Fiepaieu	Allalyzeu	Diriac
Radium-226	0.240		0.0984	0.101	1.00	0.0847	pCi/L	02/19/18 12:37	03/13/18 08:33	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.8		40 - 110					02/19/18 12:37	03/13/18 08:33	1

_	00.0		10 - 110					02/10/10 12:07	00/10/10 00:00	•
	Radium-228 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.129	U	0.281	0.282	1.00	0.527	pCi/L	02/19/18 13:08	02/27/18 14:27	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.8		40 - 110					02/19/18 13:08	02/27/18 14:27	1
Y Carrier	83.0		40 - 110					02/19/18 13:08	02/27/18 14:27	1

Method: Ra226_Ra	228 - Con	nbined Ra	ıdium-226 a	nd Radiur	m-228						
_			Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Pre	pared	Analyzed	Dil Fac
Combined Radium 226	0.111	U	0.298	0.300	5.00	0.527	pCi/L			03/14/18 15:36	1

+ 228

2

А

Matrix: Water

5

7

8

10

11

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-16

Client Sample ID: AY03319 MW-8 DUP Date Collected: 02/06/18 12:21

Matrix: Water Date Received: 02/09/18 14:30

Method: 9315 - R	Radium-226 (GFPC)								
	·		Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.148		0.0817	0.0828	1.00	0.0910	pCi/L	02/19/18 12:37	03/13/18 08:33	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.1		40 - 110					02/19/18 12:37	03/13/18 08:33	1

	• • • • • • • • • • • • • • • • • • • •							02.10.10.12.01	00, 10, 10 00,00	•
Method: 9320 - R	adium-228 (GFPC)								
	·	,	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.222	Ū	0.305	0.305	1.00	0.509	pCi/L	02/19/18 13:08	02/27/18 14:27	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.1		40 - 110					02/19/18 13:08	02/27/18 14:27	1
Y Carrier	81.1		40 - 110					02/19/18 13:08	02/27/18 14:27	1

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.370	U	0.316	0.316	5.00	0.509	pCi/L		03/14/18 15:36	1

3/14/2018

Client Sample Results

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

SDG: Gaston Gypsum 1134

TestAmerica Job ID: 400-149577-1

Client Sample ID: AY03320 MW-15

Date Collected: 02/07/18 14:36 Date Received: 02/09/18 14:30

Lab Sample ID: 400-149577-17

Matrix: Water

Method: 9315 - Rad	dium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0657	U	0.0594	0.0596	1.00	0.0848	pCi/L	02/19/18 12:37	03/13/18 08:52	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	100		40 - 110					02/19/18 12:37	03/13/18 08:52	1

Method: 0220	Dadium 220	(CEDC)								
Method: 9320 - I		Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0217	U	0.253	0.253	1.00	0.453	pCi/L	02/19/18 13:08	02/27/18 14:27	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier			40 - 110					02/19/18 13:08	02/27/18 14:27	1
Y Carrier	84.9		40 - 110					02/19/18 13:08	02/27/18 14:27	1

Method: Ra226 Ra2	28 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.0874	U	0.260	0.260	5.00	0.453	pCi/L		03/14/18 15:36	1

3/14/2018

Client Sample Results

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-18

Client Sample ID: AY03321 EB-1 Date Collected: 02/07/18 14:57 **Matrix: Water**

Date Received: 02/09/18 14:30

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0162	U	0.0384	0.0384	1.00	0.102	pCi/L	02/19/18 12:37	03/13/18 08:28	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.1		40 - 110					02/19/18 12:37	03/13/18 08:28	1

Method: 9320 - I		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.190	U	0.285	0.285	1.00	0.478	pCi/L	02/19/18 13:08	02/27/18 14:27	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.1		40 - 110					02/19/18 13:08	02/27/18 14:27	1
Y Carrier	86.0		40 - 110					02/19/18 13:08	02/27/18 14:27	1

Method: Ra226_Ra	228 - Com	bined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.174	U	0.288	0.288	5.00	0.478	pCi/L		03/14/18 15:36	1

+ 228

Client Sample Results

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Client Sample ID: AY03322 FB-2

Date Collected: 02/06/18 17:22 Date Received: 02/09/18 14:30

Lab Sample ID: 400-149577-19

Matrix: Water

Method: 9315 - R	adium-226 ((GFPC)	Count	Total						
Amaluta	D	0	Uncert.	Uncert.	ы	MDO	1114	D	A l	D!! F
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0318	U	0.0427	0.0428	1.00	0.116	pCi/L	02/19/18 12:37	03/13/18 08:28	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					02/19/18 12:37	03/13/18 08:28	1

700		40-110					02/10/10 12:01	00, 10, 10 00.20	,
adium-228 ((GFPC)								
	,	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
-0.110	U	0.238	0.239	1.00	0.449	pCi/L	02/19/18 13:08	02/27/18 14:28	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
103		40 - 110					02/19/18 13:08	02/27/18 14:28	1
87.5		40 - 110					02/19/18 13:08	02/27/18 14:28	1
	Result -0.110 %Yield 103		Count Uncert. (2σ+/-) -0.110 U 0.238	Count Uncert. Uncert. (2σ+/-) (2σ+/-) (Count Total Uncert. Uncert. Uncert. Count Total Uncert. Uncert. Uncert. Count Uncert. Uncert. Uncert. Count Uncert. Uncert. Uncert. Count Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC (2σ+/-) (2σ+/	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.238 O.239 O.449 PCi/L	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared O2/19/18 13:08	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed O2/19/18 13:08 O2/27/18 14:28

Method: Ra226_Ra2	28 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.142	U	0.242	0.243	5.00	0.449	pCi/L	_	03/14/18 15:36	1

Definitions/Glossary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Qualifiers

Result is less than the sample detection limit.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TestAmerica Pensacola

SDG: Gaston Gypsum 1134

Client Sample ID: AY03304 MW-2

Client: Alabama Power General Test Laboratory

Date Collected: 02/05/18 11:43 Date Received: 02/09/18 14:30

Project/Site: CCR Plant Gaston

Lab Sample ID: 400-149577-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355285	03/13/18 08:36	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:25	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Lab Sample ID: 400-149577-2 Client Sample ID: AY03305 MW-13

Date Collected: 02/05/18 12:45

Date Received: 02/09/18 14:30

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355285	03/13/18 08:36	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:25	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Client Sample ID: AY03306 MW-13 DUP Lab Sample ID: 400-149577-3

Date Collected: 02/05/18 12:45

Date Received: 02/09/18 14:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355285	03/13/18 08:36	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:25	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Client Sample ID: AY03307 MW-1 Lab Sample ID: 400-149577-4

Date Collected: 02/05/18 14:14

Date Received: 02/09/18 14:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355285	03/13/18 08:36	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:25	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

TestAmerica Pensacola

Matrix: Water

Matrix: Water

Client Sample ID: AY03308 MW-12

Client: Alabama Power General Test Laboratory

Date Collected: 02/05/18 15:35 Date Received: 02/09/18 14:30

Project/Site: CCR Plant Gaston

Lab Sample ID: 400-149577-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355285	03/13/18 08:36	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:26	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Lab Sample ID: 400-149577-6

Matrix: Water

Date Collected: 02/06/18 09:03 Date Received: 02/09/18 14:30

Client Sample ID: AY03309 MW-5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355285	03/13/18 08:36	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:26	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Client Sample ID: AY03310 FB-1

Date Collected: 02/06/18 08:46

Date Received: 02/09/18 14:30

Lab Sample ID: 400-149577-7

Lab Sample ID: 400-149577-8

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355287	03/13/18 08:32	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:26	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Client Sample ID: AY03311 MW-6

Date Collected: 02/06/18 10:21

Date Received: 02/09/18 14:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355287	03/13/18 08:32	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:26	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

TestAmerica Pensacola

TestAmerica Job ID: 400-149577-1

SDG: Gaston Gypsum 1134

Client Sample ID: AY03312 MW-7

Client: Alabama Power General Test Laboratory

Date Collected: 02/06/18 11:21 Date Received: 02/09/18 14:30

Project/Site: CCR Plant Gaston

Lab Sample ID: 400-149577-9

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355287	03/13/18 08:32	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:26	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Lab Sample ID: 400-149577-10 Client Sample ID: AY03313 MW-8

Date Collected: 02/06/18 12:21 Date Received: 02/09/18 14:30

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355287	03/13/18 08:32	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:26	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Client Sample ID: AY03314 MW-9 Lab Sample ID: 400-149577-11

Date Collected: 02/06/18 13:39 Date Received: 02/09/18 14:30

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355287	03/13/18 08:32	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:27	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Lab Sample ID: 400-149577-12 Client Sample ID: AY03315 MW-10 **Matrix: Water**

1

353074 02/27/18 14:27 RTM

355683 03/14/18 15:36 RTM

Date Collected: 02/06/18 14:25 Date Received: 02/09/18 14:30

Analysis

Analysis

9320

Ra226_Ra228

Total/NA

Total/NA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355287	03/13/18 08:32	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL

TestAmerica Pensacola

TAL SL

TAL SL

3/14/2018

Client: Alabama Power General Test Laboratory Project/Site: CCR Plant Gaston

Lab Sample ID: 400-149577-13

TestAmerica Job ID: 400-149577-1

SDG: Gaston Gypsum 1134

Matrix: Water

Client Sample ID: AY03316 MW-11

Date Collected: 02/06/18 15:31 Date Received: 02/09/18 14:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355287	03/13/18 08:32	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:27	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Client Sample ID: AY03317 MW-14S Lab Sample ID: 400-149577-14

Date Collected: 02/06/18 16:14 **Matrix: Water**

Date Received: 02/09/18 14:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355287	03/13/18 08:33	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:27	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Lab Sample ID: 400-149577-15 Client Sample ID: AY03318 MW-3

Date Collected: 02/06/18 17:48 **Matrix: Water**

Date Received: 02/09/18 14:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355287	03/13/18 08:33	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:27	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Lab Sample ID: 400-149577-16 Client Sample ID: AY03319 MW-8 DUP

Date Collected: 02/06/18 12:21 Date Received: 02/09/18 14:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355287	03/13/18 08:33	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:27	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

TestAmerica Pensacola

Matrix: Water

Lab Chronicle

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

Date Received: 02/09/18 14:30

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Lab Sample ID: 400-149577-17

Client Sample ID: AY03320 MW-15 Date Collected: 02/07/18 14:36 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355287	03/13/18 08:52	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353074	02/27/18 14:27	RTM	TAL SL
Total/NA	Analysis	Ra226 Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Lab Sample ID: 400-149577-18 Client Sample ID: AY03321 EB-1

Matrix: Water

Date Collected: 02/07/18 14:57 Date Received: 02/09/18 14:30

Batch Batch Dilution Batch Prepared Prep Type Method Туре Run Factor Number or Analyzed Analyst Lab Total/NA PrecSep-21 Prep 351873 02/19/18 12:37 TJT TAL SL Total/NA Analysis 9315 1 355289 03/13/18 08:28 RTM TAL SL TAL SL Total/NA Prep PrecSep_0 351875 02/19/18 13:08 TJT Total/NA Analysis 9320 1 353074 02/27/18 14:27 RTM TAL SL Total/NA Analysis Ra226_Ra228 1 355683 03/14/18 15:36 RTM TAL SL

Client Sample ID: AY03322 FB-2 Lab Sample ID: 400-149577-19

Date Collected: 02/06/18 17:22 **Matrix: Water**

Date Received: 02/09/18 14:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			351873	02/19/18 12:37	TJT	TAL SL
Total/NA	Analysis	9315		1	355289	03/13/18 08:28	RTM	TAL SL
Total/NA	Prep	PrecSep_0			351875	02/19/18 13:08	TJT	TAL SL
Total/NA	Analysis	9320		1	353076	02/27/18 14:28	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	355683	03/14/18 15:36	RTM	TAL SL

Laboratory References:

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

TestAmerica Pensacola

Page 30 of 39

3/14/2018

QC Association Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Rad

Prep Batch: 351873

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-149577-1	AY03304 MW-2	Total/NA	Water	PrecSep-21	
400-149577-2	AY03305 MW-13	Total/NA	Water	PrecSep-21	
400-149577-3	AY03306 MW-13 DUP	Total/NA	Water	PrecSep-21	
400-149577-4	AY03307 MW-1	Total/NA	Water	PrecSep-21	
400-149577-5	AY03308 MW-12	Total/NA	Water	PrecSep-21	
400-149577-6	AY03309 MW-5	Total/NA	Water	PrecSep-21	
400-149577-7	AY03310 FB-1	Total/NA	Water	PrecSep-21	
400-149577-8	AY03311 MW-6	Total/NA	Water	PrecSep-21	
400-149577-9	AY03312 MW-7	Total/NA	Water	PrecSep-21	
400-149577-10	AY03313 MW-8	Total/NA	Water	PrecSep-21	
400-149577-11	AY03314 MW-9	Total/NA	Water	PrecSep-21	
400-149577-12	AY03315 MW-10	Total/NA	Water	PrecSep-21	
400-149577-13	AY03316 MW-11	Total/NA	Water	PrecSep-21	
400-149577-14	AY03317 MW-14S	Total/NA	Water	PrecSep-21	
400-149577-15	AY03318 MW-3	Total/NA	Water	PrecSep-21	
400-149577-16	AY03319 MW-8 DUP	Total/NA	Water	PrecSep-21	
400-149577-17	AY03320 MW-15	Total/NA	Water	PrecSep-21	
400-149577-18	AY03321 EB-1	Total/NA	Water	PrecSep-21	
400-149577-19	AY03322 FB-2	Total/NA	Water	PrecSep-21	
MB 160-351873/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-351873/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-149577-6 DU	AY03309 MW-5	Total/NA	Water	PrecSep-21	

Prep Batch: 351875

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-149577-1	AY03304 MW-2	Total/NA	Water	PrecSep_0	
400-149577-2	AY03305 MW-13	Total/NA	Water	PrecSep_0	
400-149577-3	AY03306 MW-13 DUP	Total/NA	Water	PrecSep_0	
400-149577-4	AY03307 MW-1	Total/NA	Water	PrecSep_0	
400-149577-5	AY03308 MW-12	Total/NA	Water	PrecSep_0	
400-149577-6	AY03309 MW-5	Total/NA	Water	PrecSep_0	
400-149577-7	AY03310 FB-1	Total/NA	Water	PrecSep_0	
400-149577-8	AY03311 MW-6	Total/NA	Water	PrecSep_0	
400-149577-9	AY03312 MW-7	Total/NA	Water	PrecSep_0	
400-149577-10	AY03313 MW-8	Total/NA	Water	PrecSep_0	
400-149577-11	AY03314 MW-9	Total/NA	Water	PrecSep_0	
400-149577-12	AY03315 MW-10	Total/NA	Water	PrecSep_0	
400-149577-13	AY03316 MW-11	Total/NA	Water	PrecSep_0	
400-149577-14	AY03317 MW-14S	Total/NA	Water	PrecSep_0	
400-149577-15	AY03318 MW-3	Total/NA	Water	PrecSep_0	
400-149577-16	AY03319 MW-8 DUP	Total/NA	Water	PrecSep_0	
400-149577-17	AY03320 MW-15	Total/NA	Water	PrecSep_0	
400-149577-18	AY03321 EB-1	Total/NA	Water	PrecSep_0	
400-149577-19	AY03322 FB-2	Total/NA	Water	PrecSep_0	
MB 160-351875/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-351875/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-149577-6 DU	AY03309 MW-5	Total/NA	Water	PrecSep_0	

TestAmerica Pensacola

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-351873/1-A

Matrix: Water

Matrix: Water

Analysis Batch: 355285

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 351873

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.03152 U 0.0512 0.0513 1.00 0.0901 pCi/L 02/19/18 12:37 03/13/18 08:36

Total

Count

MB MB

Carrier %Yield Qualifier Limits Ba Carrier 96.2 40 - 110

Client Sample ID: Lab Control Sample

02/19/18 12:37 03/13/18 08:36

Prepared

Prep Type: Total/NA **Prep Batch: 351873**

Analyzed

Analysis Batch: 355285

Total Spike LCS LCS Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ RL**MDC** Unit %Rec Limits Radium-226 15.7 14.75 1.50 1.00 0.0965 pCi/L 94 68 - 137

LCS LCS

Lab Sample ID: LCS 160-351873/2-A

Carrier %Yield Qualifier Limits Ba Carrier 98.8 40 - 110

Lab Sample ID: 400-149577-6 DU Client Sample ID: AY03309 MW-5

Matrix: Water

Analysis Batch: 355285

Prep Type: Total/NA

Prep Batch: 351873

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-226 0.02158 U 0.0595 1.00 0.113 pCi/L 0.146 0.87

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 94.1 40 - 110

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-351875/1-A

Matrix: Water

Analysis Batch: 353074

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 351875

Total Count MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Dil Fac Analyzed Radium-228 -0.01733 U 0.274 0.274 1.00 0.498 pCi/L 02/19/18 13:08 02/27/18 14:25

MB MB

Carrier	%Yield	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Ba Carrier	96.2		40 - 110	02/19/18 13:08	02/27/18 14:25	1
Y Carrier	83.0		40 - 110	02/19/18 13:08	02/27/18 14:25	1

TestAmerica Pensacola

Dil Fac

10

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Client: Alabama Power General Test Laboratory Project/Site: CCR Plant Gaston

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-351875/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 351875**

Analysis Batch: 353074

Total Spike LCS LCS Uncert. %Rec. Added **Analyte** Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-228 11.4 12.92 1.49 1.00 0.495 pCi/L 114 56 - 140

LCS LCS Carrier %Yield Qualifier I imits Ba Carrier 98.8 40 - 110 Y Carrier 84.1 40 - 110

Lab Sample ID: 400-149577-6 DU Client Sample ID: AY03309 MW-5

Matrix: Water Prep Type: Total/NA Prep Batch: 351875 Analysis Batch: 353074

Total Sample Sample DU DU Uncert. **RER**

Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-228 -0.0818 U 0.2845 U 0.322 1.00 0.527 pCi/L 0.57

DU DU Carrier %Yield Qualifier Limits Ba Carrier 94.1 40 - 110 Y Carrier 83.7 40 - 110

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Lab Sample ID: 400-149577-6 DU Client Sample ID: AY03309 MW-5 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 355683

Total DU DU Sample Sample Uncert. **RER** Limit Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER 0.3061 U 0.0645 U Combined 0.327 5.00 0.527 pCi/L 0.37

Radium 226 +

228

10

3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671	ច	nain of	Custo	Chain of Custody Record	ord				ESTAI	IESTAMENCO
Client Information	Sampler. Anthony Goggins			Lab PM: Whitmir	e, Cheyen	Lab PM: Whitmire, Cheyenne R	Carrier Tracking No(s)		COC No: 400-56525-24537.1	17
Client Contact:	Phone:			E-Mail:				a	Page:	
arah Copeland	-			cheyen	19.whitmire	@testamericainc.co	- E	4	- 1	
Company: Alabama Power General Test Laboratory						Analysis	Analysis Requested	7	1-00+ HOO-1	149577
Address: 744 County Rd 87 GSC #8	Due Date Requested:							d .		:00:
City: Calera	TAT Requested (days):	rst: Routine								N - None O - AsNao2
State, 2lp: AL 35040					GFPC				D - Nitric Acid E - NaHSO4	P - Na204S
Phone: 205-684-6121/Tel	₩ Od			(0.						R - Ne2S203 S - H2SO4
all.	WO#:			101	(0)			8		T - TSP Dodecahydrate U - Acetane
Sycopetal@southerntoc.com	Project #:			T CASE	1 10 5	_			K-EDTA	W - ph 4-5
CCR She:	40007143 SSOW#:			elam	(Ne	_			C-EDA Other	Z - other (specify)
Gaston Gypsum 1134				98	ISW					
Sample Identification	Sample Date	Sample	Sample Type (C=comp,	Matrix (Wewester, Secold, Consentation, 1919)	Perform MSA 9316_Ra226, 9		400-149577 COC	edmuM lstoT	90 E	Soecial Instructions/Note:
	V	X	1 83		9 X			X		V
AY03304	2/5/18	1143	9	Water	×			-	MVV-2	
AY03305	2/5/18	1245	O	Water	×			-	MVV-13	
AY03306	2/5/18	1245	o	Water	×			-	MW-13 Dup (Sample Duplicate)	nple Duplicate)
AY03307	2/5/18	1414	O	Water	×			-	MW-1	
AY03308	2/5/18	1535	9	Water	×			-	MW-12	
AY03309	2/6/18	0903	v	Water	×			6	MW-5	
AY03310	2/6/18	0846	O	Water	×			-	FB-1 (Field Blank)	(X
AY03311	2/6/18	1021	9	Water	×			1	MW-6	
AY03312	2/6/18	1121	9	Water	×			1	MW-7	
AY03313	2/6/18	1221	O	Water	×			-	MW-8	
AY03314	2/6/18	1339	O	Water	×			-		
AY03315	2/6/18	1425	o	Water	×			-	MVV-10	
AY03316	2/6/18	1531	9	Water	×			-	MW-11	
AY03317	2/6/18	1814	o	Water	×				1 MW-14S	
AY03318	2/6/18	1748	Ø	Water	×				1 MW-3	
Possible Hazard Identification Non-Hazard — Flammable Skin Initant	Poison B U	Unknown	Radiological	cel	Samp	le Disposal (A fee I Return To Client	Sample Disposal (A fee may be assessed if samples	2	retained longer than 1 month) Archive For Mon	an 1 month) Months
Deliverable Requested: I, II, III, IV, Other (specify)					Speck	Special Instructions/QC Requirements:	quirements:			
Empty Kit Relinquished by:		Date:			Time:	0	Method of	Method of Shipment:		
Refinquished by. Sarah Copeland	Date/Time: 2/08/2018; 0940	2018; 0940		Company	Re	Received by		Datedime:	34	Company D
Reinquished by:	Date/Time:			Company	Re	Repéyedby.		1		Company
Relinquished by:	Date/Time:			Company	- X	Received by:		Date/Time:		Company
Custody Seals Intact: Custody Seal No.:					Ö	Cooler Temperature(s) °C and Other Remerks	pd Ofher Remarks	100 N		
			The second secon					-		

TestAmerica Pensacola

TestAmerica COC No: Chain of Custody Record

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Phone (350) 474-1001 Fax (850) 478-2671

CHEIR HINGHIATION	Anthony Goggins	The second second		MANUEL	Whitmire, Cheyenne R	THIS IS		_		400-	400-56525-24537.1
Clent Contact:	Phone:			E-Mail:	and the lane	000				Page:	
ran Copeland	-		-	cheye	nne.wnitm	ire@testam	cheyenne.whitmire@testamericainc.com	-		Page	Page 2 of 2
Company: Alabama Power General Test Laboratory						'	Analysis F	Analysis Requested		1007	100-148577
Address: 744 County Rd 87 GSC #8	Due Date Requested:	#				_			_	Pres	Preservation Codes: A - HCL M - Hexane
City. Catera	TAT Requested (days):	rs): Routine								G-7	aOH N-None
State, Zip: AL, 35040					344Đ.	_			_	OMI	D. Nitre Acid P. Na2048 E. NaHSO4 Q. Na2503
Phone: 205-564-6121(Tel)	**				7530			_	_	101	krohlor S - H2SO4
Email: sgcopela@southernco.com	Wo #:				(ON-			_		679	e U - Acetone
Project Name: CCR	Project #: 40007143				10 88			_		nisin 7	EDTA W-ph 4.5 EDA Z-other (specify
Ske. Gaston Gypsum 1134	SSOW#:				A) asi	_				oo to	
Samulo Identification	aloman eloman	Sample	Sample Type (C=comp,	Watrix (Wewester, Service, Ownesterlot, Austri	leid Filtered enform MSM enform MSM enformense, 9:					redmuM listoT	Saeciel Instructions/Mater
	X	X		ion Code:	X					X	
AY03319	2/6/18	1221	9	Water	×					1 MW	MW-8 Dup (Sample Duplicate)
AY03320	27718	1436	v	Water	×					1 MW	MVV-15
AY03321	27718	1457	O	Water	×					1 EB	EB-1 (Equipment Blank)
AY03322	2/6/18	1722	Ð	Water		×				1 FB	FB-2 (Field Blank)
										6513	
					-						
						+	1	+			
	+	1	1		+	+		+	1		
					E	+					
Possible Hazard Identification	D Batton B	[] minorial] Pariiological	ja	San	Petrum To Clear	al (A fee m	ay be assess	Disposal By Lah	es are retaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
/, Offher					Spe	cial Instructi	Special Instructions/QC Requirements	uirements:			
Empty Kit Reinquished by:		Date:			Time:			Me	Method of Shipment:	ent:	
Relinquished by: Sarah Copeland	Date/Time: 2/08/2018; 0940	72018; 0940		Company		Received by:			Date/Time	Tíme:	Company
Relinquished by:	Date/Time:			Company		Received by:			Date	Date/Time;	Company
Relinquished by:	Date/Time:			Company		Received by:			Date/	Date/Time;	Company
Control of the state of the sta		-					00			-	The state of the s

Login Sample Receipt Checklist

Client: Alabama Power General Test Laboratory

Job Number: 400-149577-1 SDG Number: Gaston Gypsum 1134

Login Number: 149577 List Source: TestAmerica Pensacola

List Number: 1

Creator: Siddoway, Benjamin

Answer	Comment
N/A	
True	
N/A	
True	
N/A	Thermal preservation not required.
True	
True	25.5°C IR-7
True	
N/A	
True	
True	
N/A	
	N/A True N/A True N/A True True True True True True True True

2

Α

5

6

8

10

111

1:

Login Sample Receipt Checklist

Client: Alabama Power General Test Laboratory

Job Number: 400-149577-1 SDG Number: Gaston Gypsum 1134

Login Number: 149577
List Source: TestAmerica St. Louis
List Number: 2
List Creation: 02/16/18 04:10 PM

Creator: Taylor, Kristene N

oreator. Taylor, Kristerie N		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	17.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

-

3

4

8

10

12

13

Residual Chlorine Checked.

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-18
Arizona	State Program	9	AZ0710	01-12-19
Arkansas DEQ	State Program	6	88-0689	09-01-18
California	ELAP	9	2510	03-31-18
Florida	NELAP	4	E81010	06-30-18
Georgia	State Program	4	N/A	06-30-18
Illinois	NELAP	5	200041	10-09-18
lowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	10-31-18
Kentucky (UST)	State Program	4	53	06-30-18
Kentucky (WW)	State Program	4	98030	12-31-18
L-A-B	ISO/IEC 17025		L2471	02-22-20
Louisiana	NELAP	6	30976	06-30-18
Louisiana (DW)	NELAP	6	LA170005	12-31-18
Maryland	State Program	3	233	09-30-18
Massachusetts	State Program	1	M-FL094	06-30-18
Michigan	State Program	5	9912	06-30-18
New Jersey	NELAP	2	FL006	06-30-18
North Carolina (WW/SW)	State Program	4	314	12-31-18
Oklahoma	State Program	6	9810	08-31-18
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-18
South Carolina	State Program	4	96026	06-30-18
Tennessee	State Program	4	TN02907	06-30-18
Texas	NELAP	6	T104704286-17-12	09-30-18
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-18
Washington	State Program	10	C915	05-15-18
West Virginia DEP	State Program	3	136	06-30-18

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	MO00054	06-30-18
Arizona	State Program	9	AZ0813	12-08-18
California	State Program	9	2886	03-31-18 *
Connecticut	State Program	1	PH-0241	03-31-19
Florida	NELAP	4	E87689	06-30-18
Illinois	NELAP	5	200023	11-30-18
lowa	State Program	7	373	12-01-18
Kansas	NELAP	7	E-10236	10-31-18
Kentucky (DW)	State Program	4	90125	12-31-18
L-A-B	DoD ELAP		L2305	04-06-19
Louisiana	NELAP	6	04080	06-30-18
Louisiana (DW)	NELAP	6	LA180017	12-31-18
Maryland	State Program	3	310	09-30-18
Missouri	State Program	7	780	06-30-18
Nevada	State Program	9	MO000542018-1	07-31-18
New Jersey	NELAP	2	MO002	06-30-18

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Pensacola

2

3

Ę

7

10

11

12

Accreditation/Certification Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-149577-1 SDG: Gaston Gypsum 1134

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	11616	03-31-18 *
North Dakota	State Program	8	R207	06-30-18
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-18
Pennsylvania	NELAP	3	68-00540	02-28-19
South Carolina	State Program	4	85002001	06-30-18
Texas	NELAP	6	T104704193-17-11	07-31-18
US Fish & Wildlife	Federal		058448	08-31-18
USDA	Federal		P330-17-0028	02-02-20
Utah	NELAP	8	MO000542016-8	07-31-18
Virginia	NELAP	3	460230	06-14-18
Washington	State Program	10	C592	08-30-18
West Virginia DEP	State Program	3	381	08-31-18

6

8

9

10

12

13

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Pensacola

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-1	2/5/2018 13:57	336	uS/cm	Conductivity
GN-GSA-MW-1	2/5/2018 13:57	24.41	ft	Depth to Water Detail
GN-GSA-MW-1	2/5/2018 13:57	0.14	mg/L	DO
GN-GSA-MW-1	2/5/2018 13:57	-155.1	mv	Oxidation Reduction Potention
GN-GSA-MW-1	2/5/2018 13:57	7.75	рН	рН
GN-GSA-MW-1	2/5/2018 13:57	19.68	С	Temperature
GN-GSA-MW-1	2/5/2018 13:57	1.14	NTU	Turbidity
GN-GSA-MW-1	2/5/2018 14:02	333.5	uS/cm	Conductivity
GN-GSA-MW-1	2/5/2018 14:02	24.54	ft	Depth to Water Detail
GN-GSA-MW-1	2/5/2018 14:02	0.12	mg/L	DO
GN-GSA-MW-1	2/5/2018 14:02	-157.5	mv	Oxidation Reduction Potention
GN-GSA-MW-1	2/5/2018 14:02	7.77	рН	рН
GN-GSA-MW-1	2/5/2018 14:02	19.77	С	Temperature
GN-GSA-MW-1	2/5/2018 14:02	0.72	NTU	Turbidity
GN-GSA-MW-1	2/5/2018 14:07	334.6	uS/cm	Conductivity
GN-GSA-MW-1	2/5/2018 14:07	24.57	ft	Depth to Water Detail
GN-GSA-MW-1	2/5/2018 14:07	0.11	mg/L	DO
GN-GSA-MW-1	2/5/2018 14:07	-156.1	mv	Oxidation Reduction Potention
GN-GSA-MW-1	2/5/2018 14:07	7.78	рН	рН
GN-GSA-MW-1	2/5/2018 14:07	19.85	С	Temperature
GN-GSA-MW-1	2/5/2018 14:07	0.49	NTU	Turbidity
GN-GSA-MW-1	2/5/2018 14:12	337.2	uS/cm	Conductivity
GN-GSA-MW-1	2/5/2018 14:12	24.63	ft	Depth to Water Detail
GN-GSA-MW-1	2/5/2018 14:12	0.1	mg/L	DO
GN-GSA-MW-1	2/5/2018 14:12	-152.4	mv	Oxidation Reduction Potention
GN-GSA-MW-1	2/5/2018 14:12	7.78	рН	рН
GN-GSA-MW-1	2/5/2018 14:12	19.86	С	Temperature
GN-GSA-MW-1	2/5/2018 14:12	0.45	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-2	2/5/2018 11:27	520	uS/cm	Conductivity
GN-GSA-MW-2	2/5/2018 11:27	23.13	ft	Depth to Water Detail
GN-GSA-MW-2	2/5/2018 11:27	1.25	mg/L	DO
GN-GSA-MW-2	2/5/2018 11:27	35.9	mv	Oxidation Reduction Potention
GN-GSA-MW-2	2/5/2018 11:27	7.11	рН	рН
GN-GSA-MW-2	2/5/2018 11:27	17.81	С	Temperature
GN-GSA-MW-2	2/5/2018 11:27	5.12	NTU	Turbidity
GN-GSA-MW-2	2/5/2018 11:32	515.2	uS/cm	Conductivity
GN-GSA-MW-2	2/5/2018 11:32	23.16	ft	Depth to Water Detail
GN-GSA-MW-2	2/5/2018 11:32	1.38	mg/L	DO
GN-GSA-MW-2	2/5/2018 11:32	48.8	mv	Oxidation Reduction Potention
GN-GSA-MW-2	2/5/2018 11:32	7.12	рН	рН
GN-GSA-MW-2	2/5/2018 11:32	17.8	С	Temperature
GN-GSA-MW-2	2/5/2018 11:32	1.25	NTU	Turbidity
GN-GSA-MW-2	2/5/2018 11:37	517.9	uS/cm	Conductivity
GN-GSA-MW-2	2/5/2018 11:37	23.23	ft	Depth to Water Detail
GN-GSA-MW-2	2/5/2018 11:37	1.43	mg/L	DO
GN-GSA-MW-2	2/5/2018 11:37	56.8	mv	Oxidation Reduction Potention
GN-GSA-MW-2	2/5/2018 11:37	7.12	рН	рН
GN-GSA-MW-2	2/5/2018 11:37	17.76	С	Temperature
GN-GSA-MW-2	2/5/2018 11:37	0.91	NTU	Turbidity
GN-GSA-MW-2	2/5/2018 11:42	522.1	uS/cm	Conductivity
GN-GSA-MW-2	2/5/2018 11:42	23.31	ft	Depth to Water Detail
GN-GSA-MW-2	2/5/2018 11:42	1.45	mg/L	DO
GN-GSA-MW-2	2/5/2018 11:42	61.1	mv	Oxidation Reduction Potention
GN-GSA-MW-2	2/5/2018 11:42	7.12	рН	рН
GN-GSA-MW-2	2/5/2018 11:42	17.77	С	Temperature
GN-GSA-MW-2	2/5/2018 11:42	0.85	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-3	2/6/2018 16:41		uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 16:41	24.24		Depth to Water Detail
GN-GSA-MW-3	2/6/2018 16:41		mg/L	DO
GN-GSA-MW-3	2/6/2018 16:41	66.7		Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 16:41	7.07		рН
GN-GSA-MW-3	2/6/2018 16:41	20.04	•	Temperature
GN-GSA-MW-3	2/6/2018 16:41		NTU	Turbidity
GN-GSA-MW-3	2/6/2018 16:46		uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 16:46	24.71		Depth to Water Detail
GN-GSA-MW-3	2/6/2018 16:46		mg/L	DO
GN-GSA-MW-3	2/6/2018 16:46	72.3		Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 16:46	7.04		Н
GN-GSA-MW-3	2/6/2018 16:46	19.75	•	Temperature
GN-GSA-MW-3	2/6/2018 16:46		NTU	Turbidity
GN-GSA-MW-3	2/6/2018 16:51		uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 16:51	25.15		Depth to Water Detail
GN-GSA-MW-3	2/6/2018 16:51		mg/L	DO
GN-GSA-MW-3	2/6/2018 16:51	74.4		Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 16:51	7.03	рН	pH
GN-GSA-MW-3	2/6/2018 16:51	19.59	•	Temperature
GN-GSA-MW-3	2/6/2018 16:51		NTU	Turbidity
GN-GSA-MW-3	2/6/2018 16:56	500.8	uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 16:56	25.55		Depth to Water Detail
GN-GSA-MW-3	2/6/2018 16:56		mg/L	DO
GN-GSA-MW-3	2/6/2018 16:56	74.7		Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 16:56	7.03	рН	pH
GN-GSA-MW-3	2/6/2018 16:56	19.5	С	Temperature
GN-GSA-MW-3	2/6/2018 16:56	0.47	NTU	Turbidity
GN-GSA-MW-3	2/6/2018 17:01	500.6	uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 17:01	25.87	ft	Depth to Water Detail
GN-GSA-MW-3	2/6/2018 17:01	0.49	mg/L	DO
GN-GSA-MW-3	2/6/2018 17:01	74.2	mv	Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 17:01	7.03	рН	рН
GN-GSA-MW-3	2/6/2018 17:01	19.41	С	Temperature
GN-GSA-MW-3	2/6/2018 17:01	0.49	NTU	Turbidity
GN-GSA-MW-3	2/6/2018 17:06	502.3	uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 17:06	26.11	ft	Depth to Water Detail
GN-GSA-MW-3	2/6/2018 17:06	0.45	mg/L	DO
GN-GSA-MW-3	2/6/2018 17:06	73.6	mv	Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 17:06	7.02	рН	рН
GN-GSA-MW-3	2/6/2018 17:06	19.33	С	Temperature
GN-GSA-MW-3	2/6/2018 17:06	0.45	NTU	Turbidity
GN-GSA-MW-3	2/6/2018 17:11	504.2	uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 17:11	26.41	ft	Depth to Water Detail

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-3	2/6/2018 17:11	0.42	mg/L	DO
GN-GSA-MW-3	2/6/2018 17:11	73.1	mv	Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 17:11	7.02	рН	рН
GN-GSA-MW-3	2/6/2018 17:11	19.33	С	Temperature
GN-GSA-MW-3	2/6/2018 17:11	0.82	NTU	Turbidity
GN-GSA-MW-3	2/6/2018 17:16	503.1	uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 17:16	26.56	ft	Depth to Water Detail
GN-GSA-MW-3	2/6/2018 17:16	0.44	mg/L	DO
GN-GSA-MW-3	2/6/2018 17:16	72.9	mv	Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 17:16	7.01	рН	рН
GN-GSA-MW-3	2/6/2018 17:16	19.29	С	Temperature
GN-GSA-MW-3	2/6/2018 17:16	0.78	NTU	Turbidity
GN-GSA-MW-3	2/6/2018 17:21	499.2	uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 17:21	26.71	ft	Depth to Water Detail
GN-GSA-MW-3	2/6/2018 17:21	0.49	mg/L	DO
GN-GSA-MW-3	2/6/2018 17:21	73.1	mv	Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 17:21	6.99	рН	рН
GN-GSA-MW-3	2/6/2018 17:21	19.28	С	Temperature
GN-GSA-MW-3	2/6/2018 17:21	0.73	NTU	Turbidity
GN-GSA-MW-3	2/6/2018 17:26	494.7	uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 17:26	26.88	ft	Depth to Water Detail
GN-GSA-MW-3	2/6/2018 17:26	0.56	mg/L	DO
GN-GSA-MW-3	2/6/2018 17:26	73.5	mv	Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 17:26	6.97	рН	рН
GN-GSA-MW-3	2/6/2018 17:26	19.15	С	Temperature
GN-GSA-MW-3	2/6/2018 17:26	0.84	NTU	Turbidity
GN-GSA-MW-3	2/6/2018 17:31	493.3	uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 17:31	27.04	ft	Depth to Water Detail
GN-GSA-MW-3	2/6/2018 17:31	0.6	mg/L	DO
GN-GSA-MW-3	2/6/2018 17:31	73.4	mv	Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 17:31	6.96	рН	рН
GN-GSA-MW-3	2/6/2018 17:31	18.97	С	Temperature
GN-GSA-MW-3	2/6/2018 17:31	0.94	NTU	Turbidity
GN-GSA-MW-3	2/6/2018 17:36	495	uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 17:36	27.2	ft	Depth to Water Detail
GN-GSA-MW-3	2/6/2018 17:36	0.61	mg/L	DO
GN-GSA-MW-3	2/6/2018 17:36	72.9	mv	Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 17:36	6.96	рН	рН
GN-GSA-MW-3	2/6/2018 17:36	18.86	С	Temperature
GN-GSA-MW-3	2/6/2018 17:36	1.04	NTU	Turbidity
GN-GSA-MW-3	2/6/2018 17:41	495.5	uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 17:41	27.37	ft	Depth to Water Detail
GN-GSA-MW-3	2/6/2018 17:41	0.63	mg/L	DO
GN-GSA-MW-3	2/6/2018 17:41	72.2	mv	Oxidation Reduction Potention

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-3	2/6/2018 17:41	6.96	рН	рН
GN-GSA-MW-3	2/6/2018 17:41	18.75	С	Temperature
GN-GSA-MW-3	2/6/2018 17:41	1.16	NTU	Turbidity
GN-GSA-MW-3	2/6/2018 17:46	495.7	uS/cm	Conductivity
GN-GSA-MW-3	2/6/2018 17:46	27.43	ft	Depth to Water Detail
GN-GSA-MW-3	2/6/2018 17:46	0.65	mg/L	DO
GN-GSA-MW-3	2/6/2018 17:46	71.7	mv	Oxidation Reduction Potention
GN-GSA-MW-3	2/6/2018 17:46	6.96	рН	рН
GN-GSA-MW-3	2/6/2018 17:46	18.78	С	Temperature
GN-GSA-MW-3	2/6/2018 17:46	1.09	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-5	2/6/2018 8:42	457.7	uS/cm	Conductivity
GN-GSA-MW-5	2/6/2018 8:42	29.05	ft	Depth to Water Detail
GN-GSA-MW-5	2/6/2018 8:42	0.22	mg/L	DO
GN-GSA-MW-5	2/6/2018 8:42	7.2	mv	Oxidation Reduction Potention
GN-GSA-MW-5	2/6/2018 8:42	6.41	рН	рН
GN-GSA-MW-5	2/6/2018 8:42	18.3	С	Temperature
GN-GSA-MW-5	2/6/2018 8:42	20.5	NTU	Turbidity
GN-GSA-MW-5	2/6/2018 8:47	433.1	uS/cm	Conductivity
GN-GSA-MW-5	2/6/2018 8:47	29.05	ft	Depth to Water Detail
GN-GSA-MW-5	2/6/2018 8:47	0.18	mg/L	DO
GN-GSA-MW-5	2/6/2018 8:47	15.4	mv	Oxidation Reduction Potention
GN-GSA-MW-5	2/6/2018 8:47	6.38	рН	рН
GN-GSA-MW-5	2/6/2018 8:47	18.26	С	Temperature
GN-GSA-MW-5	2/6/2018 8:47	10.44	NTU	Turbidity
GN-GSA-MW-5	2/6/2018 8:52	422.4	uS/cm	Conductivity
GN-GSA-MW-5	2/6/2018 8:52	29.05	ft	Depth to Water Detail
GN-GSA-MW-5	2/6/2018 8:52	0.16	mg/L	DO
GN-GSA-MW-5	2/6/2018 8:52	19.9	mv	Oxidation Reduction Potention
GN-GSA-MW-5	2/6/2018 8:52	6.38	рН	рН
GN-GSA-MW-5	2/6/2018 8:52	18.13	С	Temperature
GN-GSA-MW-5	2/6/2018 8:52	6.49	NTU	Turbidity
GN-GSA-MW-5	2/6/2018 8:57	416.1	uS/cm	Conductivity
GN-GSA-MW-5	2/6/2018 8:57	29.05	ft	Depth to Water Detail
GN-GSA-MW-5	2/6/2018 8:57	0.15	mg/L	DO
GN-GSA-MW-5	2/6/2018 8:57	22.9	mv	Oxidation Reduction Potention
GN-GSA-MW-5	2/6/2018 8:57	6.37	рН	рН
GN-GSA-MW-5	2/6/2018 8:57	18.1	С	Temperature
GN-GSA-MW-5	2/6/2018 8:57	4.1	NTU	Turbidity
GN-GSA-MW-5	2/6/2018 9:02	415	uS/cm	Conductivity
GN-GSA-MW-5	2/6/2018 9:02	29.05	ft	Depth to Water Detail
GN-GSA-MW-5	2/6/2018 9:02	0.15	mg/L	DO
GN-GSA-MW-5	2/6/2018 9:02	24.6	mv	Oxidation Reduction Potention
GN-GSA-MW-5	2/6/2018 9:02	6.36	рН	рН
GN-GSA-MW-5	2/6/2018 9:02	18.12	С	Temperature
GN-GSA-MW-5	2/6/2018 9:02	3.15	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-6	2/6/2018 10:04	27.5	uS/cm	Conductivity
GN-GSA-MW-6	2/6/2018 10:04	28.2	ft	Depth to Water Detail
GN-GSA-MW-6	2/6/2018 10:04	0.62	mg/L	DO
GN-GSA-MW-6	2/6/2018 10:04	174.6	mv	Oxidation Reduction Potention
GN-GSA-MW-6	2/6/2018 10:04	4.52	рН	рН
GN-GSA-MW-6	2/6/2018 10:04	18.64	С	Temperature
GN-GSA-MW-6	2/6/2018 10:04	0.81	NTU	Turbidity
GN-GSA-MW-6	2/6/2018 10:09	27.5	uS/cm	Conductivity
GN-GSA-MW-6	2/6/2018 10:09	28.2	ft	Depth to Water Detail
GN-GSA-MW-6	2/6/2018 10:09	0.44	mg/L	DO
GN-GSA-MW-6	2/6/2018 10:09	168.6	mv	Oxidation Reduction Potention
GN-GSA-MW-6	2/6/2018 10:09	4.54	рН	рН
GN-GSA-MW-6	2/6/2018 10:09	18.75	С	Temperature
GN-GSA-MW-6	2/6/2018 10:09	1.99	NTU	Turbidity
GN-GSA-MW-6	2/6/2018 10:14	27.7	uS/cm	Conductivity
GN-GSA-MW-6	2/6/2018 10:14	28.2	ft	Depth to Water Detail
GN-GSA-MW-6	2/6/2018 10:14	0.35	mg/L	DO
GN-GSA-MW-6	2/6/2018 10:14	163.4	mv	Oxidation Reduction Potention
GN-GSA-MW-6	2/6/2018 10:14	4.58	рН	рН
GN-GSA-MW-6	2/6/2018 10:14	18.97	С	Temperature
GN-GSA-MW-6	2/6/2018 10:14	1.49	NTU	Turbidity
GN-GSA-MW-6	2/6/2018 10:19	27.8	uS/cm	Conductivity
GN-GSA-MW-6	2/6/2018 10:19	28.2	ft	Depth to Water Detail
GN-GSA-MW-6	2/6/2018 10:19	0.31	mg/L	DO
GN-GSA-MW-6	2/6/2018 10:19	161.2	mv	Oxidation Reduction Potention
GN-GSA-MW-6	2/6/2018 10:19	4.61	рН	рН
GN-GSA-MW-6	2/6/2018 10:19	19.17	С	Temperature
GN-GSA-MW-6	2/6/2018 10:19	1.12	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-7	2/6/2018 10:54	394.8	uS/cm	Conductivity
GN-GSA-MW-7	2/6/2018 10:54	26.71	ft	Depth to Water Detail
GN-GSA-MW-7	2/6/2018 10:54	1.06	mg/L	DO
GN-GSA-MW-7	2/6/2018 10:54		mv	Oxidation Reduction Potention
GN-GSA-MW-7	2/6/2018 10:54	6.64	рН	рН
GN-GSA-MW-7	2/6/2018 10:54	18.71	С	Temperature
GN-GSA-MW-7	2/6/2018 10:54	6.34	NTU	Turbidity
GN-GSA-MW-7	2/6/2018 10:59	390.9	uS/cm	Conductivity
GN-GSA-MW-7	2/6/2018 10:59	27.13	ft	Depth to Water Detail
GN-GSA-MW-7	2/6/2018 10:59	0.5	mg/L	DO
GN-GSA-MW-7	2/6/2018 10:59	5.3	mv	Oxidation Reduction Potention
GN-GSA-MW-7	2/6/2018 10:59	6.69	рН	рН
GN-GSA-MW-7	2/6/2018 10:59	19.19	С	Temperature
GN-GSA-MW-7	2/6/2018 10:59	4.14	NTU	Turbidity
GN-GSA-MW-7	2/6/2018 11:04	390.3	uS/cm	Conductivity
GN-GSA-MW-7	2/6/2018 11:04	27.36	ft	Depth to Water Detail
GN-GSA-MW-7	2/6/2018 11:04	0.4	mg/L	DO
GN-GSA-MW-7	2/6/2018 11:04	8.7	mv	Oxidation Reduction Potention
GN-GSA-MW-7	2/6/2018 11:04	6.71	рН	рН
GN-GSA-MW-7	2/6/2018 11:04	19.53	С	Temperature
GN-GSA-MW-7	2/6/2018 11:04	2.75	NTU	Turbidity
GN-GSA-MW-7	2/6/2018 11:09	386.7	uS/cm	Conductivity
GN-GSA-MW-7	2/6/2018 11:09	27.6	ft	Depth to Water Detail
GN-GSA-MW-7	2/6/2018 11:09	0.46	mg/L	DO
GN-GSA-MW-7	2/6/2018 11:09	20	mv	Oxidation Reduction Potention
GN-GSA-MW-7	2/6/2018 11:09	6.71	рН	рН
GN-GSA-MW-7	2/6/2018 11:09	19.68	С	Temperature
GN-GSA-MW-7	2/6/2018 11:09	2.39	NTU	Turbidity
GN-GSA-MW-7	2/6/2018 11:14	384.5	uS/cm	Conductivity
GN-GSA-MW-7	2/6/2018 11:14	27.75	ft	Depth to Water Detail
GN-GSA-MW-7	2/6/2018 11:14	0.51	mg/L	DO
GN-GSA-MW-7	2/6/2018 11:14	26.2	mv	Oxidation Reduction Potention
GN-GSA-MW-7	2/6/2018 11:14	6.71	рН	рН
GN-GSA-MW-7	2/6/2018 11:14	19.9	С	Temperature
GN-GSA-MW-7	2/6/2018 11:14	2.76	NTU	Turbidity
GN-GSA-MW-7	2/6/2018 11:19	380.6	uS/cm	Conductivity
GN-GSA-MW-7	2/6/2018 11:19	27.83	ft	Depth to Water Detail
GN-GSA-MW-7	2/6/2018 11:19	0.52	mg/L	DO
GN-GSA-MW-7	2/6/2018 11:19	30.9	mv	Oxidation Reduction Potention
GN-GSA-MW-7	2/6/2018 11:19	6.71	рН	рН
GN-GSA-MW-7	2/6/2018 11:19	19.81	С	Temperature
GN-GSA-MW-7	2/6/2018 11:19	2.54	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-8	2/6/2018 12:04	342.1	uS/cm	Conductivity
GN-GSA-MW-8	2/6/2018 12:04	21.27	ft	Depth to Water Detail
GN-GSA-MW-8	2/6/2018 12:04	0.39	mg/L	DO
GN-GSA-MW-8	2/6/2018 12:04	-110.2	mv	Oxidation Reduction Potention
GN-GSA-MW-8	2/6/2018 12:04	7.31	рН	рН
GN-GSA-MW-8	2/6/2018 12:04	20.24	С	Temperature
GN-GSA-MW-8	2/6/2018 12:04	2.72	NTU	Turbidity
GN-GSA-MW-8	2/6/2018 12:09	343	uS/cm	Conductivity
GN-GSA-MW-8	2/6/2018 12:09	21.39	ft	Depth to Water Detail
GN-GSA-MW-8	2/6/2018 12:09	0.43	mg/L	DO
GN-GSA-MW-8	2/6/2018 12:09	-116.6	mv	Oxidation Reduction Potention
GN-GSA-MW-8	2/6/2018 12:09	7.35	рН	рН
GN-GSA-MW-8	2/6/2018 12:09	20.08	С	Temperature
GN-GSA-MW-8	2/6/2018 12:09	1.58	NTU	Turbidity
GN-GSA-MW-8	2/6/2018 12:14	342.7	uS/cm	Conductivity
GN-GSA-MW-8	2/6/2018 12:14	21.48	ft	Depth to Water Detail
GN-GSA-MW-8	2/6/2018 12:14	0.47	mg/L	DO
GN-GSA-MW-8	2/6/2018 12:14	-118.9	mv	Oxidation Reduction Potention
GN-GSA-MW-8	2/6/2018 12:14	7.39	рН	рН
GN-GSA-MW-8	2/6/2018 12:14	20.08	С	Temperature
GN-GSA-MW-8	2/6/2018 12:14	1.86	NTU	Turbidity
GN-GSA-MW-8	2/6/2018 12:19	341	uS/cm	Conductivity
GN-GSA-MW-8	2/6/2018 12:19	21.6	ft	Depth to Water Detail
GN-GSA-MW-8	2/6/2018 12:19	0.51	mg/L	DO
GN-GSA-MW-8	2/6/2018 12:19	-118.1	mv	Oxidation Reduction Potention
GN-GSA-MW-8	2/6/2018 12:19	7.41	рН	рН
GN-GSA-MW-8	2/6/2018 12:19	20.13	С	Temperature
GN-GSA-MW-8	2/6/2018 12:19	1.6	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-9	2/6/2018 13:22	271.6	uS/cm	Conductivity
GN-GSA-MW-9	2/6/2018 13:22	20.3	ft	Depth to Water Detail
GN-GSA-MW-9	2/6/2018 13:22	0.15	mg/L	DO
GN-GSA-MW-9	2/6/2018 13:22	10.7	mv	Oxidation Reduction Potention
GN-GSA-MW-9	2/6/2018 13:22	6.74	рН	рН
GN-GSA-MW-9	2/6/2018 13:22	19.9	С	Temperature
GN-GSA-MW-9	2/6/2018 13:22	5.68	NTU	Turbidity
GN-GSA-MW-9	2/6/2018 13:27	272.9	uS/cm	Conductivity
GN-GSA-MW-9	2/6/2018 13:27	20.2	ft	Depth to Water Detail
GN-GSA-MW-9	2/6/2018 13:27	0.14	mg/L	DO
GN-GSA-MW-9	2/6/2018 13:27	8.7	mv	Oxidation Reduction Potention
GN-GSA-MW-9	2/6/2018 13:27	6.78	рН	рН
GN-GSA-MW-9	2/6/2018 13:27	19.8	С	Temperature
GN-GSA-MW-9	2/6/2018 13:27	6.03	NTU	Turbidity
GN-GSA-MW-9	2/6/2018 13:32	269.2	uS/cm	Conductivity
GN-GSA-MW-9	2/6/2018 13:32	20.2	ft	Depth to Water Detail
GN-GSA-MW-9	2/6/2018 13:32	0.17	mg/L	DO
GN-GSA-MW-9	2/6/2018 13:32	11.6	mv	Oxidation Reduction Potention
GN-GSA-MW-9	2/6/2018 13:32	6.79	рН	рН
GN-GSA-MW-9	2/6/2018 13:32	19.97	С	Temperature
GN-GSA-MW-9	2/6/2018 13:32	3.85	NTU	Turbidity
GN-GSA-MW-9	2/6/2018 13:37	267.3	uS/cm	Conductivity
GN-GSA-MW-9	2/6/2018 13:37	20.2	ft	Depth to Water Detail
GN-GSA-MW-9	2/6/2018 13:37	0.19	mg/L	DO
GN-GSA-MW-9	2/6/2018 13:37	14.8	mv	Oxidation Reduction Potention
GN-GSA-MW-9	2/6/2018 13:37	6.8	рН	рН
GN-GSA-MW-9	2/6/2018 13:37	19.89	С	Temperature
GN-GSA-MW-9	2/6/2018 13:37	1.98	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-10	2/6/2018 14:07	428.8	uS/cm	Conductivity
GN-GSA-MW-10	2/6/2018 14:07	21.3	ft	Depth to Water Detail
GN-GSA-MW-10	2/6/2018 14:07	0.16	mg/L	DO
GN-GSA-MW-10	2/6/2018 14:07	74.5	mv	Oxidation Reduction Potention
GN-GSA-MW-10	2/6/2018 14:07	7.09	рН	рН
GN-GSA-MW-10	2/6/2018 14:07	21.2	С	Temperature
GN-GSA-MW-10	2/6/2018 14:07	1.82	NTU	Turbidity
GN-GSA-MW-10	2/6/2018 14:12	434.6	uS/cm	Conductivity
GN-GSA-MW-10	2/6/2018 14:12	21.31	ft	Depth to Water Detail
GN-GSA-MW-10	2/6/2018 14:12	0.13	mg/L	DO
GN-GSA-MW-10	2/6/2018 14:12	79.1	mv	Oxidation Reduction Potention
GN-GSA-MW-10	2/6/2018 14:12	7.1	рН	рН
GN-GSA-MW-10	2/6/2018 14:12	21.16	С	Temperature
GN-GSA-MW-10	2/6/2018 14:12	1.63	NTU	Turbidity
GN-GSA-MW-10	2/6/2018 14:17	436	uS/cm	Conductivity
GN-GSA-MW-10	2/6/2018 14:17	21.31	ft	Depth to Water Detail
GN-GSA-MW-10	2/6/2018 14:17	0.11	mg/L	DO
GN-GSA-MW-10	2/6/2018 14:17	81.2	mv	Oxidation Reduction Potention
GN-GSA-MW-10	2/6/2018 14:17	7.09	рН	рН
GN-GSA-MW-10	2/6/2018 14:17	21.28	С	Temperature
GN-GSA-MW-10	2/6/2018 14:17	1.33	NTU	Turbidity
GN-GSA-MW-10	2/6/2018 14:22	436.9	uS/cm	Conductivity
GN-GSA-MW-10	2/6/2018 14:22	21.31	ft	Depth to Water Detail
GN-GSA-MW-10	2/6/2018 14:22	0.1	mg/L	DO
GN-GSA-MW-10	2/6/2018 14:22	83.2	mv	Oxidation Reduction Potention
GN-GSA-MW-10	2/6/2018 14:22	7.09	рН	рН
GN-GSA-MW-10	2/6/2018 14:22	21.3	С	Temperature
GN-GSA-MW-10	2/6/2018 14:22	1.32	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-11	2/6/2018 14:49	170.2	uS/cm	Conductivity
GN-GSA-MW-11	2/6/2018 14:49	21	ft	Depth to Water Detail
GN-GSA-MW-11	2/6/2018 14:49	1.33	mg/L	DO
GN-GSA-MW-11	2/6/2018 14:49	99.6	mv	Oxidation Reduction Potention
GN-GSA-MW-11	2/6/2018 14:49	6.62	рН	рН
GN-GSA-MW-11	2/6/2018 14:49	21.2	С	Temperature
GN-GSA-MW-11	2/6/2018 14:49	0.67	NTU	Turbidity
GN-GSA-MW-11	2/6/2018 14:54	151.7	uS/cm	Conductivity
GN-GSA-MW-11	2/6/2018 14:54	21	ft	Depth to Water Detail
GN-GSA-MW-11	2/6/2018 14:54	0.99	mg/L	DO
GN-GSA-MW-11	2/6/2018 14:54	97.2	mv	Oxidation Reduction Potention
GN-GSA-MW-11	2/6/2018 14:54	6.5	рН	рН
GN-GSA-MW-11	2/6/2018 14:54	21.33	С	Temperature
GN-GSA-MW-11	2/6/2018 14:54	0.49	NTU	Turbidity
GN-GSA-MW-11	2/6/2018 14:59	137.6	uS/cm	Conductivity
GN-GSA-MW-11	2/6/2018 14:59	21	ft	Depth to Water Detail
GN-GSA-MW-11	2/6/2018 14:59	0.72	mg/L	DO
GN-GSA-MW-11	2/6/2018 14:59	97.2	mv	Oxidation Reduction Potention
GN-GSA-MW-11	2/6/2018 14:59	6.36	рН	рН
GN-GSA-MW-11	2/6/2018 14:59	21.38	С	Temperature
GN-GSA-MW-11	2/6/2018 14:59	0.51	NTU	Turbidity
GN-GSA-MW-11	2/6/2018 15:04	133.2	uS/cm	Conductivity
GN-GSA-MW-11	2/6/2018 15:04	21	ft	Depth to Water Detail
GN-GSA-MW-11	2/6/2018 15:04	0.61	mg/L	DO
GN-GSA-MW-11	2/6/2018 15:04	94.5	mv	Oxidation Reduction Potention
GN-GSA-MW-11	2/6/2018 15:04	6.32	рН	рН
GN-GSA-MW-11	2/6/2018 15:04	21.27	С	Temperature
GN-GSA-MW-11	2/6/2018 15:04	0.44	NTU	Turbidity
GN-GSA-MW-11	2/6/2018 15:09		uS/cm	Conductivity
GN-GSA-MW-11	2/6/2018 15:09	21	ft	Depth to Water Detail
GN-GSA-MW-11	2/6/2018 15:09	0.52	mg/L	DO
GN-GSA-MW-11	2/6/2018 15:09	92	mv	Oxidation Reduction Potention
GN-GSA-MW-11	2/6/2018 15:09	6.26	рН	рН
GN-GSA-MW-11	2/6/2018 15:09	21.11	С	Temperature
GN-GSA-MW-11	2/6/2018 15:09	0.42	NTU	Turbidity
GN-GSA-MW-11	2/6/2018 15:14	122.7	uS/cm	Conductivity
GN-GSA-MW-11	2/6/2018 15:14	21	ft	Depth to Water Detail
GN-GSA-MW-11	2/6/2018 15:14	0.45	mg/L	DO
GN-GSA-MW-11	2/6/2018 15:14	88.9	mv	Oxidation Reduction Potention
GN-GSA-MW-11	2/6/2018 15:14	6.24	рН	рН
GN-GSA-MW-11	2/6/2018 15:14	21.11	С	Temperature
GN-GSA-MW-11	2/6/2018 15:14	0.37	NTU	Turbidity
GN-GSA-MW-11	2/6/2018 15:19		uS/cm	Conductivity
GN-GSA-MW-11	2/6/2018 15:19	21	ft	Depth to Water Detail

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-11	2/6/2018 15:19	0.37	mg/L	DO
GN-GSA-MW-11	2/6/2018 15:19	89.3	mv	Oxidation Reduction Potention
GN-GSA-MW-11	2/6/2018 15:19	6.19	рН	рН
GN-GSA-MW-11	2/6/2018 15:19	21.24	С	Temperature
GN-GSA-MW-11	2/6/2018 15:19	0.37	NTU	Turbidity
GN-GSA-MW-11	2/6/2018 15:24	112.2	uS/cm	Conductivity
GN-GSA-MW-11	2/6/2018 15:24	21	ft	Depth to Water Detail
GN-GSA-MW-11	2/6/2018 15:24	0.36	mg/L	DO
GN-GSA-MW-11	2/6/2018 15:24	90.1	mv	Oxidation Reduction Potention
GN-GSA-MW-11	2/6/2018 15:24	6.16	рН	рН
GN-GSA-MW-11	2/6/2018 15:24	21.3	С	Temperature
GN-GSA-MW-11	2/6/2018 15:24	0.3	NTU	Turbidity
GN-GSA-MW-11	2/6/2018 15:29	113.6	uS/cm	Conductivity
GN-GSA-MW-11	2/6/2018 15:29	21	ft	Depth to Water Detail
GN-GSA-MW-11	2/6/2018 15:29	0.31	mg/L	DO
GN-GSA-MW-11	2/6/2018 15:29	89.9	mv	Oxidation Reduction Potention
GN-GSA-MW-11	2/6/2018 15:29	6.17	рН	рН
GN-GSA-MW-11	2/6/2018 15:29	21.33	С	Temperature
GN-GSA-MW-11	2/6/2018 15:29	0.34	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-12	2/5/2018 15:19	443.1	uS/cm	Conductivity
GN-GSA-MW-12	2/5/2018 15:19	18.9	ft	Depth to Water Detail
GN-GSA-MW-12	2/5/2018 15:19	0.46	mg/L	DO
GN-GSA-MW-12	2/5/2018 15:19	-6.3	mv	Oxidation Reduction Potention
GN-GSA-MW-12	2/5/2018 15:19	7.34	рН	рН
GN-GSA-MW-12	2/5/2018 15:19	20	С	Temperature
GN-GSA-MW-12	2/5/2018 15:19	3.89	NTU	Turbidity
GN-GSA-MW-12	2/5/2018 15:24	442.2	uS/cm	Conductivity
GN-GSA-MW-12	2/5/2018 15:24	18.9	ft	Depth to Water Detail
GN-GSA-MW-12	2/5/2018 15:24	0.31	mg/L	DO
GN-GSA-MW-12	2/5/2018 15:24	-24.8	mv	Oxidation Reduction Potention
GN-GSA-MW-12	2/5/2018 15:24	7.29	рН	рН
GN-GSA-MW-12	2/5/2018 15:24	19.99	С	Temperature
GN-GSA-MW-12	2/5/2018 15:24	2.31	NTU	Turbidity
GN-GSA-MW-12	2/5/2018 15:29	439.5	uS/cm	Conductivity
GN-GSA-MW-12	2/5/2018 15:29	18.9	ft	Depth to Water Detail
GN-GSA-MW-12	2/5/2018 15:29	0.24	mg/L	DO
GN-GSA-MW-12	2/5/2018 15:29	-26.2	mv	Oxidation Reduction Potention
GN-GSA-MW-12	2/5/2018 15:29	7.25	рН	рН
GN-GSA-MW-12	2/5/2018 15:29	19.98	С	Temperature
GN-GSA-MW-12	2/5/2018 15:29	2.22	NTU	Turbidity
GN-GSA-MW-12	2/5/2018 15:34	438.6	uS/cm	Conductivity
GN-GSA-MW-12	2/5/2018 15:34	18.9	ft	Depth to Water Detail
GN-GSA-MW-12	2/5/2018 15:34	0.22	mg/L	DO
GN-GSA-MW-12	2/5/2018 15:34	-30.2	mv	Oxidation Reduction Potention
GN-GSA-MW-12	2/5/2018 15:34	7.22	рН	рН
GN-GSA-MW-12	2/5/2018 15:34	19.99	С	Temperature
GN-GSA-MW-12	2/5/2018 15:34	1.79	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-13	2/5/2018 12:28	493.7	uS/cm	Conductivity
GN-GSA-MW-13	2/5/2018 12:28	22.01	ft	Depth to Water Detail
GN-GSA-MW-13	2/5/2018 12:28	0.21	mg/L	DO
GN-GSA-MW-13	2/5/2018 12:28	91.8	mv	Oxidation Reduction Potention
GN-GSA-MW-13	2/5/2018 12:28	7.12	рН	рН
GN-GSA-MW-13	2/5/2018 12:28	19.37	С	Temperature
GN-GSA-MW-13	2/5/2018 12:28	4.38	NTU	Turbidity
GN-GSA-MW-13	2/5/2018 12:33	491.6	uS/cm	Conductivity
GN-GSA-MW-13	2/5/2018 12:33	22.01	ft	Depth to Water Detail
GN-GSA-MW-13	2/5/2018 12:33	0.19	mg/L	DO
GN-GSA-MW-13	2/5/2018 12:33	91.6	mv	Oxidation Reduction Potention
GN-GSA-MW-13	2/5/2018 12:33	7.12	рН	рН
GN-GSA-MW-13	2/5/2018 12:33	19.45	С	Temperature
GN-GSA-MW-13	2/5/2018 12:33	6.25	NTU	Turbidity
GN-GSA-MW-13	2/5/2018 12:38	491.1	uS/cm	Conductivity
GN-GSA-MW-13	2/5/2018 12:38	22.01	ft	Depth to Water Detail
GN-GSA-MW-13	2/5/2018 12:38	0.19	mg/L	DO
GN-GSA-MW-13	2/5/2018 12:38	91.6	mv	Oxidation Reduction Potention
GN-GSA-MW-13	2/5/2018 12:38	7.12	рН	рН
GN-GSA-MW-13	2/5/2018 12:38	19.45	С	Temperature
GN-GSA-MW-13	2/5/2018 12:38	5.42	NTU	Turbidity
GN-GSA-MW-13	2/5/2018 12:43	491	uS/cm	Conductivity
GN-GSA-MW-13	2/5/2018 12:43	22.01	ft	Depth to Water Detail
GN-GSA-MW-13	2/5/2018 12:43	0.2	mg/L	DO
GN-GSA-MW-13	2/5/2018 12:43	92.3	mv	Oxidation Reduction Potention
GN-GSA-MW-13	2/5/2018 12:43	7.12	рН	рН
GN-GSA-MW-13	2/5/2018 12:43	19.37	С	Temperature
GN-GSA-MW-13	2/5/2018 12:43	3.2	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-14S	2/6/2018 15:57	372.7	uS/cm	Conductivity
GN-GSA-MW-14S	2/6/2018 15:57	24.19	ft	Depth to Water Detail
GN-GSA-MW-14S	2/6/2018 15:57	0.13	mg/L	DO
GN-GSA-MW-14S	2/6/2018 15:57	-34.9	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	2/6/2018 15:57	7.34	рН	рН
GN-GSA-MW-14S	2/6/2018 15:57	20.08	С	Temperature
GN-GSA-MW-14S	2/6/2018 15:57	2.07	NTU	Turbidity
GN-GSA-MW-14S	2/6/2018 16:02	373.3	uS/cm	Conductivity
GN-GSA-MW-14S	2/6/2018 16:02	24.19	ft	Depth to Water Detail
GN-GSA-MW-14S	2/6/2018 16:02	0.11	mg/L	DO
GN-GSA-MW-14S	2/6/2018 16:02	-52.4	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	2/6/2018 16:02	7.4	рН	рН
GN-GSA-MW-14S	2/6/2018 16:02	19.95	С	Temperature
GN-GSA-MW-14S	2/6/2018 16:02	4.3	NTU	Turbidity
GN-GSA-MW-14S	2/6/2018 16:07	378.3	uS/cm	Conductivity
GN-GSA-MW-14S	2/6/2018 16:07	24.19	ft	Depth to Water Detail
GN-GSA-MW-14S	2/6/2018 16:07	0.1	mg/L	DO
GN-GSA-MW-14S	2/6/2018 16:07	-69.7	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	2/6/2018 16:07	7.44	рН	рН
GN-GSA-MW-14S	2/6/2018 16:07	19.93	С	Temperature
GN-GSA-MW-14S	2/6/2018 16:07	3.69	NTU	Turbidity
GN-GSA-MW-14S	2/6/2018 16:12	373.6	uS/cm	Conductivity
GN-GSA-MW-14S	2/6/2018 16:12	24.19	ft	Depth to Water Detail
GN-GSA-MW-14S	2/6/2018 16:12	0.11	mg/L	DO
GN-GSA-MW-14S	2/6/2018 16:12	-70.4	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	2/6/2018 16:12	7.47	рН	рН
GN-GSA-MW-14S	2/6/2018 16:12	19.86	С	Temperature
GN-GSA-MW-14S	2/6/2018 16:12	2.82	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-15	2/7/2018 13:19	115.5	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 13:19	18.2	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 13:19	0.71	mg/L	DO
GN-GSA-MW-15	2/7/2018 13:19	10.3	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 13:19	6.28	рН	рН
GN-GSA-MW-15	2/7/2018 13:19	17.81	С	Temperature
GN-GSA-MW-15	2/7/2018 13:19	10.59	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 13:24	109.6	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 13:24	18.47	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 13:24	0.46	mg/L	DO
GN-GSA-MW-15	2/7/2018 13:24	11	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 13:24	6.27	рН	рН
GN-GSA-MW-15	2/7/2018 13:24	17.64	С	Temperature
GN-GSA-MW-15	2/7/2018 13:24	5.27	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 13:29	105.7	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 13:29	18.65	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 13:29	0.37	mg/L	DO
GN-GSA-MW-15	2/7/2018 13:29	12.2	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 13:29	6.28	рН	рН
GN-GSA-MW-15	2/7/2018 13:29	17.54	С	Temperature
GN-GSA-MW-15	2/7/2018 13:29	5.27	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 13:34	97.5	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 13:34	18.75	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 13:34	0.33	mg/L	DO
GN-GSA-MW-15	2/7/2018 13:34	16.3	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 13:34	6.26	рН	рН
GN-GSA-MW-15	2/7/2018 13:34	17.54	С	Temperature
GN-GSA-MW-15	2/7/2018 13:34	2.79	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 13:39		uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 13:39	18.86	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 13:39	0.42	mg/L	DO
GN-GSA-MW-15	2/7/2018 13:39	27.5	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 13:39	6.21	рН	рН
GN-GSA-MW-15	2/7/2018 13:39	17.58	С	Temperature
GN-GSA-MW-15	2/7/2018 13:39	2.17	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 13:44	75.3	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 13:44	18.96	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 13:44	0.73	mg/L	DO
GN-GSA-MW-15	2/7/2018 13:44	42.3	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 13:44	6.15	рН	рН
GN-GSA-MW-15	2/7/2018 13:44	17.6	С	Temperature
GN-GSA-MW-15	2/7/2018 13:44	3.12	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 13:49	67.5	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 13:49	19.03	ft	Depth to Water Detail

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-15	2/7/2018 13:49	1.02	mg/L	DO
GN-GSA-MW-15	2/7/2018 13:49	56.4	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 13:49	6.07	рН	рН
GN-GSA-MW-15	2/7/2018 13:49	17.59	С	Temperature
GN-GSA-MW-15	2/7/2018 13:49	2.96	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 13:54	60.2	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 13:54	19.07	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 13:54	1.27	mg/L	DO
GN-GSA-MW-15	2/7/2018 13:54	66.3	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 13:54	6.02	рН	рН
GN-GSA-MW-15	2/7/2018 13:54	17.55	С	Temperature
GN-GSA-MW-15	2/7/2018 13:54	2.67	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 13:59	56.9	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 13:59	19.13	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 13:59	1.41	mg/L	DO
GN-GSA-MW-15	2/7/2018 13:59	73.2	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 13:59	5.97	рН	рН
GN-GSA-MW-15	2/7/2018 13:59	17.59	С	Temperature
GN-GSA-MW-15	2/7/2018 13:59	3.27	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 14:04	54.2	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 14:04	19.15	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 14:04	1.52	mg/L	DO
GN-GSA-MW-15	2/7/2018 14:04	77.8	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 14:04	5.92	рН	рН
GN-GSA-MW-15	2/7/2018 14:04	17.54	С	Temperature
GN-GSA-MW-15	2/7/2018 14:04	2.37	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 14:09	53.6	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 14:09	19.15	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 14:09	1.59	mg/L	DO
GN-GSA-MW-15	2/7/2018 14:09	79.9	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 14:09	5.91	рН	рН
GN-GSA-MW-15	2/7/2018 14:09	17.56	С	Temperature
GN-GSA-MW-15	2/7/2018 14:09	2.22	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 14:14	51.5	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 14:14	19.16	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 14:14	1.64	mg/L	DO
GN-GSA-MW-15	2/7/2018 14:14	81.9	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 14:14	5.88	·	рН
GN-GSA-MW-15	2/7/2018 14:14	17.62		Temperature
GN-GSA-MW-15	2/7/2018 14:14		NTU	Turbidity
GN-GSA-MW-15	2/7/2018 14:24	49.7	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 14:24	19.19	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 14:24	1.71	mg/L	DO
GN-GSA-MW-15	2/7/2018 14:24	82.7	mv	Oxidation Reduction Potention

Alabama Power Company Plant Gaston Gypsum Pond

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-15	2/7/2018 14:24	5.87	рН	рН
GN-GSA-MW-15	2/7/2018 14:24	17.64	С	Temperature
GN-GSA-MW-15	2/7/2018 14:24	2.05	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 14:29	49.3	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 14:29	19.2	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 14:29	1.77	mg/L	DO
GN-GSA-MW-15	2/7/2018 14:29	82.8	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 14:29	5.86	рН	рН
GN-GSA-MW-15	2/7/2018 14:29	17.59	С	Temperature
GN-GSA-MW-15	2/7/2018 14:29	1.9	NTU	Turbidity
GN-GSA-MW-15	2/7/2018 14:34	48.98	uS/cm	Conductivity
GN-GSA-MW-15	2/7/2018 14:34	19.21	ft	Depth to Water Detail
GN-GSA-MW-15	2/7/2018 14:34	1.82	mg/L	DO
GN-GSA-MW-15	2/7/2018 14:34	83.1	mv	Oxidation Reduction Potention
GN-GSA-MW-15	2/7/2018 14:34	5.86	рН	рН
GN-GSA-MW-15	2/7/2018 14:34	17.59	С	Temperature
GN-GSA-MW-15	2/7/2018 14:34	3.41	NTU	Turbidity

Field Case Narrative

E. C. Gaston Gypsum Storage Area

2018 Compliance Sample Event 1

All samples were collected using methods defined in Alabama Power's Water Field Group Low-Flow Groundwater Sampling Procedure and the associated site-specific Sampling and Analysis Plan (SAP).

Suspected iron bacteria present at MW-9. Orange coloration diminished as pumping continued.

Rain showers were present when sampling well MW-2 and while collecting Equipment Blank 1 (EB-1).

Field quality control procedures were performed as follows:

- Blanks and Sample Duplicates were collected as described in the SAP.
- Calibration verifications for all required field parameters were performed daily, before and after sample collection.

Analytical Report

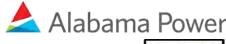
Sample Group: WMWGASG_1155

Project/Site: Gaston Gypsum

Wilsonville, AL 35186

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243


Attention: Dustin Brooks & Greg Dyer

Released By: Sarah Copeland

sgcopela@southernco.com

(205) 664-6121

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Metals ICP

Gaston Gypsum

WMWGASG_1155

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

Sample ID	Batch ID	<u>Project ID</u>
AY13775	621844	WMWGASG_1155
AY13776	621844	WMWGASG_1155
AY13777	621844	WMWGASG_1155
AY13778	621844	WMWGASG_1155
AY13779	621844	WMWGASG_1155
AY13780	621844	WMWGASG_1155
AY13781	621844	WMWGASG_1155
AY13782	621844	WMWGASG_1155
AY13783	621844	WMWGASG_1155
AY13784	621844	WMWGASG_1155
AY13785	621875	WMWGASG_1155
AY13786	621875	WMWGASG_1155
AY13787	621875	WMWGASG_1155
AY13788	621875	WMWGASG_1155
AY13789	621875	WMWGASG_1155
AY13790	621875	WMWGASG_1155
AY13791	621875	WMWGASG_1155
AY13792	621875	WMWGASG_1155
AY13793	621875	WMWGASG 1155

- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and passed.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- All sample internal standard criteria were met.
- The high standard readbacks associated with EPA 200.7 were within acceptance criteria.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:


Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed at a x2.03 dilution to compensate for potential matrix effects. The following samples were diluted due to analyzed sample concentration over the high standard of the calibration curve.

Sample ID	<u>Analyte</u>	<u>Dilution Factor</u>
AY13780	Calcium	x10.15
AY13783	Calcium	x10.15
AY13791	Calcium	x10.15

8. The raw data results include results corrected for dilution.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Metals ICPMS

Gaston Gypsum

WMWGASG_1155

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
AY13775	622115	WMWGASG_1155
AY13776	622115	WMWGASG_1155
AY13777	622115	WMWGASG_1155
AY13778	622115	WMWGASG_1155
AY13779	622115	WMWGASG_1155
AY13780	622115	WMWGASG_1155
AY13781	622115	WMWGASG_1155
AY13782	622115	WMWGASG_1155
AY13783	622115	WMWGASG_1155
AY13784	622115	WMWGASG_1155
AY13785	622116	WMWGASG_1155
AY13786	622116	WMWGASG_1155
AY13787	622116	WMWGASG_1155
AY13788	622116	WMWGASG_1155
AY13789	622116	WMWGASG_1155
AY13790	622116	WMWGASG_1155
AY13791	622116	WMWGASG_1155
AY13792	622116	WMWGASG_1155
AY13793	622116	WMWGASG_1155

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance
 criteria for accuracy were met except for AY13784 Barium. The spike was invalid since spike amount was <30%
 sample amount.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed at a dilution of 1 to 5 to compensate for any matrix effects.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Mercury

Gaston Gypsum

WMWGASG_1155

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
AY13775	622793	WMWGASG_1155
AY13776	622793	WMWGASG_1155
AY13777	622793	WMWGASG_1155
AY13778	622793	WMWGASG_1155
AY13779	622793	WMWGASG_1155
AY13780	622793	WMWGASG_1155
AY13781	622793	WMWGASG_1155
AY13782	622793	WMWGASG_1155
AY13783	622793	WMWGASG_1155
AY13784	622793	WMWGASG_1155
AY13785	622794	WMWGASG_1155
AY13786	622794	WMWGASG_1155
AY13787	622794	WMWGASG_1155
AY13788	622794	WMWGASG_1155
AY13789	622794	WMWGASG_1155
AY13790	622794	WMWGASG_1155
AY13791	622794	WMWGASG_1155
AY13792	622794	WMWGASG_1155
AY13793	622794	WMWGASG_1155

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were prepared and analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

TDS

Gaston Gypsum

WMWGASG_1155

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
AY13775	622130	WMWGASG_1155
AY13776	622130	WMWGASG_1155
AY13777	622130	WMWGASG_1155
AY13778	622130	WMWGASG_1155
AY13779	622472	WMWGASG_1155
AY13780	622472	WMWGASG_1155
AY13781	622472	WMWGASG_1155
AY13782	622472	WMWGASG_1155
AY13783	622473	WMWGASG_1155
AY13784	622473	WMWGASG_1155
AY13785	622473	WMWGASG_1155
AY13786	622473	WMWGASG_1155
AY13787	622473	WMWGASG_1155
AY13788	622473	WMWGASG_1155
AY13789	622130	WMWGASG_1155
AY13790	622130	WMWGASG_1155
AY13791	622473	WMWGASG_1155
AY13792	622473	WMWGASG_1155
AY13793	622473	WMWGASG_1155

- 4. All of the above samples were analyzed by Standard Method 2540C.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

General Quality Control Procedures:

- A blank was analyzed with each batch. All criteria were met.
- All final weights of samples, standards, and blanks agreed within 0.5mg of the previous weight.
- A sample duplicate was analyzed with each batch. RPD/2 was less than 5%.
- A laboratory control sample was analyzed with each batch. All criteria were met.
- All samples were between 2.5mg and 200mg residue with the exception of AY13790, AY13792, and AY13793 which were below the 2.5mg residue requirement. Maximum volume of 150mL filtered.

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-5

Laboratory ID Number: AY13775

Name	Analyst	Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols					,				
Arsenic, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.001	0.005	J	0.00119	mg/L
Barium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01		0.0560	mg/L
Beryllium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Boron, Total	GAS	6/15/2018	EPA 200.7	2.03	0.02	0.1	J	0.0386	mg/L
Calcium, Total	GAS	6/15/2018	EPA 200.7	2.03	0.1	0.5		62.4	mg/L
Cadmium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
Antimony, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Cobalt, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	J	0.00472	mg/L
Chromium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	ABB	6/27/2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	GAS	6/15/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
Molybdenum, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Lead, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Selenium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics									
Solids, Dissolved	KRC	6/18/2018	SM 2540C	1		25		312	mg/L
Filter Completion Date	CES	6/14/2018	SM 2540C	1				6/14/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-5

Laboratory ID Number: AY13775

Edbordtory is italiason /ti 10/10	<u> </u>										
		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limi
Y13784 Boron, Total	mg/L -0.000353	0.044	1.00	0.991	0.997	0.961	0.85 to 1.15	95.8	70 to 130	0.630	20
Y13784 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0937	0.0918	0.101	0.085 to 0.115	93.7	70 to 130	2.06	20
Y13784 Barium, Total	mg/L 0.0000122	0.0044	0.10	2.35	2.36	0.101	0.085 to 0.115	34.3	70 to 130	0.652	20
Y13784 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0956	0.0938	0.0978	0.085 to 0.115	95.6	70 to 130	1.84	20
Y13784 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.0979	0.101	0.0995	0.085 to 0.115	97.9	70 to 130	2.78	20
Y13784 Lithium, Total	mg/L 0.0000448	0.022	0.20	0.207	0.209	0.192	0.17 to 0.23	103	70 to 130	0.881	20
Y13784 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.102	0.104	0.105	0.085 to 0.115	102	70 to 130	1.29	20
Y13784 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.0977	0.102	0.102	0.085 to 0.115	97.7	70 to 130	4.61	20
Y13784 Calcium, Total	mg/L 0.000378	0.22	5.00	47.2	47.2	4.94	4.25 to 5.75	101	70 to 130	0.108	20
Y13784 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0974	0.100	0.103	0.085 to 0.115	97.4	70 to 130	2.86	20
Y13784 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0963	0.0919	0.0959	0.085 to 0.115	96.3	70 to 130	4.66	20
Y13784 Mercury, Total by CVAA	mg/L 0.0000353	0.0005	0.004	0.00400	0.00399	0.00402	0.0034 to 0.0046	100	70 to 130	0.453	20
Y13784 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.100	0.0999	0.0932	0.085 to 0.115	93.6	70 to 130	0.185	20
Y13784 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.112	0.113	0.102	0.085 to 0.115	101	70 to 130	0.321	20
Y13784 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0971	0.1000	0.0970	0.085 to 0.115	97.1	70 to 130	2.87	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-5

Laboratory ID Number: AY13775

			MB		Sample		LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplicat	e LCS	Limit	Rec Limit	Prec	Limit
AY13778	Solids, Dissolved	mg/L 3.00	25	,	188	48.0	40 to 60		0.535	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-6

Laboratory ID Number: AY13776

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	0.0155	mg/L
* Beryllium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Boron, Total	GAS 6/15/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
* Calcium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.1	0.5	0.722	mg/L
* Cadmium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Cobalt, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Chromium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
 Mercury, Total by CVAA 	ABB 6/27/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
 Molybdenum, Total 	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	KRC 6/18/2018	SM 2540C	1		25	U Not Detected	mg/L
Filter Completion Date	CES 6/14/2018	SM 2540C	1			6/14/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-6

Laboratory ID Number: AY13776

		MB					LCS	Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limi
AY13784 Boron, Total	mg/L -0.000353	0.044	1.00	0.991	0.997	0.961	0.85 to 1.15	95.8 70 to 130 (0.630	20
AY13784 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0937	0.0918	0.101	0.085 to 0.115	93.7 70 to 130 2	2.06	20
AY13784 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.0977	0.102	0.102	0.085 to 0.115	97.7 70 to 130 4	4.61	20
AY13784 Calcium, Total	mg/L 0.000378	0.22	5.00	47.2	47.2	4.94	4.25 to 5.75	101 70 to 130 (0.108	20
AY13784 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0974	0.100	0.103	0.085 to 0.115	97.4 70 to 130 2	2.86	20
AY13784 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.112	0.113	0.102	0.085 to 0.115	101 70 to 130 (0.321	20
AY13784 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0971	0.1000	0.0970	0.085 to 0.115	97.1 70 to 130 2	2.87	20
AY13784 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.0979	0.101	0.0995	0.085 to 0.115	97.9 70 to 130 2	2.78	20
AY13784 Lithium, Total	mg/L 0.0000448	0.022	0.20	0.207	0.209	0.192	0.17 to 0.23	103 70 to 130 (0.881	20
AY13784 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.102	0.104	0.105	0.085 to 0.115	102 70 to 130	1.29	20
AY13784 Barium, Total	mg/L 0.0000122	0.0044	0.10	2.35	2.36	0.101	0.085 to 0.115	34.3 70 to 130 (0.652	20
AY13784 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0956	0.0938	0.0978	0.085 to 0.115	95.6 70 to 130	1.84	20
AY13784 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0963	0.0919	0.0959	0.085 to 0.115	96.3 70 to 130 4	4.66	20
AY13784 Mercury, Total by CVAA	mg/L 0.0000353	0.0005	0.004	0.00400	0.00399	0.00402	0.0034 to 0.0046	100 70 to 130 (0.453	20
AY13784 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.100	0.0999	0.0932	0.085 to 0.115	93.6 70 to 130 (0.185	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-6

Laboratory ID Number: AY13776

	atory is italiason. Att 10110	<u>′</u>								
		MB			Sample		LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplicat	te LCS	Limit	Rec Limit	Prec	Limit
AY13778	Solids, Dissolved	mg/L 3.00	25		188	48.0	40 to 60		0.535	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-7

Laboratory ID Number: AY13777

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	0.0196	mg/L
* Beryllium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Boron, Total	GAS 6/15/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
* Calcium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.1	0.5	63.5	mg/L
* Cadmium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Cobalt, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Chromium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
 Mercury, Total by CVAA 	ABB 6/27/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
 Molybdenum, Total 	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	KRC 6/18/2018	SM 2540C	1		25	210	mg/L
Filter Completion Date	CES 6/14/2018	SM 2540C	1			6/14/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-7

Laboratory ID Number: AY13777

	MD			'		1.00			
	MB					LCS	Rec		Pred
Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
mg/L 0.0000241	0.00044	0.10	0.0937	0.0918	0.101	0.085 to 0.115	93.7 70 to 130	2.06	20
mg/L -0.000353	0.044	1.00	0.991	0.997	0.961	0.85 to 1.15	95.8 70 to 130	0.630	20
mg/L 0.0000912	0.00132	0.10	0.0979	0.101	0.0995	0.085 to 0.115	97.9 70 to 130	2.78	20
mg/L 0.0000448	0.022	0.20	0.207	0.209	0.192	0.17 to 0.23	103 70 to 130	0.881	20
mg/L 0.0000745	0.0044	0.10	0.102	0.104	0.105	0.085 to 0.115	102 70 to 130	1.29	20
mg/L -0.00000457	0.00066	0.10	0.0977	0.102	0.102	0.085 to 0.115	97.7 70 to 130	4.61	20
mg/L 0.000378	0.22	5.00	47.2	47.2	4.94	4.25 to 5.75	101 70 to 130	0.108	20
mg/L -0.0000197	0.0044	0.10	0.0974	0.100	0.103	0.085 to 0.115	97.4 70 to 130	2.86	20
mg/L 0.0000122	0.0044	0.10	2.35	2.36	0.101	0.085 to 0.115	34.3 70 to 130	0.652	20
mg/L 0.0000432	0.0022	0.10	0.0956	0.0938	0.0978	0.085 to 0.115	95.6 70 to 130	1.84	20
mg/L 0.0000791	0.00132	0.10	0.0963	0.0919	0.0959	0.085 to 0.115	96.3 70 to 130	4.66	20
mg/L 0.0000353	0.0005	0.004	0.00400	0.00399	0.00402	0.0034 to 0.0046	100 70 to 130	0.453	20
mg/L 0.00000860	0.0044	0.10	0.100	0.0999	0.0932	0.085 to 0.115	93.6 70 to 130	0.185	20
mg/L 0.00000112	0.0022	0.10	0.112	0.113	0.102	0.085 to 0.115	101 70 to 130	0.321	20
mg/L -0.0000333	0.0044	0.10	0.0971	0.1000	0.0970	0.085 to 0.115	97.1 70 to 130	2.87	20
	mg/L 0.0000241 mg/L -0.000353 mg/L 0.0000912 mg/L 0.0000448 mg/L 0.0000745 mg/L -0.00000457 mg/L 0.000378 mg/L -0.0000197 mg/L 0.0000122 mg/L 0.0000432 mg/L 0.0000791 mg/L 0.0000353 mg/L 0.00000860 mg/L 0.00000112	mg/L 0.0000241 0.00044 mg/L -0.000353 0.044 mg/L 0.0000912 0.00132 mg/L 0.0000448 0.022 mg/L 0.0000745 0.0044 mg/L -0.00000457 0.00066 mg/L 0.000378 0.22 mg/L -0.0000197 0.0044 mg/L 0.0000122 0.0044 mg/L 0.0000432 0.0022 mg/L 0.0000353 0.0005 mg/L 0.00000860 0.0044 mg/L 0.00000112 0.0022	Units MB Limit Spike mg/L 0.0000241 0.00044 0.10 mg/L 0.000353 0.044 1.00 mg/L 0.0000912 0.00132 0.10 mg/L 0.0000448 0.022 0.20 mg/L 0.0000745 0.0044 0.10 mg/L 0.0000378 0.22 5.00 mg/L 0.0000197 0.0044 0.10 mg/L 0.0000122 0.0044 0.10 mg/L 0.0000432 0.0022 0.10 mg/L 0.0000791 0.00132 0.10 mg/L 0.0000353 0.0005 0.004 mg/L 0.00000860 0.0044 0.10 mg/L 0.00000860 0.0044 0.10	Units MB Limit Spike MS mg/L 0.0000241 0.00044 0.10 0.0937 mg/L 0.0000353 0.044 1.00 0.991 mg/L 0.0000912 0.00132 0.10 0.0979 mg/L 0.0000745 0.0044 0.10 0.102 mg/L 0.0000745 0.0044 0.10 0.0977 mg/L 0.0000378 0.22 5.00 47.2 mg/L 0.0000197 0.0044 0.10 0.0974 mg/L 0.0000122 0.0044 0.10 0.0956 mg/L 0.0000432 0.0022 0.10 0.0956 mg/L 0.0000791 0.00132 0.10 0.0963 mg/L 0.0000353 0.0005 0.004 0.0040 mg/L 0.00000860 0.0044 0.10 0.100 mg/L 0.00000860 0.0005 0.004 0.00400	Units MB Limit Spike MS MSD mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 mg/L 0.000353 0.044 1.00 0.991 0.997 mg/L 0.0000912 0.00132 0.10 0.0979 0.101 mg/L 0.0000448 0.022 0.20 0.207 0.209 mg/L 0.0000745 0.0044 0.10 0.0977 0.102 mg/L 0.0000378 0.22 5.00 47.2 47.2 mg/L 0.0000197 0.0044 0.10 0.0974 0.100 mg/L 0.0000122 0.0044 0.10 2.35 2.36 mg/L 0.0000432 0.0022 0.10 0.0956 0.0938 mg/L 0.0000791 0.00132 0.10 0.0963 0.0919 mg/L 0.0000353 0.0005 0.004 0.00400 0.00399 mg/L 0.00000860 0.0044 0.10 0.100 0.0999 mg/L 0.00000112 0.0022 0.10 0.110 0.0999	Units MB Limit Spike MS MSD LCS mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 0.101 mg/L 0.000353 0.044 1.00 0.991 0.997 0.961 mg/L 0.0000448 0.022 0.20 0.207 0.209 0.192 mg/L 0.0000745 0.0044 0.10 0.102 0.104 0.105 mg/L 0.000378 0.22 5.00 47.2 47.2 4.94 mg/L 0.0000197 0.0044 0.10 0.0974 0.100 0.103 mg/L 0.0000122 0.0044 0.10 0.0974 0.100 0.103 mg/L 0.0000122 0.0044 0.10 0.0974 0.100 0.103 mg/L 0.0000432 0.0022 0.10 0.0956 0.0938 0.0978 mg/L 0.0000791 0.00132 0.10 0.0963 0.0919 0.0959 mg/L 0.0000353 0.0005 0.004 0.0040 0.00399 0.09402 mg/L 0.00000860 0	Units MB Limit Spike MS MSD LCS Limit mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 0.101 0.085 to 0.115 mg/L 0.000353 0.044 1.00 0.991 0.997 0.961 0.85 to 1.15 mg/L 0.0000448 0.022 0.20 0.207 0.209 0.192 0.17 to 0.23 mg/L 0.0000745 0.0044 0.10 0.102 0.104 0.105 0.085 to 0.115 mg/L -0.0000457 0.0066 0.10 0.0977 0.102 0.102 0.085 to 0.115 mg/L 0.000378 0.22 5.00 47.2 47.2 4.94 4.25 to 5.75 mg/L 0.0000197 0.0044 0.10 0.0974 0.100 0.103 0.085 to 0.115 mg/L 0.0000197 0.0044 0.10 2.35 2.36 0.101 0.085 to 0.115 mg/L 0.0000432 0.0022 0.10 0.0956 0.0938 0.0978 0.085 to 0.115 mg/L 0.0000353 0.0005 0.004	Units MB Limit Spike MS MSD LCS Limit Rec Limit mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 0.101 0.085 to 0.115 93.7 70 to 130 mg/L 0.0000353 0.044 1.00 0.991 0.997 0.961 0.85 to 0.115 97.9 70 to 130 mg/L 0.0000448 0.022 0.20 0.207 0.209 0.192 0.17 to 0.23 103 70 to 130 mg/L 0.0000745 0.0044 0.10 0.0977 0.102 0.102 0.085 to 0.115 102 70 to 130 mg/L 0.000378 0.202 0.207 0.209 0.102 0.085 to 0.115 102 70 to 130 mg/L 0.000378 0.22 5.00 47.2 47.2 4.94 4.25 to 5.75 101 70 to 130 mg/L 0.0000197 0.0044 0.10 0.0974 0.100 0.103 0.085 to 0.115 97.4 70 to 130 mg/L 0.0000122 0.0044 0.10 0.0956 0.0938 </td <td>Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 0.101 0.085 to 0.115 93.7 70 to 130 2.06 mg/L 0.0000353 0.044 1.00 0.991 0.997 0.961 0.85 to 0.115 97.9 70 to 130 2.78 mg/L 0.0000448 0.022 0.20 0.207 0.209 0.192 0.17 to 0.23 103 70 to 130 2.78 mg/L 0.0000745 0.0044 0.10 0.102 0.104 0.105 0.085 to 0.115 97.9 70 to 130 0.88 mg/L 0.0000745 0.0044 0.10 0.102 0.102 0.085 to 0.115 97.7 70 to 130 1.29 mg/L 0.0000378 0.22 5.00 47.2 47.2 4.94 4.25 to 5.75 101 70 to 130 2.86 mg/L 0.0000122 0.0044 0.10 2.35 2.36 0.101 0.085 to 0.115 97.4 70</td>	Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 0.101 0.085 to 0.115 93.7 70 to 130 2.06 mg/L 0.0000353 0.044 1.00 0.991 0.997 0.961 0.85 to 0.115 97.9 70 to 130 2.78 mg/L 0.0000448 0.022 0.20 0.207 0.209 0.192 0.17 to 0.23 103 70 to 130 2.78 mg/L 0.0000745 0.0044 0.10 0.102 0.104 0.105 0.085 to 0.115 97.9 70 to 130 0.88 mg/L 0.0000745 0.0044 0.10 0.102 0.102 0.085 to 0.115 97.7 70 to 130 1.29 mg/L 0.0000378 0.22 5.00 47.2 47.2 4.94 4.25 to 5.75 101 70 to 130 2.86 mg/L 0.0000122 0.0044 0.10 2.35 2.36 0.101 0.085 to 0.115 97.4 70

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-7

Laboratory ID Number: AY13777

			MB		Sample		LCS Rec			Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplicat	te LCS	Limit	Rec Limit	Prec	Limit
AY13778	Solids, Dissolved	mg/L 3.00	25	,	188	48.0	40 to 60		0.535	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

CC:

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-8

Laboratory ID Number: AY13778

Name	Analyst	Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols	,	,							
* Arsenic, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.001	0.005	J	0.00115	mg/L
* Barium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01		0.0299	mg/L
* Beryllium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
* Boron, Total	GAS	6/15/2018	EPA 200.7	2.03	0.02	0.1	U	Not Detected	mg/L
* Calcium, Total	GAS	6/15/2018	EPA 200.7	2.03	0.1	0.5		53.7	mg/L
* Cadmium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
* Antimony, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
* Cobalt, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Chromium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
 Mercury, Total by CVAA 	ABB	6/27/2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
* Lithium, Total	GAS	6/15/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
 Molybdenum, Total 	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	J	0.00325	mg/L
* Lead, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Selenium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Thallium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics									
* Solids, Dissolved	KRC	6/18/2018	SM 2540C	1		25		186	mg/L
Filter Completion Date	CES	6/14/2018	SM 2540C	1				6/14/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health
Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-8

Laboratory ID Number: AY13778

Edbordtory is italiason /ti lorro	<u>′</u>										
		MB					LCS		Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y13784 Boron, Total	mg/L -0.000353	0.044	1.00	0.991	0.997	0.961	0.85 to 1.15	95.8	70 to 130	0.630	20
Y13784 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0937	0.0918	0.101	0.085 to 0.115	93.7	70 to 130	2.06	20
Y13784 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.0979	0.101	0.0995	0.085 to 0.115	97.9	70 to 130	2.78	20
Y13784 Lithium, Total	mg/L 0.0000448	0.022	0.20	0.207	0.209	0.192	0.17 to 0.23	103	70 to 130	0.881	20
Y13784 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.102	0.104	0.105	0.085 to 0.115	102	70 to 130	1.29	20
Y13784 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.0977	0.102	0.102	0.085 to 0.115	97.7	70 to 130	4.61	20
Y13784 Calcium, Total	mg/L 0.000378	0.22	5.00	47.2	47.2	4.94	4.25 to 5.75	101	70 to 130	0.108	20
Y13784 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0974	0.100	0.103	0.085 to 0.115	97.4	70 to 130	2.86	20
Y13784 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0963	0.0919	0.0959	0.085 to 0.115	96.3	70 to 130	4.66	20
Y13784 Mercury, Total by CVAA	mg/L 0.0000353	0.0005	0.004	0.00400	0.00399	0.00402	0.0034 to 0.0046	100	70 to 130	0.453	20
Y13784 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.100	0.0999	0.0932	0.085 to 0.115	93.6	70 to 130	0.185	20
Y13784 Barium, Total	mg/L 0.0000122	0.0044	0.10	2.35	2.36	0.101	0.085 to 0.115	34.3	70 to 130	0.652	20
Y13784 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0956	0.0938	0.0978	0.085 to 0.115	95.6	70 to 130	1.84	20
Y13784 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.112	0.113	0.102	0.085 to 0.115	101	70 to 130	0.321	20
Y13784 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0971	0.1000	0.0970	0.085 to 0.115	97.1	70 to 130	2.87	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-8

Laboratory ID Number: AY13778

	utery 12 11ummetr 711 10110									
			MB		Sample	;	LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY13778	Solids, Dissolved	mg/L 3.00	25		188	48.0	40 to 60		0.535	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-9

Laboratory ID Number: AY13779

Name	Analyst Te	est Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols									
Arsenic, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Barium, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.002	0.01		0.0259	mg/L
Beryllium, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Boron, Total	GAS 6/	15/2018	EPA 200.7	2.03	0.02	0.1	U	Not Detected	mg/L
Calcium, Total	GAS 6/	15/2018	EPA 200.7	2.03	0.1	0.5		47.6	mg/L
Cadmium, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
Antimony, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Cobalt, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Chromium, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	ABB 6/	27/2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	GAS 6/	15/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
Molybdenum, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Lead, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Selenium, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics									
Solids, Dissolved	KRC 6/	22/2018	SM 2540C	1		25		167	mg/L
Filter Completion Date	CES 6/	19/2018	SM 2540C	1				6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-9

Laboratory ID Number: AY13779

'	140					1.00		
	MB					LCS	Rec	Pred
Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit Pr	ec Limi
mg/L -0.000353	0.044	1.00	0.991	0.997	0.961	0.85 to 1.15	95.8 70 to 130 0.6	30 20
mg/L 0.0000241	0.00044	0.10	0.0937	0.0918	0.101	0.085 to 0.115	93.7 70 to 130 2.0	6 20
mg/L 0.0000912	0.00132	0.10	0.0979	0.101	0.0995	0.085 to 0.115	97.9 70 to 130 2.7	8 20
mg/L 0.0000448	0.022	0.20	0.207	0.209	0.192	0.17 to 0.23	103 70 to 130 0.8	81 20
mg/L 0.0000745	0.0044	0.10	0.102	0.104	0.105	0.085 to 0.115	102 70 to 130 1.2	9 20
mg/L -0.00000457	0.00066	0.10	0.0977	0.102	0.102	0.085 to 0.115	97.7 70 to 130 4.6	1 20
mg/L 0.000378	0.22	5.00	47.2	47.2	4.94	4.25 to 5.75	101 70 to 130 0.	08 20
mg/L -0.0000197	0.0044	0.10	0.0974	0.100	0.103	0.085 to 0.115	97.4 70 to 130 2.8	6 20
mg/L 0.0000122	0.0044	0.10	2.35	2.36	0.101	0.085 to 0.115	34.3 70 to 130 0.6	52 20
mg/L 0.0000432	0.0022	0.10	0.0956	0.0938	0.0978	0.085 to 0.115	95.6 70 to 130 1.8	4 20
mg/L 0.00000112	0.0022	0.10	0.112	0.113	0.102	0.085 to 0.115	101 70 to 130 0.3	21 20
mg/L -0.0000333	0.0044	0.10	0.0971	0.1000	0.0970	0.085 to 0.115	97.1 70 to 130 2.8	7 20
mg/L 0.0000791	0.00132	0.10	0.0963	0.0919	0.0959	0.085 to 0.115	96.3 70 to 130 4.6	6 20
mg/L 0.0000353	0.0005	0.004	0.00400	0.00399	0.00402	0.0034 to 0.0046	100 70 to 130 0.4	53 20
mg/L 0.00000860	0.0044	0.10	0.100	0.0999	0.0932	0.085 to 0.115	93.6 70 to 130 0.7	85 20
	mg/L -0.000353 mg/L 0.0000241 mg/L 0.0000912 mg/L 0.0000448 mg/L 0.0000745 mg/L -0.0000378 mg/L -0.0000197 mg/L 0.0000122 mg/L 0.0000432 mg/L 0.0000333 mg/L 0.0000791 mg/L 0.0000353	mg/L -0.000353 0.044 mg/L 0.0000241 0.00044 mg/L 0.0000912 0.00132 mg/L 0.0000448 0.022 mg/L 0.0000745 0.0044 mg/L -0.00000457 0.00066 mg/L 0.000378 0.22 mg/L 0.0000197 0.0044 mg/L 0.0000122 0.0044 mg/L 0.00000432 0.0022 mg/L 0.0000333 0.0044 mg/L 0.0000791 0.00132 mg/L 0.0000353 0.0005	Units MB Limit Spike mg/L -0.000353 0.044 1.00 mg/L 0.0000241 0.00044 0.10 mg/L 0.0000912 0.00132 0.10 mg/L 0.0000448 0.022 0.20 mg/L 0.0000745 0.0044 0.10 mg/L 0.0000378 0.22 5.00 mg/L 0.0000197 0.0044 0.10 mg/L 0.0000122 0.0044 0.10 mg/L 0.0000432 0.0022 0.10 mg/L 0.0000333 0.0044 0.10 mg/L 0.0000791 0.00132 0.10 mg/L 0.0000333 0.0044 0.10 mg/L 0.0000333 0.0044 0.10	Units MB Limit Spike MS mg/L -0.000353 0.044 1.00 0.991 mg/L 0.0000241 0.00044 0.10 0.0937 mg/L 0.0000912 0.00132 0.10 0.0979 mg/L 0.0000745 0.0044 0.10 0.102 mg/L -0.00000457 0.00066 0.10 0.0977 mg/L 0.000378 0.22 5.00 47.2 mg/L -0.0000197 0.0044 0.10 0.0974 mg/L 0.0000122 0.0044 0.10 0.0956 mg/L 0.0000432 0.0022 0.10 0.0956 mg/L 0.0000333 0.0044 0.10 0.0971 mg/L 0.0000791 0.00132 0.10 0.0963 mg/L 0.0000353 0.0005 0.004 0.004 0.004	Units MB Limit Spike MS MSD mg/L -0.000353 0.044 1.00 0.991 0.997 mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 mg/L 0.0000912 0.00132 0.10 0.0979 0.101 mg/L 0.0000448 0.022 0.20 0.207 0.209 mg/L 0.0000745 0.0044 0.10 0.0977 0.102 mg/L 0.0000378 0.22 5.00 47.2 47.2 mg/L -0.0000197 0.0044 0.10 0.0974 0.100 mg/L 0.0000122 0.0044 0.10 2.35 2.36 mg/L 0.0000432 0.0022 0.10 0.0956 0.0938 mg/L 0.00000112 0.0022 0.10 0.112 0.113 mg/L -0.0000333 0.0044 0.10 0.0971 0.1000 mg/L 0.0000791 0.00132 0.10 0.0963 0.0919 mg/L 0.0000353 0.000132 0.10 0.0040 0.0040 0.00309	Units MB Limit Spike MS MSD LCS mg/L -0.000353 0.044 1.00 0.991 0.997 0.961 mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 0.101 mg/L 0.0000912 0.00132 0.10 0.0979 0.101 0.0995 mg/L 0.0000745 0.0044 0.10 0.102 0.104 0.105 mg/L -0.0000457 0.00066 0.10 0.0977 0.102 0.102 mg/L 0.000378 0.22 5.00 47.2 47.2 4.94 mg/L -0.0000197 0.0044 0.10 0.0974 0.100 0.103 mg/L 0.0000122 0.0044 0.10 0.0974 0.100 0.103 mg/L 0.0000432 0.0022 0.10 0.0956 0.0938 0.0978 mg/L 0.0000333 0.0044 0.10 0.0971 0.100 0.0970 mg/L 0.0000791 0.00132 0.10 0.0963 0.0919 0.0959 mg/L 0.0000353 <t< td=""><td>Units MB Limit Spike MS MSD LCS Limit mg/L -0.000353 0.044 1.00 0.991 0.997 0.961 0.85 to 1.15 mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 0.101 0.085 to 0.115 mg/L 0.0000912 0.00132 0.10 0.0979 0.101 0.0995 0.085 to 0.115 mg/L 0.0000745 0.0044 0.10 0.102 0.104 0.105 0.085 to 0.115 mg/L -0.0000457 0.0066 0.10 0.0977 0.102 0.102 0.085 to 0.115 mg/L -0.0000378 0.22 5.00 47.2 47.2 4.94 4.25 to 5.75 mg/L -0.0000197 0.0044 0.10 0.0974 0.100 0.103 0.085 to 0.115 mg/L 0.0000122 0.0044 0.10 2.35 2.36 0.101 0.085 to 0.115 mg/L 0.0000432 0.0022 0.10 0.0956 0.0938 0.0978 0.085 to 0.115 mg/L 0.00000333 0.0044 0.10<!--</td--><td>Units MB Limit Spike MS MSD LCS Limit Rec Limit Property mg/L -0.000353 0.044 1.00 0.991 0.997 0.961 0.85 to 1.15 95.8 70 to 130 0.66 mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 0.101 0.085 to 0.115 93.7 70 to 130 2.07 mg/L 0.0000448 0.022 0.20 0.207 0.209 0.192 0.17 to 0.23 103 70 to 130 2.7 mg/L 0.0000745 0.0044 0.10 0.102 0.104 0.105 0.085 to 0.115 102 70 to 130 1.2 mg/L -0.0000457 0.0044 0.10 0.0977 0.102 0.102 0.085 to 0.115 97.7 70 to 130 1.2 mg/L -0.0000197 0.0044 0.10 0.0977 0.102 0.102 0.085 to 0.115 97.4 70 to 130 2.8 mg/L -0.0000197 0.0044 0.10 0.0974 0.100 0.103 0.085 to 0.115</td></td></t<>	Units MB Limit Spike MS MSD LCS Limit mg/L -0.000353 0.044 1.00 0.991 0.997 0.961 0.85 to 1.15 mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 0.101 0.085 to 0.115 mg/L 0.0000912 0.00132 0.10 0.0979 0.101 0.0995 0.085 to 0.115 mg/L 0.0000745 0.0044 0.10 0.102 0.104 0.105 0.085 to 0.115 mg/L -0.0000457 0.0066 0.10 0.0977 0.102 0.102 0.085 to 0.115 mg/L -0.0000378 0.22 5.00 47.2 47.2 4.94 4.25 to 5.75 mg/L -0.0000197 0.0044 0.10 0.0974 0.100 0.103 0.085 to 0.115 mg/L 0.0000122 0.0044 0.10 2.35 2.36 0.101 0.085 to 0.115 mg/L 0.0000432 0.0022 0.10 0.0956 0.0938 0.0978 0.085 to 0.115 mg/L 0.00000333 0.0044 0.10 </td <td>Units MB Limit Spike MS MSD LCS Limit Rec Limit Property mg/L -0.000353 0.044 1.00 0.991 0.997 0.961 0.85 to 1.15 95.8 70 to 130 0.66 mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 0.101 0.085 to 0.115 93.7 70 to 130 2.07 mg/L 0.0000448 0.022 0.20 0.207 0.209 0.192 0.17 to 0.23 103 70 to 130 2.7 mg/L 0.0000745 0.0044 0.10 0.102 0.104 0.105 0.085 to 0.115 102 70 to 130 1.2 mg/L -0.0000457 0.0044 0.10 0.0977 0.102 0.102 0.085 to 0.115 97.7 70 to 130 1.2 mg/L -0.0000197 0.0044 0.10 0.0977 0.102 0.102 0.085 to 0.115 97.4 70 to 130 2.8 mg/L -0.0000197 0.0044 0.10 0.0974 0.100 0.103 0.085 to 0.115</td>	Units MB Limit Spike MS MSD LCS Limit Rec Limit Property mg/L -0.000353 0.044 1.00 0.991 0.997 0.961 0.85 to 1.15 95.8 70 to 130 0.66 mg/L 0.0000241 0.00044 0.10 0.0937 0.0918 0.101 0.085 to 0.115 93.7 70 to 130 2.07 mg/L 0.0000448 0.022 0.20 0.207 0.209 0.192 0.17 to 0.23 103 70 to 130 2.7 mg/L 0.0000745 0.0044 0.10 0.102 0.104 0.105 0.085 to 0.115 102 70 to 130 1.2 mg/L -0.0000457 0.0044 0.10 0.0977 0.102 0.102 0.085 to 0.115 97.7 70 to 130 1.2 mg/L -0.0000197 0.0044 0.10 0.0977 0.102 0.102 0.085 to 0.115 97.4 70 to 130 2.8 mg/L -0.0000197 0.0044 0.10 0.0974 0.100 0.103 0.085 to 0.115

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-9

Laboratory ID Number: AY13779

Luboi	atory in Hamber. At 19119									
			MB		Sample	;	LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY13782	Solids, Dissolved	mg/L -2.00	25	,	233	52.0	40 to 60		0.648	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-10

Laboratory ID Number: AY13780

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
Arsenic, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	0.0342	mg/L
Beryllium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	GAS 6/15/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
Calcium, Total	GAS 6/18/2018	EPA 200.7	10.15	1.015	5.075	101	mg/L
Cadmium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cobalt, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Chromium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	ABB 6/27/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
Molybdenum, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	KRC 6/22/2018	SM 2540C	1		25	266	mg/L
Filter Completion Date	CES 6/19/2018	SM 2540C	1			6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-10

Laboratory ID Number: AY13780

		MB					LCS	Rec	Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit Pr	ec Limi
AY13784 Boron, Total	mg/L -0.000353	0.044	1.00	0.991	0.997	0.961	0.85 to 1.15	95.8 70 to 130 0.6	30 20
AY13784 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0937	0.0918	0.101	0.085 to 0.115	93.7 70 to 130 2.0	6 20
AY13784 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.112	0.113	0.102	0.085 to 0.115	101 70 to 130 0.3	21 20
AY13784 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0971	0.1000	0.0970	0.085 to 0.115	97.1 70 to 130 2.8	7 20
AY13784 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.0979	0.101	0.0995	0.085 to 0.115	97.9 70 to 130 2.7	8 20
AY13784 Lithium, Total	mg/L 0.0000448	0.022	0.20	0.207	0.209	0.192	0.17 to 0.23	103 70 to 130 0.8	81 20
AY13784 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.102	0.104	0.105	0.085 to 0.115	102 70 to 130 1.2	9 20
AY13784 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.0977	0.102	0.102	0.085 to 0.115	97.7 70 to 130 4.6	1 20
AY13784 Calcium, Total	mg/L 0.000378	0.22	5.00	47.2	47.2	4.94	4.25 to 5.75	101 70 to 130 0.1	08 20
AY13784 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0974	0.100	0.103	0.085 to 0.115	97.4 70 to 130 2.8	6 20
AY13784 Barium, Total	mg/L 0.0000122	0.0044	0.10	2.35	2.36	0.101	0.085 to 0.115	34.3 70 to 130 0.6	52 20
AY13784 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0956	0.0938	0.0978	0.085 to 0.115	95.6 70 to 130 1.8	4 20
AY13784 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0963	0.0919	0.0959	0.085 to 0.115	96.3 70 to 130 4.6	6 20
AY13784 Mercury, Total by CVAA	mg/L 0.0000353	0.0005	0.004	0.00400	0.00399	0.00402	0.0034 to 0.0046	100 70 to 130 0.4	53 20
AY13784 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.100	0.0999	0.0932	0.085 to 0.115	93.6 70 to 130 0.1	85 20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-10

Laboratory ID Number: AY13780

			MB		Sample		LCS	Rec		Prec	
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit	
AY13782	Solids, Dissolved	mg/L -2.00	25		233	52.0	40 to 60		0.648	5	
	Filter Completion Date	Date									

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-11

Laboratory ID Number: AY13781

Name	Analyst	Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols					,				
Arsenic, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Barium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	J	0.00637	mg/L
Beryllium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Boron, Total	GAS	6/15/2018	EPA 200.7	2.03	0.02	0.1	J	0.0340	mg/L
Calcium, Total	GAS	6/15/2018	EPA 200.7	2.03	0.1	0.5		11.5	mg/L
Cadmium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
Antimony, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Cobalt, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	J	0.00251	mg/L
Chromium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	ABB	6/27/2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	GAS	6/15/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
Molybdenum, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Lead, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Selenium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	DLJ	6/15/2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics									
* Solids, Dissolved	KRC	6/22/2018	SM 2540C	1		25		72.0	mg/L
Filter Completion Date	CES	6/19/2018	SM 2540C	1				6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-11

Laboratory ID Number: AY13781

		MB					LCS		Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
AY13784 Boron, Total	mg/L -0.000353	0.044	1.00	0.991	0.997	0.961	0.85 to 1.15	95.8	70 to 130	0.630	20
AY13784 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0937	0.0918	0.101	0.085 to 0.115	93.7	70 to 130	2.06	20
AY13784 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.0977	0.102	0.102	0.085 to 0.115	97.7	70 to 130	4.61	20
AY13784 Calcium, Total	mg/L 0.000378	0.22	5.00	47.2	47.2	4.94	4.25 to 5.75	101	70 to 130	0.108	20
AY13784 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0974	0.100	0.103	0.085 to 0.115	97.4	70 to 130	2.86	20
AY13784 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.0979	0.101	0.0995	0.085 to 0.115	97.9	70 to 130	2.78	20
AY13784 Lithium, Total	mg/L 0.0000448	0.022	0.20	0.207	0.209	0.192	0.17 to 0.23	103	70 to 130	0.881	20
AY13784 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.102	0.104	0.105	0.085 to 0.115	102	70 to 130	1.29	20
AY13784 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0963	0.0919	0.0959	0.085 to 0.115	96.3	70 to 130	4.66	20
AY13784 Mercury, Total by CVAA	mg/L 0.0000353	0.0005	0.004	0.00400	0.00399	0.00402	0.0034 to 0.0046	100	70 to 130	0.453	20
AY13784 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.100	0.0999	0.0932	0.085 to 0.115	93.6	70 to 130	0.185	20
AY13784 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.112	0.113	0.102	0.085 to 0.115	101	70 to 130	0.321	20
AY13784 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0971	0.1000	0.0970	0.085 to 0.115	97.1	70 to 130	2.87	20
AY13784 Barium, Total	mg/L 0.0000122	0.0044	0.10	2.35	2.36	0.101	0.085 to 0.115	34.3	70 to 130	0.652	20
AY13784 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0956	0.0938	0.0978	0.085 to 0.115	95.6	70 to 130	1.84	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-11

Laboratory ID Number: AY13781

	atory is italiason. Att 10701									
			MB		Sample)	LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY13782	Solids, Dissolved	mg/L -2.00	25		233	52.0	40 to 60		0.648	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-12

Laboratory ID Number: AY13782

Name	Analyst	Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols									
* Arsenic, Total	DLJ (6/15/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Barium, Total	DLJ (6/15/2018	EPA 200.8	5.075	0.002	0.01		0.0230	mg/L
* Beryllium, Total	DLJ (6/15/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
* Boron, Total	GAS (6/15/2018	EPA 200.7	2.03	0.02	0.1	J	0.0305	mg/L
* Calcium, Total	GAS (6/15/2018	EPA 200.7	2.03	0.1	0.5		69.9	mg/L
* Cadmium, Total	DLJ (6/15/2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
* Antimony, Total	DLJ (6/15/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
* Cobalt, Total	DLJ (6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Chromium, Total	DLJ (6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
 Mercury, Total by CVAA 	ABB (6/27/2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
* Lithium, Total	GAS (6/15/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
 Molybdenum, Total 	DLJ (6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Lead, Total	DLJ (6/15/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Selenium, Total	DLJ (6/15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Thallium, Total	DLJ (6/15/2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics									
* Solids, Dissolved	KRC (6/22/2018	SM 2540C	1		25		230	mg/L
Filter Completion Date	CES (6/19/2018	SM 2540C	1				6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-12

Laboratory ID Number: AY13782

	-	MB				,	LCS	Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
Y13784 Boron, Total	mg/L -0.000353	0.044	1.00	0.991	0.997	0.961	0.85 to 1.15	95.8 70 to 130	0.630	20
Y13784 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0937	0.0918	0.101	0.085 to 0.115	93.7 70 to 130	2.06	20
Y13784 Barium, Total	mg/L 0.0000122	0.0044	0.10	2.35	2.36	0.101	0.085 to 0.115	34.3 70 to 130	0.652	20
Y13784 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0956	0.0938	0.0978	0.085 to 0.115	95.6 70 to 130	1.84	20
Y13784 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.112	0.113	0.102	0.085 to 0.115	101 70 to 130	0.321	20
Y13784 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0971	0.1000	0.0970	0.085 to 0.115	97.1 70 to 130	2.87	20
Y13784 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.0979	0.101	0.0995	0.085 to 0.115	97.9 70 to 130	2.78	20
Y13784 Lithium, Total	mg/L 0.0000448	0.022	0.20	0.207	0.209	0.192	0.17 to 0.23	103 70 to 130	0.881	20
Y13784 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.102	0.104	0.105	0.085 to 0.115	102 70 to 130	1.29	20
Y13784 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.0977	0.102	0.102	0.085 to 0.115	97.7 70 to 130	4.61	20
Y13784 Calcium, Total	mg/L 0.000378	0.22	5.00	47.2	47.2	4.94	4.25 to 5.75	101 70 to 130	0.108	20
Y13784 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0974	0.100	0.103	0.085 to 0.115	97.4 70 to 130	2.86	20
Y13784 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0963	0.0919	0.0959	0.085 to 0.115	96.3 70 to 130	4.66	20
Y13784 Mercury, Total by CVAA	mg/L 0.0000353	0.0005	0.004	0.00400	0.00399	0.00402	0.0034 to 0.0046	100 70 to 130	0.453	20
Y13784 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.100	0.0999	0.0932	0.085 to 0.115	93.6 70 to 130	0.185	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-12

Laboratory ID Number: AY13782

			MB		Sample)	LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY13782	Solids, Dissolved	mg/L -2.00	25	,	233	52.0	40 to 60		0.648	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-13

Laboratory ID Number: AY13783

Name	Analyst To	est Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols									
Arsenic, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Barium, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.002	0.01		0.0469	mg/L
Beryllium, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Boron, Total	GAS 6/	15/2018	EPA 200.7	2.03	0.02	0.1	U	Not Detected	mg/L
Calcium, Total	GAS 6/	18/2018	EPA 200.7	10.15	1.015	5.075		101	mg/L
Cadmium, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
Antimony, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Cobalt, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Chromium, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	ABB 6/	27/2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	GAS 6/	15/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
Molybdenum, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Lead, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Selenium, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	DLJ 6/	15/2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics									
Solids, Dissolved	KRC 6/	22/2018	SM 2540C	1		25		282	mg/L
Filter Completion Date	CES 6/	19/2018	SM 2540C	1				6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-13

Laboratory ID Number: AY13783

		MB					LCS	Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limi
AY13784 Boron, Total	mg/L -0.000353	0.044	1.00	0.991	0.997	0.961	0.85 to 1.15	95.8 70 to 130	0.630	20
AY13784 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0937	0.0918	0.101	0.085 to 0.115	93.7 70 to 130	2.06	20
AY13784 Barium, Total	mg/L 0.0000122	0.0044	0.10	2.35	2.36	0.101	0.085 to 0.115	34.3 70 to 130	0.652	20
AY13784 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0956	0.0938	0.0978	0.085 to 0.115	95.6 70 to 130	1.84	20
AY13784 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.0979	0.101	0.0995	0.085 to 0.115	97.9 70 to 130	2.78	20
AY13784 Lithium, Total	mg/L 0.0000448	0.022	0.20	0.207	0.209	0.192	0.17 to 0.23	103 70 to 130	0.881	20
AY13784 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.102	0.104	0.105	0.085 to 0.115	102 70 to 130	1.29	20
AY13784 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.112	0.113	0.102	0.085 to 0.115	101 70 to 130	0.321	20
AY13784 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0971	0.1000	0.0970	0.085 to 0.115	97.1 70 to 130	2.87	20
AY13784 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.0977	0.102	0.102	0.085 to 0.115	97.7 70 to 130	4.61	20
AY13784 Calcium, Total	mg/L 0.000378	0.22	5.00	47.2	47.2	4.94	4.25 to 5.75	101 70 to 130	0.108	20
AY13784 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0974	0.100	0.103	0.085 to 0.115	97.4 70 to 130	2.86	20
AY13784 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0963	0.0919	0.0959	0.085 to 0.115	96.3 70 to 130	4.66	20
AY13784 Mercury, Total by CVAA	mg/L 0.0000353	0.0005	0.004	0.00400	0.00399	0.00402	0.0034 to 0.0046	100 70 to 130	0.453	20
AY13784 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.100	0.0999	0.0932	0.085 to 0.115	93.6 70 to 130	0.185	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-13

Laboratory ID Number: AY13783

	•		MB	,	Sample	е	LCS	Rec	'	Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	ate LCS	Limit	Rec Limit	Prec	Limit
	Filter Completion Date	Date			'	'			'	
AY13791	Solids, Dissolved	mg/L -2.00	25		265	52.0	40 to 60		0.188	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-1

Laboratory ID Number: AY13784

Name	Analyst Te	st Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols									
Arsenic, Total	DLJ 6/1	5/2018	EPA 200.8	5.075	0.001	0.005		0.0110	mg/L
Barium, Total	DLJ 6/1	5/2018	EPA 200.8	5.075	0.002	0.01		2.32	mg/L
Beryllium, Total	DLJ 6/1	5/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Boron, Total	GAS 6/1	5/2018	EPA 200.7	2.03	0.02	0.1	J	0.0331	mg/L
Calcium, Total	GAS 6/1	5/2018	EPA 200.7	2.03	0.1	0.5		42.2	mg/L
Cadmium, Total	DLJ 6/1	5/2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
Antimony, Total	DLJ 6/1	5/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Cobalt, Total	DLJ 6/1	5/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Chromium, Total	DLJ 6/1	5/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	ABB 6/2	7/2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	GAS 6/1	5/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
Molybdenum, Total	DLJ 6/1	5/2018	EPA 200.8	5.075	0.002	0.01	J	0.00655	mg/L
Lead, Total	DLJ 6/1	5/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Selenium, Total	DLJ 6/1	5/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	DLJ 6/1	5/2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics									
* Solids, Dissolved	KRC 6/2	2/2018	SM 2540C	1		25		221	mg/L
Filter Completion Date	CES 6/1	9/2018	SM 2540C	1				6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: Recovery for Barium was out of spec. The spike amount is less than 30% of the sample amount. SGC 7/6/18

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health
Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-1

Laboratory ID Number: AY13784

		MB					LCS	Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limi
Y13784 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0937	0.0918	0.101	0.085 to 0.115	93.7 70 to 130	2.06	20
AY13784 Boron, Total	mg/L -0.000353	0.044	1.00	0.991	0.997	0.961	0.85 to 1.15	95.8 70 to 130	0.630	20
Y13784 Barium, Total	mg/L 0.0000122	0.0044	0.10	2.35	2.36	0.101	0.085 to 0.115	34.3 70 to 130	0.652	20
Y13784 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0956	0.0938	0.0978	0.085 to 0.115	95.6 70 to 130	1.84	20
AY13784 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.0977	0.102	0.102	0.085 to 0.115	97.7 70 to 130	4.61	20
Y13784 Calcium, Total	mg/L 0.000378	0.22	5.00	47.2	47.2	4.94	4.25 to 5.75	101 70 to 130	0.108	20
Y13784 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0974	0.100	0.103	0.085 to 0.115	97.4 70 to 130	2.86	20
Y13784 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.112	0.113	0.102	0.085 to 0.115	101 70 to 130	0.321	20
Y13784 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0971	0.1000	0.0970	0.085 to 0.115	97.1 70 to 130	2.87	20
Y13784 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.0979	0.101	0.0995	0.085 to 0.115	97.9 70 to 130	2.78	20
Y13784 Lithium, Total	mg/L 0.0000448	0.022	0.20	0.207	0.209	0.192	0.17 to 0.23	103 70 to 130	0.881	20
AY13784 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.102	0.104	0.105	0.085 to 0.115	102 70 to 130	1.29	20
Y13784 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0963	0.0919	0.0959	0.085 to 0.115	96.3 70 to 130	4.66	20
AY13784 Mercury, Total by CVAA	mg/L 0.0000353	0.0005	0.004	0.00400	0.00399	0.00402	0.0034 to 0.0046	100 70 to 130	0.453	20
Y13784 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.100	0.0999	0.0932	0.085 to 0.115	93.6 70 to 130	0.185	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health
Expiration: June 30, 2019

Comments: Recovery for Barium was out of spec. The spike amount is less than 30%

of the sample amount. SGC 7/6/18

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-1

Laboratory ID Number: AY13784

	atory is italiason /thioro-	r								
'			MB	,	Sample)	LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	ate LCS	Limit	Rec Limit	Prec	Limit
AY13791	Solids, Dissolved	mg/L -2.00	25	,	265	52.0	40 to 60		0.188	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments: Recovery for Barium was out of spec. The spike amount is less than 30%

of the sample amount. SGC 7/6/18

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-15

Laboratory ID Number: AY13785

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols				·			
Arsenic, Total	DLJ 6/15/2018	B EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	DLJ 6/15/2018	B EPA 200.8	5.075	0.002	0.01	0.0112	mg/L
Beryllium, Total	DLJ 6/15/2018	B EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	GAS 6/15/2018	B EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
Calcium, Total	GAS 6/15/2018	B EPA 200.7	2.03	0.1	0.5	7.37	mg/L
Cadmium, Total	DLJ 6/15/2018	B EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	DLJ 6/15/2018	B EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cobalt, Total	DLJ 6/15/2018	B EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Chromium, Total	DLJ 6/15/2018	B EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	ABB 6/27/2018	B EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	GAS 6/15/2018	B EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
Molybdenum, Total	DLJ 6/15/2018	B EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	DLJ 6/15/2018	B EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Selenium, Total	DLJ 6/15/2018	B EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	DLJ 6/15/2018	B EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	KRC 6/22/2018	SM 2540C	1		25	38.0	mg/L
Filter Completion Date	CES 6/19/2018	8 SM 2540C	1			6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-15

Laboratory ID Number: AY13785

		MB					LCS	Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
AY13793 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0944	0.0932	0.0959	0.085 to 0.115	94.4 70 to 13	0 1.32	20
AY13793 Mercury, Total by CVAA	mg/L 0.0000358	0.0005	0.004	0.00404	0.00404	0.00402	0.0034 to 0.0046	101 70 to 13	0 0.168	20
AY13793 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.100	0.0962	0.0995	0.085 to 0.115	100 70 to 13	0 4.24	20
AY13793 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0897	0.0907	0.101	0.085 to 0.115	89.7 70 to 13	0 1.03	20
AY13793 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.100	0.101	0.102	0.085 to 0.115	100 70 to 13	0 0.440	20
AY13793 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0924	0.0926	0.0978	0.085 to 0.115	92.4 70 to 13	0 0.208	20
AY13793 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0978	0.0962	0.103	0.085 to 0.115	97.8 70 to 13	0 1.60	20
AY13793 Lithium, Total	mg/L 0.0000944	0.022	0.20	0.193	0.191	0.192	0.17 to 0.23	96.7 70 to 13	0.986	20
AY13793 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.101	0.104	0.105	0.085 to 0.115	101 70 to 13	0 2.58	20
AY13793 Barium, Total	mg/L 0.0000122	0.0044	0.10	0.0995	0.0952	0.101	0.085 to 0.115	99.5 70 to 13	0 4.44	20
AY13793 Boron, Total	mg/L 0.00120	0.044	1.00	0.967	0.965	0.974	0.85 to 1.15	96.7 70 to 13	0.208	20
AY13793 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.102	0.0944	0.102	0.085 to 0.115	102 70 to 13	0 7.65	20
AY13793 Calcium, Total	mg/L 0.0435	0.22	5.00	4.90	4.86	4.94	4.25 to 5.75	98.1 70 to 13	0 0.928	20
AY13793 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0992	0.0985	0.0970	0.085 to 0.115	99.2 70 to 13	0.635	20
AY13793 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.0907	0.0923	0.0932	0.085 to 0.115	90.7 70 to 13	0 1.74	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-15

Laboratory ID Number: AY13785

	•		MB	,	Sample	 -	LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	ate LCS	Limit	Rec Limit	Prec	Limit
	Filter Completion Date	Date			'				'	
AY13791	Solids, Dissolved	mg/L -2.00	25		265	52.0	40 to 60		0.188	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-3

Laboratory ID Number: AY13786

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols				·			
Arsenic, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	0.0323	mg/L
Beryllium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	GAS 6/15/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
Calcium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.1	0.5	76.5	mg/L
Cadmium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cobalt, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Chromium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	ABB 6/27/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
Molybdenum, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	KRC 6/22/2018	SM 2540C	1		25	248	mg/L
Filter Completion Date	CES 6/19/2018	SM 2540C	1			6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-3

Laboratory ID Number: AY13786

Edboratory is Italiason /ti 10700	,										
		MB		,			LCS		Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limi
Y13793 Mercury, Total by CVAA	mg/L 0.0000358	0.0005	0.004	0.00404	0.00404	0.00402	0.0034 to 0.0046	101	70 to 130	0.168	20
Y13793 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.100	0.0962	0.0995	0.085 to 0.115	100	70 to 130	4.24	20
Y13793 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0897	0.0907	0.101	0.085 to 0.115	89.7	70 to 130	1.03	20
Y13793 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0944	0.0932	0.0959	0.085 to 0.115	94.4	70 to 130	1.32	20
Y13793 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.100	0.101	0.102	0.085 to 0.115	100	70 to 130	0.440	20
Y13793 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0924	0.0926	0.0978	0.085 to 0.115	92.4	70 to 130	0.208	20
Y13793 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0978	0.0962	0.103	0.085 to 0.115	97.8	70 to 130	1.60	20
Y13793 Lithium, Total	mg/L 0.0000944	0.022	0.20	0.193	0.191	0.192	0.17 to 0.23	96.7	70 to 130	0.986	20
Y13793 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.101	0.104	0.105	0.085 to 0.115	101	70 to 130	2.58	20
Y13793 Barium, Total	mg/L 0.0000122	0.0044	0.10	0.0995	0.0952	0.101	0.085 to 0.115	99.5	70 to 130	4.44	20
Y13793 Boron, Total	mg/L 0.00120	0.044	1.00	0.967	0.965	0.974	0.85 to 1.15	96.7	70 to 130	0.208	20
Y13793 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.102	0.0944	0.102	0.085 to 0.115	102	70 to 130	7.65	20
Y13793 Calcium, Total	mg/L 0.0435	0.22	5.00	4.90	4.86	4.94	4.25 to 5.75	98.1	70 to 130	0.928	20
Y13793 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0992	0.0985	0.0970	0.085 to 0.115	99.2	70 to 130	0.635	20
Y13793 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.0907	0.0923	0.0932	0.085 to 0.115	90.7	70 to 130	1.74	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-3

Laboratory ID Number: AY13786

	atory is italiason /th 10700	·								
·			MB		Sample)	LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	ite LCS	Limit	Rec Limit	Prec	Limit
AY13791	Solids, Dissolved	mg/L -2.00	25	,	265	52.0	40 to 60		0.188	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-14S

Laboratory ID Number: AY13787

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	0.0291	mg/L
* Beryllium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Boron, Total	GAS 6/15/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
* Calcium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.1	0.5	45.2	mg/L
* Cadmium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Cobalt, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Chromium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
 Mercury, Total by CVAA 	ABB 6/27/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
 Molybdenum, Total 	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	KRC 6/22/2018	SM 2540C	1		25	205	mg/L
Filter Completion Date	CES 6/19/2018	SM 2540C	1			6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-14S

Laboratory ID Number: AY13787

		MB					LCS	Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
AY13793 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0944	0.0932	0.0959	0.085 to 0.115	94.4 70 to 130	1.32	20
AY13793 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.100	0.0962	0.0995	0.085 to 0.115	100 70 to 130	4.24	20
AY13793 Mercury, Total by CVAA	mg/L 0.0000358	0.0005	0.004	0.00404	0.00404	0.00402	0.0034 to 0.0046	101 70 to 130	0.168	20
AY13793 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0897	0.0907	0.101	0.085 to 0.115	89.7 70 to 130	1.03	20
AY13793 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.100	0.101	0.102	0.085 to 0.115	100 70 to 130	0.440	20
AY13793 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0924	0.0926	0.0978	0.085 to 0.115	92.4 70 to 130	0.208	20
AY13793 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0978	0.0962	0.103	0.085 to 0.115	97.8 70 to 130	1.60	20
AY13793 Lithium, Total	mg/L 0.0000944	0.022	0.20	0.193	0.191	0.192	0.17 to 0.23	96.7 70 to 130	0.986	20
AY13793 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.101	0.104	0.105	0.085 to 0.115	101 70 to 130	2.58	20
AY13793 Barium, Total	mg/L 0.0000122	0.0044	0.10	0.0995	0.0952	0.101	0.085 to 0.115	99.5 70 to 130	4.44	20
AY13793 Boron, Total	mg/L 0.00120	0.044	1.00	0.967	0.965	0.974	0.85 to 1.15	96.7 70 to 130	0.208	20
AY13793 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.102	0.0944	0.102	0.085 to 0.115	102 70 to 130	7.65	20
AY13793 Calcium, Total	mg/L 0.0435	0.22	5.00	4.90	4.86	4.94	4.25 to 5.75	98.1 70 to 130	0.928	20
AY13793 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0992	0.0985	0.0970	0.085 to 0.115	99.2 70 to 130	0.635	20
AY13793 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.0907	0.0923	0.0932	0.085 to 0.115	90.7 70 to 130	1.74	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-14S

Laboratory ID Number: AY13787

	•		MB		Sample	e	LCS	Rec	1	Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	ate LCS	Limit	Rec Limit	Prec	Limit
	Filter Completion Date	Date			,	'			'	
AY13791	Solids, Dissolved	mg/L -2.00	25		265	52.0	40 to 60		0.188	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-2

Laboratory ID Number: AY13788

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	0.0286	mg/L
Beryllium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	GAS 6/15/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
Calcium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.1	0.5	78.9	mg/L
Cadmium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cobalt, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Chromium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	ABB 6/27/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
Molybdenum, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	KRC 6/22/2018	SM 2540C	1		25	284	mg/L
Filter Completion Date	CES 6/19/2018	SM 2540C	1			6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-2

Laboratory ID Number: AY13788

		MB					LCS	Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limi
AY13793 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0944	0.0932	0.0959	0.085 to 0.115	94.4 70 to 130	1.32	20
AY13793 Mercury, Total by CVAA	mg/L 0.0000358	0.0005	0.004	0.00404	0.00404	0.00402	0.0034 to 0.0046	101 70 to 130	0.168	20
AY13793 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.100	0.0962	0.0995	0.085 to 0.115	100 70 to 130	4.24	20
AY13793 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0897	0.0907	0.101	0.085 to 0.115	89.7 70 to 130	1.03	20
AY13793 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.100	0.101	0.102	0.085 to 0.115	100 70 to 130	0.440	20
AY13793 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0924	0.0926	0.0978	0.085 to 0.115	92.4 70 to 130	0.208	20
AY13793 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0978	0.0962	0.103	0.085 to 0.115	97.8 70 to 130	1.60	20
AY13793 Lithium, Total	mg/L 0.0000944	0.022	0.20	0.193	0.191	0.192	0.17 to 0.23	96.7 70 to 130	0.986	20
AY13793 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.101	0.104	0.105	0.085 to 0.115	101 70 to 130	2.58	20
AY13793 Barium, Total	mg/L 0.0000122	0.0044	0.10	0.0995	0.0952	0.101	0.085 to 0.115	99.5 70 to 130	4.44	20
AY13793 Boron, Total	mg/L 0.00120	0.044	1.00	0.967	0.965	0.974	0.85 to 1.15	96.7 70 to 130	0.208	20
AY13793 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.102	0.0944	0.102	0.085 to 0.115	102 70 to 130	7.65	20
AY13793 Calcium, Total	mg/L 0.0435	0.22	5.00	4.90	4.86	4.94	4.25 to 5.75	98.1 70 to 130	0.928	20
AY13793 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0992	0.0985	0.0970	0.085 to 0.115	99.2 70 to 130	0.635	20
AY13793 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.0907	0.0923	0.0932	0.085 to 0.115	90.7 70 to 130	1.74	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-2

Laboratory ID Number: AY13788

	atory is italiason /th 10700	·								
·			MB		Sample)	LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	ite LCS	Limit	Rec Limit	Prec	Limit
AY13791	Solids, Dissolved	mg/L -2.00	25	,	265	52.0	40 to 60		0.188	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-6 Dup

Laboratory ID Number: AY13789

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	0.0158	mg/L
* Beryllium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Boron, Total	GAS 6/15/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
* Calcium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.1	0.5	0.750	mg/L
* Cadmium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Cobalt, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Chromium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
 Mercury, Total by CVAA 	ABB 6/27/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
 Molybdenum, Total 	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	KRC 6/18/2018	SM 2540C	1		25	U Not Detected	mg/L
Filter Completion Date	CES 6/14/2018	SM 2540C	1			6/14/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-6 Dup

Laboratory ID Number: AY13789

		MB					LCS	Re	С	Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Lir	nit Prec	Limi
AY13793 Mercury, Total by CVAA	mg/L 0.0000358	0.0005	0.004	0.00404	0.00404	0.00402	0.0034 to 0.0046	101 70 to	130 0.168	20
AY13793 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.100	0.0962	0.0995	0.085 to 0.115	100 70 to	130 4.24	20
Y13793 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0944	0.0932	0.0959	0.085 to 0.115	94.4 70 to	130 1.32	20
Y13793 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0897	0.0907	0.101	0.085 to 0.115	89.7 70 to	130 1.03	20
Y13793 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0978	0.0962	0.103	0.085 to 0.115	97.8 70 to	130 1.60	20
Y13793 Lithium, Total	mg/L 0.0000944	0.022	0.20	0.193	0.191	0.192	0.17 to 0.23	96.7 70 to	130 0.986	20
Y13793 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.101	0.104	0.105	0.085 to 0.115	101 70 to	130 2.58	20
AY13793 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.100	0.101	0.102	0.085 to 0.115	100 70 to	130 0.440	20
Y13793 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0924	0.0926	0.0978	0.085 to 0.115	92.4 70 to	130 0.208	20
Y13793 Barium, Total	mg/L 0.0000122	0.0044	0.10	0.0995	0.0952	0.101	0.085 to 0.115	99.5 70 to	130 4.44	20
Y13793 Boron, Total	mg/L 0.00120	0.044	1.00	0.967	0.965	0.974	0.85 to 1.15	96.7 70 to	130 0.208	20
AY13793 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.102	0.0944	0.102	0.085 to 0.115	102 70 to	130 7.65	20
Y13793 Calcium, Total	mg/L 0.0435	0.22	5.00	4.90	4.86	4.94	4.25 to 5.75	98.1 70 to	130 0.928	20
Y13793 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0992	0.0985	0.0970	0.085 to 0.115	99.2 70 to	130 0.635	20
Y13793 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.0907	0.0923	0.0932	0.085 to 0.115	90.7 70 to	130 1.74	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-6 Dup

Laboratory ID Number: AY13789

		-	MB		Sample)	LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	ite LCS	Limit	Rec Limit	Prec	Limit
	Filter Completion Date	Date				,			'	
AY13778	Solids, Dissolved	mg/L 3.00	25		188	48.0	40 to 60		0.535	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY13790

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
Arsenic, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Beryllium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	GAS 6/15/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
Calcium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.1	0.5	U Not Detected	mg/L
Cadmium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cobalt, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Chromium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	ABB 6/27/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
Molybdenum, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	KRC 6/18/2018	SM 2540C	1		25	U Not Detected	mg/L
Filter Completion Date	CES 6/14/2018	SM 2540C	1			6/14/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY13790

Edbordtory is italiason /ti 10700	,									
		MB					LCS	Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limi
Y13793 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.100	0.0962	0.0995	0.085 to 0.115	100 70 to 1	30 4.24	20
Y13793 Mercury, Total by CVAA	mg/L 0.0000358	0.0005	0.004	0.00404	0.00404	0.00402	0.0034 to 0.0046	101 70 to 1	30 0.168	20
Y13793 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0897	0.0907	0.101	0.085 to 0.115	89.7 70 to 1	30 1.03	20
Y13793 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0944	0.0932	0.0959	0.085 to 0.115	94.4 70 to 1	30 1.32	20
Y13793 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.100	0.101	0.102	0.085 to 0.115	100 70 to 1	30 0.440	20
Y13793 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0924	0.0926	0.0978	0.085 to 0.115	92.4 70 to 1	30 0.208	20
Y13793 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0978	0.0962	0.103	0.085 to 0.115	97.8 70 to 1	30 1.60	20
Y13793 Lithium, Total	mg/L 0.0000944	0.022	0.20	0.193	0.191	0.192	0.17 to 0.23	96.7 70 to 1	30 0.986	20
Y13793 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.101	0.104	0.105	0.085 to 0.115	101 70 to 1	30 2.58	20
Y13793 Barium, Total	mg/L 0.0000122	0.0044	0.10	0.0995	0.0952	0.101	0.085 to 0.115	99.5 70 to 1	30 4.44	20
Y13793 Boron, Total	mg/L 0.00120	0.044	1.00	0.967	0.965	0.974	0.85 to 1.15	96.7 70 to 1	30 0.208	20
Y13793 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.102	0.0944	0.102	0.085 to 0.115	102 70 to 1	30 7.65	20
Y13793 Calcium, Total	mg/L 0.0435	0.22	5.00	4.90	4.86	4.94	4.25 to 5.75	98.1 70 to 1	30 0.928	20
Y13793 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0992	0.0985	0.0970	0.085 to 0.115	99.2 70 to 1	30 0.635	20
Y13793 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.0907	0.0923	0.0932	0.085 to 0.115	90.7 70 to 1	30 1.74	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 11-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY13790

	utery 12 11411116 11 711 101 00	<u></u>								
			MB		Sample		LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplicat	te LCS	Limit	Rec Limit	Prec	Limit
AY13778	Solids, Dissolved	mg/L 3.00	25		188	48.0	40 to 60		0.535	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-10 Dup

Laboratory ID Number: AY13791

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	0.0358	mg/L
* Beryllium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Boron, Total	GAS 6/15/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
* Calcium, Total	GAS 6/18/2018	EPA 200.7	10.15	1.015	5.075	106	mg/L
* Cadmium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Cobalt, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Chromium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
 Mercury, Total by CVAA 	ABB 6/27/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
 Molybdenum, Total 	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	KRC 6/22/2018	SM 2540C	1		25	266	mg/L
Filter Completion Date	CES 6/19/2018	SM 2540C	1			6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-10 Dup

Laboratory ID Number: AY13791

	,	MB					LCS	Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
AY13793 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0897	0.0907	0.101	0.085 to 0.115	89.7 70 to 1	30 1.03	20
AY13793 Mercury, Total by CVAA	mg/L 0.0000358	0.0005	0.004	0.00404	0.00404	0.00402	0.0034 to 0.0046	101 70 to 1	30 0.168	20
Y13793 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0944	0.0932	0.0959	0.085 to 0.115	94.4 70 to 1	30 1.32	20
AY13793 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.100	0.0962	0.0995	0.085 to 0.115	100 70 to 1	30 4.24	20
AY13793 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.100	0.101	0.102	0.085 to 0.115	100 70 to 1	30 0.440	20
AY13793 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0924	0.0926	0.0978	0.085 to 0.115	92.4 70 to 1	30 0.208	20
AY13793 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0978	0.0962	0.103	0.085 to 0.115	97.8 70 to 1	30 1.60	20
AY13793 Lithium, Total	mg/L 0.0000944	0.022	0.20	0.193	0.191	0.192	0.17 to 0.23	96.7 70 to 1	30 0.986	20
AY13793 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.101	0.104	0.105	0.085 to 0.115	101 70 to 1	30 2.58	20
AY13793 Barium, Total	mg/L 0.0000122	0.0044	0.10	0.0995	0.0952	0.101	0.085 to 0.115	99.5 70 to 1	30 4.44	20
AY13793 Boron, Total	mg/L 0.00120	0.044	1.00	0.967	0.965	0.974	0.85 to 1.15	96.7 70 to 1	30 0.208	20
AY13793 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.102	0.0944	0.102	0.085 to 0.115	102 70 to 1	30 7.65	20
AY13793 Calcium, Total	mg/L 0.0435	0.22	5.00	4.90	4.86	4.94	4.25 to 5.75	98.1 70 to 1	30 0.928	20
AY13793 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0992	0.0985	0.0970	0.085 to 0.115	99.2 70 to 1	30 0.635	20
AY13793 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.0907	0.0923	0.0932	0.085 to 0.115	90.7 70 to 1	30 1.74	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum - MW-10 Dup

Laboratory ID Number: AY13791

	atery 12 (tallinger) 711 1010	•								
		,	MB		Sample	е	LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	ate LCS	Limit	Rec Limit	Prec	Limit
AY13791	Solids, Dissolved	mg/L -2.00	25		265	52.0	40 to 60		0.188	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY13792

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols				·			
Arsenic, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Beryllium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	GAS 6/15/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
Calcium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.1	0.5	U Not Detected	mg/L
Cadmium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cobalt, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Chromium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	ABB 6/27/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
Molybdenum, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	KRC 6/22/2018	SM 2540C	1		25	U Not Detected	mg/L
Filter Completion Date	CES 6/19/2018	SM 2540C	1			6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY13792

-		MB					LCS	Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limi
AY13793 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0897	0.0907	0.101	0.085 to 0.115	89.7 70 to 13	0 1.03	20
AY13793 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.100	0.0962	0.0995	0.085 to 0.115	100 70 to 13	0 4.24	20
AY13793 Mercury, Total by CVAA	mg/L 0.0000358	0.0005	0.004	0.00404	0.00404	0.00402	0.0034 to 0.0046	101 70 to 13	0.168	20
AY13793 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0944	0.0932	0.0959	0.085 to 0.115	94.4 70 to 13	0 1.32	20
AY13793 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.100	0.101	0.102	0.085 to 0.115	100 70 to 13	0.440	20
AY13793 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0924	0.0926	0.0978	0.085 to 0.115	92.4 70 to 13	0.208	20
AY13793 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0978	0.0962	0.103	0.085 to 0.115	97.8 70 to 13	1.60	20
AY13793 Lithium, Total	mg/L 0.0000944	0.022	0.20	0.193	0.191	0.192	0.17 to 0.23	96.7 70 to 13	0.986	20
AY13793 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.101	0.104	0.105	0.085 to 0.115	101 70 to 13	2.58	20
AY13793 Barium, Total	mg/L 0.0000122	0.0044	0.10	0.0995	0.0952	0.101	0.085 to 0.115	99.5 70 to 13	0 4.44	20
AY13793 Boron, Total	mg/L 0.00120	0.044	1.00	0.967	0.965	0.974	0.85 to 1.15	96.7 70 to 13	0.208	20
AY13793 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.102	0.0944	0.102	0.085 to 0.115	102 70 to 13	7.65	20
AY13793 Calcium, Total	mg/L 0.0435	0.22	5.00	4.90	4.86	4.94	4.25 to 5.75	98.1 70 to 13	0.928	20
AY13793 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0992	0.0985	0.0970	0.085 to 0.115	99.2 70 to 13	0.635	20
Y13793 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.0907	0.0923	0.0932	0.085 to 0.115	90.7 70 to 13	1.74	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY13792

	atory is italinoon /trioroz	-								
· <u></u>			MB		Sample	€	LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	ate LCS	Limit	Rec Limit	Prec	Limit
AY13791	Solids, Dissolved	mg/L -2.00	25	,	265	52.0	40 to 60		0.188	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGEB 12-Jun-18

Sample Date:

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum Equipment Blank

Laboratory ID Number: AY13793

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols				·			
Arsenic, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Beryllium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	GAS 6/15/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
Calcium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.1	0.5	U Not Detected	mg/L
Cadmium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Cobalt, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Chromium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	ABB 6/27/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	GAS 6/15/2018	EPA 200.7	2.03	0.01	0.05	U Not Detected	mg/L
Molybdenum, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	DLJ 6/15/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	KRC 6/22/2018	SM 2540C	1		25	U Not Detected	mg/L
Filter Completion Date	CES 6/19/2018	SM 2540C	1			6/19/18	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGEB Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum Equipment Blank

Laboratory ID Number: AY13793

		MB					LCS		Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limi
AY13793 Mercury, Total by CVAA	mg/L 0.0000358	0.0005	0.004	0.00404	0.00404	0.00402	0.0034 to 0.0046	101 7	0 to 130	0.168	20
AY13793 Antimony, Total	mg/L 0.0000912	0.00132	0.10	0.100	0.0962	0.0995	0.085 to 0.115	100 7	0 to 130	4.24	20
Y13793 Beryllium, Total	mg/L 0.0000791	0.00132	0.10	0.0944	0.0932	0.0959	0.085 to 0.115	94.4 7	0 to 130	1.32	20
AY13793 Arsenic, Total	mg/L 0.00000112	0.0022	0.10	0.100	0.101	0.102	0.085 to 0.115	100 7	0 to 130	0.440	20
AY13793 Lead, Total	mg/L 0.0000432	0.0022	0.10	0.0924	0.0926	0.0978	0.085 to 0.115	92.4 7	0 to 130	0.208	20
AY13793 Cobalt, Total	mg/L -0.0000197	0.0044	0.10	0.0978	0.0962	0.103	0.085 to 0.115	97.8 7	0 to 130	1.60	20
AY13793 Lithium, Total	mg/L 0.0000944	0.022	0.20	0.193	0.191	0.192	0.17 to 0.23	96.7 7	0 to 130	0.986	20
AY13793 Selenium, Total	mg/L 0.0000745	0.0044	0.10	0.101	0.104	0.105	0.085 to 0.115	101 7	0 to 130	2.58	20
AY13793 Thallium, Total	mg/L 0.0000241	0.00044	0.10	0.0897	0.0907	0.101	0.085 to 0.115	89.7 7	0 to 130	1.03	20
AY13793 Barium, Total	mg/L 0.0000122	0.0044	0.10	0.0995	0.0952	0.101	0.085 to 0.115	99.5 7	0 to 130	4.44	20
AY13793 Boron, Total	mg/L 0.00120	0.044	1.00	0.967	0.965	0.974	0.85 to 1.15	96.7 7	0 to 130	0.208	20
AY13793 Cadmium, Total	mg/L -0.00000457	0.00066	0.10	0.102	0.0944	0.102	0.085 to 0.115	102 7	0 to 130	7.65	20
AY13793 Calcium, Total	mg/L 0.0435	0.22	5.00	4.90	4.86	4.94	4.25 to 5.75	98.1 7	0 to 130	0.928	20
AY13793 Chromium, Total	mg/L -0.0000333	0.0044	0.10	0.0992	0.0985	0.0970	0.085 to 0.115	99.2 7	0 to 130	0.635	20
Y13793 Molybdenum, Total	mg/L 0.00000860	0.0044	0.10	0.0907	0.0923	0.0932	0.085 to 0.115	90.7 7	0 to 130	1.74	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGEB Sample Date: 12-Jun-18

Customer ID:

Delivery Date: 13-Jun-18

Description: Gaston Gypsum Equipment Blank

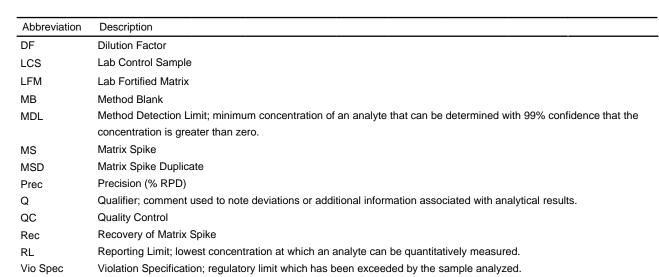
Laboratory ID Number: AY13793

	atory is italiason. Att 10700									
			MB		Sample)	LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	ite LCS	Limit	Rec Limit	Prec	Limit
AY13791	Solids, Dissolved	mg/L -2.00	25	'	265	52.0	40 to 60		0.188	5
	Filter Completion Date	Date								

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019


Comments:

CC:

Definitions

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Qualifier	Description
В	Analyte found in reagent blank. Indicates possible reagent or background contamination.
Е	Estimated reported value exceeded calibration range.
J	Reported value is an estimate because concentration is less than reporting limit.
N	Organic constituents tentatively identified. Confirmation is needed.
R	Matrix spike recovery is out of range.
U	Compound was analyzed, but not detected.
Р	Precision is out of range.
С	Analyte was verified by re-analysis.
Н	The holding time for this test is immediately following sample collection. The samples were analyzed as soon as
	possible after receipt by the laboratory.
L	Check standard is outside of the required specification limit.
D	All samples were stored at less than or equal to 6 °C and for no longer than 48 hours from time of sampling, unless
	otherwise noted.
F	Water Field Group (WFG) qualifier; see comments for more information

Alabama Power Chain of Custody Field Complete	Outside Lab
Field Groundwater Lab Complete	
APC General Testing Laboratory	

Lab ETA 06/13/2018 10:13

Reques	ste	d Complete I	Date	Routir	ne				Results To	Dustin Bro	Dustin Brooks, Greg Dyer				
	Sit	e Representa	itive	Tanis	Tanisha Fenderson				Requested By	Greg Dye	Greg Dyer				
		Collector Anthony Goggins							Location Gaston Gypsum						
Bottles	1	Metals	500 m	nL	3 TDS 500 mL				N/A	N/A	7	N/A	N/A		
	2	Hg	250 m	ıL	4	N/A	N/A	6	N/A	N/A	8	N/A	N/A		
Comments															

			Bottle		Lab	
Sample #	Date	Time	Count	Description	Filter	Lab Id
MW-5	6/11/18	11:31	3	Groundwater		AY13775
MW-6	06/11/2018	12:24	3	Groundwater		AY13776
MW-7	06/11/2018	14:44	3	Groundwater		AY13777
MW-8	06/12/2018	08:51	3	Groundwater		AY13778
MW-9	06/12/2018	09:53	3	Groundwater		AY13779
MW-10	06/12/2018	10:51	3	Groundwater		AY13780
MW-11	06/12/2018	12:37	3	Groundwater		AY13781
MW-12	06/12/2018	13:33	3	Groundwater		AY13782
MW-13	06/12/2018	14:16	3	Groundwater		AY13783
MW-1	06/12/2018	15:03	3	Groundwater		AY13784
MW-15	06/12/2018	15:56	3	Groundwater		AY13785
MW-3	06/12/2018	17:45	3	Groundwater		AY13786
MW-14S	06/12/2018	18:56	3	Groundwater		AY13787
MW-2	06/12/2018	19:44	3	Groundwater		AY13788
MW-6DUP	06/11/2018	12:24	3	Sample Duplicate		AY13789
FB-1	06/11/2018	15:03	3	Field Blank		AY13790
MW-10DUP	06/12/2018	10:51	3	Sample Duplicate		AY13791
FB-2	06/12/2018	12:06	3	Field Blank		AY13792
EB-1	06/12/2018	20:11	3	Equipment Blank		AY13793

Received By	Date/Time
Sarah Copeland Digitally signed by Sarah Copeland DN: cn-Sarah Cop	06/13/2018 10:34
	Sarah Copeland Di: cn-Sarah Copeland Di: cn-Sarah Copeland Di: cn-Sarah Copeland o, ou, cn-Sarah

SmarTroll ID 4696-23443-3-2 Turbidity ID 5160-26211-1-1 All metals and radiological bottles have pH < 2 🗹

 Cooler Temp
 3.4 degrees C

 Thermometer ID
 6603-34819-1-1

 pH Strip ID
 6803-35849-20-10

Page 68 of 69

Alabama Power	Chain of Custody
Field	Chain of Custody Groundwater
	APC General Testing Labors

~	Field Complete
~	Lab Complete

~	Outside Lab

Lab ETA 06/13/2018 10:12

									_							
Reques	ste	d Complete D	ate	Routine				Results T	o	Dustin Brooks, Greg Dyer						
	Sit	te Representat	tive	Tanisha Fenderson]]	Requested B	y	Greg Dyer						
	Collector Anthony Goggins				Locatio	Location Gaston Gypsum										
Bottles	1	Radium	1 L		3	N/A	N/A	\Box	5	N/A	N	I/A	7	N/A	N/	/A
	2	Anions	250 m	L	4	N/A	N/A		6	N/A	١	I/A	8	N/A	N/	/A
Comments Radium Duplicate MW-9. All samples outsourced to Test America.																

			Bottle		Lab	
Sample #	Date	Time	Count	Description	Filter	Lab Id
MW-5	6/11/18	11:31	2	Groundwater		AY13794
MW-6	06/11/2018	12:24	2	Groundwater		AY13795
MW-7	06/11/2018	14:44	2	Groundwater		AY13796
MW-8	06/12/2018	08:51	2	Groundwater		AY13797
MW-9	06/12/2018	09:53	4	Groundwater		AY13798
MW-10	06/12/2018	10:51	2	Groundwater		AY13799
MW-11	06/12/2018	12:37	2	Groundwater		AY13800
MW-12	06/12/2018	13:33	2	Groundwater		AY13801
MW-13	06/12/2018	14:16	2	Groundwater		AY13802
MW-1	06/12/2018	15:03	2	Groundwater		AY13803
MW-15	06/12/2018	15:56	2	Groundwater		AY13804
MW-3	06/12/2018	17:45	2	Groundwater		AY13805
MW-14S	06/12/2018	18:56	2	Groundwater		AY13806
MW-2	06/12/2018	19:44	2	Groundwater		AY13807
MW-6DUP	06/11/2018	12:24	2	Sample Duplicate		AY13808
FB-1	06/11/2018	15:03	2	Field Blank		AY13809
MW-10DUP	06/12/2018	10:51	2	Sample Duplicate		AY13810
FB-2	06/12/2018	12:06	2	Field Blank		AY13811
EB-1	06/12/2018	20:11	2	Equipment Blank		AY13812

Relinquished By	Received By	Date/Time
and of	Sarah Copeland Digitally signed by Sarah Copeland Digitally signed by Sarah Copeland Discre-Sarah Copeland, o. ou, email-spooplealsouthernoc.com, c=US Date: 2018.06.13 10:32:28-05:00'	06/13/2018 10:32

SmarTroll ID 4696-23443-3-2 Turbidity ID 5160-26211-1-1 All metals and radiological bottles have pH < 2 🗹

Cooler Temp 3.4 degrees C

Thermometer ID 6603-34819-1-1

pH Strip ID 6803-35849-20-10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-155116-1

TestAmerica Sample Delivery Group: Gaston Gypsum 1155

Client Project/Site: CCR Plant Gaston

For:

Alabama Power General Test Laboratory 744 County Rd 87 GSC #8 Calera, Alabama 35040

Attn: Sarah Copeland

CheyenaRwhitmire

Authorized for release by: 6/30/2018 11:53:27 AM

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	7
Sample Summary	
Client Sample Results	9
Definitions	13
Chronicle	14
QC Association	18
QC Sample Results	21
Chain of Custody	26
·	28
Certification Summary	29

Case Narrative

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Job ID: 400-155116-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-155116-1

General Chemistry

Method(s) SM 4500 SO4 E: The following sample was diluted to bring the concentration of target analytes within the calibration range: AY13794 MW-5 (400-155116-1). Elevated reporting limits (RLs) are provided.

Project/Site: CCR Plant Gaston

Chloride

Fluoride

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

SM 4500 CI- E

SM 4500 F C

1

Client Sample ID: AY13794 MW-5 Lab Sample ID: 400-155116-1 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type Chloride 2.0 14 0.60 mg/L SM 4500 CI- E Total/NA Fluoride 0.040 J 0.10 SM 4500 F C Total/NA 0.032 mg/L 1 Sulfate 47 10 2.8 mg/L 2 SM 4500 SO4 E Total/NA Client Sample ID: AY13795 MW-6 Lab Sample ID: 400-155116-2 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** 2.0 SM 4500 CI- E Total/NA Chloride 2.7 0.60 mg/L Client Sample ID: AY13796 MW-7 Lab Sample ID: 400-155116-3 Result Qualifier RL **MDL** Unit Dil Fac D Method Analyte **Prep Type** Chloride 3.6 2.0 0.60 mg/L SM 4500 CI- E Total/NA Fluoride 0.090 J 0.032 mg/L 0.10 SM 4500 F C Total/NA Sulfate 1.4 mg/L SM 4500 SO4 E Total/NA 7.5 5.0 Client Sample ID: AY13797 MW-8 Lab Sample ID: 400-155116-4 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type**

Client Sample ID: AY13798	MW-9			Lab Sar	nple ID: 400-	-155116-5	,
Sulfate	2.7 J	5.0	1.4 mg/L	1	SM 4500 SO4 E	Total/NA	

2.0

0.10

0.60 mg/L

0.032 mg/L

1.9 J

0.13

_							
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	2.6	2.0	0.60	mg/L		SM 4500 CI- E	Total/NA
Fluoride	0.040 J	0.10	0.032	mg/L	1	SM 4500 F C	Total/NA
Sulfate	5.7	5.0	1.4	mg/L	1	SM 4500 SO4 E	Total/NA

Client Sample ID: A	Client Sample ID: AY13799 MW-10 Lab Sample ID: 400-155116-0									
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type				
Chloride	2.8	2.0	0.60 mg/L		SM 4500 CI- E	Total/NA				
Sulfate	1.8 J	5.0	1.4 mg/L	1	SM 4500 SO4 E	Total/NA				

Client Sample ID: AY13	800 MW-11			Lab San	ple ID: 400-	155116-7	7
Sulfate	1.8 J	5.0	1.4 mg/L	1	SM 4500 SO4 E	Total/NA	
Chloride	2.8	2.0	0.60 mg/L	1	SM 4500 CI- E	Total/NA	
Chlorido	2.0	2.0	0.60	4		Total/NIA	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	8.8		2.0	0.60	mg/L	1	_	SM 4500 CI- E	Total/NA
Sulfate	3.5	J	5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA

Client Sample ID:	lent Sample ID: AY13801 MW-12								-155116-8
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	3.1		2.0	0.60	mg/L		_	SM 4500 CI- E	Total/NA
Fluoride	0.060	J	0.10	0.032	mg/L	1		SM 4500 F C	Total/NA
Sulfate	8.7		5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA

Client Sample ID: AY13802 MW-13	Lab Sample ID: 400-155116-9

This Detection Summary does not include radiochemical test results.

AV/40004 BBW 40

TestAmerica Pensacola

6/30/2018

400 455440 0

Page 4 of 29

Total/NA

Total/NA

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Client Sample ID: AY13802 MW-13 (Continued) Lab Sample ID: 400-155116-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Meth	nod	Prep Type
Chloride	3.5		2.0	0.60	mg/L	1 SM 4	4500 CI- E	Total/NA
Fluoride	0.040	J	0.10	0.032	mg/L	1 SM 4	4500 F C	Total/NA
Sulfate	8.3		5.0	1.4	mg/L	1 SM 4	4500 SO4 E	Total/NA

Client Sample ID: AY13803 MW-1 Lab Sample ID: 400-155116-10

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac I) Method	Prep Type
Chloride	2.4	2.0	0.60	mg/L		SM 4500 CI- E	Total/NA
Fluoride	0.32	0.10	0.032	mg/L	1	SM 4500 F C	Total/NA
Sulfate	4.2 J	5.0	1.4	mg/L	1	SM 4500 SO4 E	Total/NA

Client Sample ID: AY13804 MW-15 Lab Sample ID: 400-155116-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	2.0		2.0	0.60	mg/L		_	SM 4500 CI- E	Total/NA
Sulfate	2.3	J	5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA

Client Sample ID: AY13805 MW-3 Lab Sample ID: 400-155116-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	3.1		2.0	0.60	mg/L	1	_	SM 4500 CI- E	Total/NA
Fluoride	0.050	J	0.10	0.032	mg/L	1		SM 4500 F C	Total/NA
Sulfate	14		5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA

Client Sample ID: AY13806 MW-14S Lab Sample ID: 400-155116-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	3.6		2.0	0.60	mg/L	1	_	SM 4500 CI- E	Total/NA
Fluoride	0.050	J	0.10	0.032	mg/L	1		SM 4500 F C	Total/NA
Sulfate	5.0		5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA

Client Sample ID: AY13807 MW-2 Lab Sample ID: 400-155116-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	3.4		2.0	0.60	mg/L	1	_	SM 4500 CI- E	Total/NA
Sulfate	7.2		5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA

Client Sample ID: AY13808 MW-6 DUP Lab Sample ID: 400-155116-15

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D	Method	Prep Type
Chloride	3.2		2.0	0.60 mg/L		_	SM 4500 CI- E	Total/NA

Client Sample ID: AY13809 FB-1 Lab Sample ID: 400-155116-16

No Detections.

Client Sample ID: AY13810 MW-10 DUP Lab Sample ID: 400-155116-17

_										
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Chloride	3.1		2.0	0.60	mg/L		_	SM 4500 CI- E	Total/NA	-
Sulfate	1.8	J	5.0	14	ma/l	1		SM 4500 SQ4 F	Total/NA	

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

6/30/2018

Page 5 of 29

Detection Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Client Sample ID: AY13811 FB-2 Lab Sample ID: 400-155116-18

No Detections.

Client Sample ID: AY13812 EB-1 Lab Sample ID: 400-155116-19

No Detections.

F

_

7

10

4.0

13

Method Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Method	Method Description	Protocol	Laboratory
SM 4500 CI- E	Chloride, Total	SM	TAL PEN
SM 4500 F C	Fluoride	SM	TAL PEN
SM 4500 SO4 E	Sulfate, Total	SM	TAL PEN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

3

А

9

10

12

13

Sample Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-155116-1	AY13794 MW-5	Water	06/11/18 11:31	06/15/18 09:03
400-155116-2	AY13795 MW-6	Water	06/11/18 12:24	06/15/18 09:03
400-155116-3	AY13796 MW-7	Water	06/11/18 14:44	06/15/18 09:03
400-155116-4	AY13797 MW-8	Water	06/12/18 08:51	06/15/18 09:03
400-155116-5	AY13798 MW-9	Water	06/12/18 09:53	06/15/18 09:03
400-155116-6	AY13799 MW-10	Water	06/12/18 10:51	06/15/18 09:03
400-155116-7	AY13800 MW-11	Water	06/12/18 12:37	06/15/18 09:03
400-155116-8	AY13801 MW-12	Water	06/12/18 13:33	06/15/18 09:03
400-155116-9	AY13802 MW-13	Water	06/12/18 14:16	06/15/18 09:03
400-155116-10	AY13803 MW-1	Water	06/12/18 15:03	06/15/18 09:03
400-155116-11	AY13804 MW-15	Water	06/12/18 15:56	06/15/18 09:03
400-155116-12	AY13805 MW-3	Water	06/12/18 17:45	06/15/18 09:03
400-155116-13	AY13806 MW-14S	Water	06/12/18 18:56	06/15/18 09:03
400-155116-14	AY13807 MW-2	Water	06/12/18 19:44	06/15/18 09:03
400-155116-15	AY13808 MW-6 DUP	Water	06/11/18 12:24	06/15/18 09:03
400-155116-16	AY13809 FB-1	Water	06/11/18 15:03	06/15/18 09:03
400-155116-17	AY13810 MW-10 DUP	Water	06/12/18 10:51	06/15/18 09:03
400-155116-18	AY13811 FB-2	Water	06/12/18 12:06	06/15/18 09:03
400-155116-19	AY13812 EB-1	Water	06/12/18 20:11	06/15/18 09:03

3

6

8

9

4 4

10

13

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Client Sample ID: AY13794 MW-5

Date Collected: 06/11/18 11:31 Date Received: 06/15/18 09:03 Lab Sample ID: 400-155116-1

Matrix: Water

General Chemistry Analyte Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed Chloride 2.0 0.60 mg/L 06/26/18 14:28 14 **Fluoride** 0.10 0.032 mg/L 06/22/18 14:39 0.040 J 1 **Sulfate** 47 10 2.8 mg/L 06/27/18 11:15 2

Client Sample ID: AY13795 MW-6 Lab Sample ID: 400-155116-2

Date Collected: 06/11/18 12:24 Date Received: 06/15/18 09:03

Matrix: Water

General Chemistry Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 2.0 0.60 mg/L 06/26/18 14:28 Chloride 2.7 Fluoride < 0.032 0.10 0.032 mg/L 06/22/18 14:43 Sulfate 06/27/18 09:55 <14 5.0 1.4 mg/L

Client Sample ID: AY13796 MW-7 Lab Sample ID: 400-155116-3 Date Collected: 06/11/18 14:44

Date Received: 06/15/18 09:03

Matrix: Water

General Chemistry Analyte RL MDL Unit Result Qualifier D Analyzed Dil Fac Prepared Chloride 2.0 0.60 mg/L 06/29/18 07:10 3.6 **Fluoride** 0.10 0.032 mg/L 06/22/18 14:47 0.090 J 1 **Sulfate** 7.5 5.0 1.4 mg/L 06/27/18 09:55

Client Sample ID: AY13797 MW-8 Lab Sample ID: 400-155116-4 **Matrix: Water**

Date Collected: 06/12/18 08:51 Date Received: 06/15/18 09:03

General Chemistry Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride 1.9 J 2.0 0.60 mg/L 06/29/18 07:13 **Fluoride** 0.13 0.10 0.032 mg/L 06/22/18 15:32 5.0 1.4 mg/L 06/27/18 10:02 **Sulfate** 2.7 J

Client Sample ID: AY13798 MW-9 Lab Sample ID: 400-155116-5

Date Collected: 06/12/18 09:53 Date Received: 06/15/18 09:03

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.6		2.0	0.60	mg/L			06/29/18 07:13	1
Fluoride	0.040	J	0.10	0.032	mg/L			06/25/18 10:18	1
Sulfate	5.7		5.0	1.4	mg/L			06/27/18 10:02	1

TestAmerica Pensacola

Matrix: Water

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Client Sample ID: AY13799 MW-10

Date Collected: 06/12/18 10:51 Date Received: 06/15/18 09:03 Lab Sample ID: 400-155116-6

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.8		2.0	0.60	mg/L			06/29/18 07:20	1
Fluoride	< 0.032		0.10	0.032	mg/L			06/25/18 09:31	1
Sulfate	1.8	J	5.0	1.4	mg/L			06/28/18 09:26	1

Client Sample ID: AY13800 MW-11

Date Collected: 06/12/18 12:37 Date Received: 06/15/18 09:03

Lab Sample ID: 400-155116-7

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.8		2.0	0.60	mg/L			06/29/18 07:20	1
Fluoride	<0.032		0.10	0.032	mg/L			06/25/18 09:43	1
Sulfate	3.5	J	5.0	1.4	mg/L			06/28/18 09:26	1

Client Sample ID: AY13801 MW-12

Date Collected: 06/12/18 13:33

Date Received: 06/15/18 09:03

Lab Sample ID: 400-155116-8

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.1		2.0	0.60	mg/L			06/29/18 07:20	1
Fluoride	0.060	J	0.10	0.032	mg/L			06/25/18 09:47	1
Sulfate	8.7		5.0	1.4	mg/L			06/28/18 09:26	1

Client Sample ID: AY13802 MW-13

Date Collected: 06/12/18 14:16 Date Received: 06/15/18 09:03

Lab Sample ID: 400-155116-9

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.5		2.0	0.60	mg/L			06/29/18 07:20	1
Fluoride	0.040	J	0.10	0.032	mg/L			06/25/18 09:50	1
Sulfate	8.3		5.0	1.4	mg/L			06/28/18 09:32	1

Client Sample ID: AY13803 MW-1

Date Collected: 06/12/18 15:03

Date Received: 06/15/18 09:03

Lab Sample ID: 400-155116-10

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.4		2.0	0.60	mg/L			06/29/18 07:20	1
Fluoride	0.32		0.10	0.032	mg/L			06/25/18 09:54	1
Sulfate	4.2	J	5.0	1.4	mg/L			06/28/18 09:32	1

Client Sample ID: AY13804 MW-15

Date Collected: 06/12/18 15:56

Date Received: 06/15/18 09:03

Lab Sample ID: 400-155116-11

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Allalyte	Result	Qualifici	1/1	IVIDE	Oilit		ricpared	Allalyzea	Diriac
Chloride	2.0		2.0	0.60	mg/L			06/29/18 07:20	1

TestAmerica Pensacola

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Client Sample ID: AY13804 MW-15

Date Collected: 06/12/18 15:56 Date Received: 06/15/18 09:03 Lab Sample ID: 400-155116-11

Matrix: Water

General Chemistry (Continued)
Analysta

Analyte	Result	Qualifier	RL	MDL	Unit	D Pre	pared Analyzed	Dil Fac
Fluoride	<0.032		0.10	0.032	mg/L		06/25/18 09:58	1
Sulfate	2.3	J	5.0	1.4	mg/L		06/28/18 09:32	1

Client Sample ID: AY13805 MW-3 Lab Sample ID: 400-155116-12

Date Collected: 06/12/18 17:45 Date Received: 06/15/18 09:03

Matrix: Water

Control Observation

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.1		2.0	0.60	mg/L			06/29/18 07:20	1
Fluoride	0.050	J	0.10	0.032	mg/L			06/25/18 10:02	1
Sulfate	14		5.0	1.4	mg/L			06/28/18 09:32	1

Client Sample ID: AY13806 MW-14S Lab Sample ID: 400-155116-13

Date Collected: 06/12/18 18:56 Date Received: 06/15/18 09:03

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.6		2.0	0.60	mg/L			06/29/18 07:20	1
Fluoride	0.050	J	0.10	0.032	mg/L			06/25/18 10:06	1
Sulfate	5.0		5.0	1.4	mg/L			06/28/18 09:33	1

Client Sample ID: AY13807 MW-2 Lab Sample ID: 400-155116-14

Date Collected: 06/12/18 19:44 Date Received: 06/15/18 09:03

Matrix: Water

General Chemistry

General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.4	2.0	0.60	mg/L			06/29/18 07:20	1
Fluoride	<0.032	0.10	0.032	mg/L			06/25/18 10:27	1
Sulfate	7.2	5.0	1.4	mg/L			06/28/18 09:33	1

Lab Sample ID: 400-155116-15 Client Sample ID: AY13808 MW-6 DUP

Date Collected: 06/11/18 12:24 Date Received: 06/15/18 09:03

Matrix: Water

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.2		2.0	0.60	mg/L			06/29/18 07:10	1
Fluoride	< 0.032		0.10	0.032	mg/L			06/22/18 14:59	1
Sulfate	<1.4		5.0	1.4	mg/L			06/27/18 09:55	1

Client Sample ID: AY13809 FB-1 Lab Sample ID: 400-155116-16

Date Collected: 06/11/18 15:03 Date Received: 06/15/18 09:03 **Matrix: Water**

General Chemistry							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.60	2.0	0.60 mg/L			06/29/18 07:10	1
Fluoride	<0.032	0.10	0.032 mg/L			06/22/18 15:07	1

TestAmerica Pensacola

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Client Sample ID: AY13809 FB-1

Date Collected: 06/11/18 15:03 Date Received: 06/15/18 09:03

Lab Sample ID: 400-155116-16

Matrix: Water

Genera	I Chem	istry	(Cont	inued)
--------	--------	-------	-------	--------

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	<1.4	5.0	1.4	mg/L			06/27/18 10:02	1

Client Sample ID: AY13810 MW-10 DUP

Date Collected: 06/12/18 10:51 Date Received: 06/15/18 09:03

Lab Sample ID: 400-155116-17

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.1		2.0	0.60	mg/L			06/29/18 08:27	1
Fluoride	<0.032		0.10	0.032	mg/L			06/25/18 10:31	1
Sulfate	1.8	J	5.0	1.4	mg/L			06/28/18 09:33	1

Client Sample ID: AY13811 FB-2

Date Collected: 06/12/18 12:06

Date Received: 06/15/18 09:03

Lab Sample ID: 400-155116-18

Matrix: Water

Gonoral Chamistry

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.60		2.0	0.60	mg/L			06/29/18 08:27	1
Fluoride	< 0.032		0.10	0.032	mg/L			06/25/18 10:34	1
Sulfate	<1.4		5.0	1.4	mg/L			06/28/18 09:37	1

Client Sample ID: AY13812 EB-1

Date Collected: 06/12/18 20:11

Date Received: 06/15/18 09:03

Lab Sample ID: 400-155116-19

Matrix: Water

General	Chemistry
A I 4	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.60		2.0	0.60	mg/L			06/29/18 08:30	1
Fluoride	<0.032		0.10	0.032	mg/L			06/25/18 10:38	1
Sulfate	<1.4		5.0	1.4	mg/L			06/28/18 09:37	1

Definitions/Glossary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Qualifiers

General Chemistry

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.							
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis							
%R	Percent Recovery							
CFL	Contains Free Liquid							
CNF	Contains No Free Liquid							
DER	Duplicate Error Ratio (normalized absolute difference)							
Dil Fac	Dilution Factor							
DL	Detection Limit (DoD/DOE)							
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample							
DLC	Decision Level Concentration (Radiochemistry)							
EDL	Estimated Detection Limit (Dioxin)							
LOD	Limit of Detection (DoD/DOE)							
LOQ	Limit of Quantitation (DoD/DOE)							

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TestAmerica Pensacola

Page 13 of 29

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-1

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Client Sample ID: AY13794 MW-5

Date Collected: 06/11/18 11:31 Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	402581	06/26/18 14:28	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402217	06/22/18 14:39	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		2	402758	06/27/18 11:15	RRC	TAL PEN

Client Sample ID: AY13795 MW-6 Lab Sample ID: 400-155116-2

Date Collected: 06/11/18 12:24 Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E			402581	06/26/18 14:28	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402217	06/22/18 14:43	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	402758	06/27/18 09:55	RRC	TAL PEN

Client Sample ID: AY13796 MW-7 Lab Sample ID: 400-155116-3

Date Collected: 06/11/18 14:44 Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E			402962	06/29/18 07:10	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402217	06/22/18 14:47	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	402758	06/27/18 09:55	RRC	TAL PEN

Client Sample ID: AY13797 MW-8 Lab Sample ID: 400-155116-4

Date Collected: 06/12/18 08:51 Date Received: 06/15/18 09:03

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E	_		402962	06/29/18 07:13	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402217	06/22/18 15:32	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	402758	06/27/18 10:02	RRC	TAL PEN

Client Sample ID: AY13798 MW-9 Lab Sample ID: 400-155116-5

Date Collected: 06/12/18 09:53 Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E			402962	06/29/18 07:13	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402401	06/25/18 10:18	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	402758	06/27/18 10:02	RRC	TAL PEN

TestAmerica Pensacola

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Client Sample ID: AY13799 MW-10 Lab Sample ID: 400-155116-6

Date Collected: 06/12/18 10:51 Date Received: 06/15/18 09:03 **Matrix: Water**

Matrix: Water

Matrix: Water

Matrix: Water

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis SM 4500 CI- E 402962 06/29/18 07:20 RRC TAL PEN Total/NA Analysis SM 4500 F C 1 402401 06/25/18 09:31 BAB **TAL PEN** Total/NA TAL PEN Analysis SM 4500 SO4 E 1 402845 06/28/18 09:26 RRC

Client Sample ID: AY13800 MW-11 Lab Sample ID: 400-155116-7

Date Collected: 06/12/18 12:37 Date Received: 06/15/18 09:03

Dilution Batch **Prepared** Number or Analyzed Analyst **Factor** Lab

Batch Batch Method **Prep Type** Type Run 402962 06/29/18 07:20 RRC TAL PEN Total/NA SM 4500 CI- E Analysis Total/NA SM 4500 F C 402401 06/25/18 09:43 BAB TAL PEN Analysis 1 Total/NA Analysis SM 4500 SO4 E 1 402845 06/28/18 09:26 RRC TAL PEN

Client Sample ID: AY13801 MW-12 Lab Sample ID: 400-155116-8 **Matrix: Water**

Date Collected: 06/12/18 13:33 Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	402962	06/29/18 07:20	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402401	06/25/18 09:47	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	402845	06/28/18 09:26	RRC	TAL PEN

Client Sample ID: AY13802 MW-13 Lab Sample ID: 400-155116-9

Date Collected: 06/12/18 14:16 Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	402962	06/29/18 07:20	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402401	06/25/18 09:50	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	402845	06/28/18 09:32	RRC	TAL PEN

Client Sample ID: AY13803 MW-1 Lab Sample ID: 400-155116-10

Date Collected: 06/12/18 15:03 Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	402962	06/29/18 07:20	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402401	06/25/18 09:54	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	402845	06/28/18 09:32	RRC	TAL PEN

TestAmerica Pensacola

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Client Sample ID: AY13804 MW-15

Date Collected: 06/12/18 15:56 Date Received: 06/15/18 09:03

Lab Sample ID: 400-155116-11

Matrix: Water

		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	SM 4500 CI- E		1	402962	06/29/18 07:20	RRC	TAL PEN
	Total/NA	Analysis	SM 4500 F C		1	402401	06/25/18 09:58	BAB	TAL PEN
l	Total/NA	Analysis	SM 4500 SO4 E		1	402845	06/28/18 09:32	RRC	TAL PEN

Client Sample ID: AY13805 MW-3 Lab Sample ID: 400-155116-12

Date Collected: 06/12/18 17:45 Date Received: 06/15/18 09:03 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E			402962	06/29/18 07:20	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402401	06/25/18 10:02	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	402845	06/28/18 09:32	RRC	TAL PEN

Lab Sample ID: 400-155116-13 Client Sample ID: AY13806 MW-14S

Date Collected: 06/12/18 18:56

Matrix: Water

Date Received: 06/15/18 09:03

		Batch	Batch		Dilution	Batch	Prepared		
Prep Ty	/pe	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/N/	A	Analysis	SM 4500 CI- E		1	402962	06/29/18 07:20	RRC	TAL PEN
Total/N/	A	Analysis	SM 4500 F C		1	402401	06/25/18 10:06	BAB	TAL PEN
Total/N/	A	Analysis	SM 4500 SO4 E		1	402845	06/28/18 09:33	RRC	TAL PEN

Client Sample ID: AY13807 MW-2 Lab Sample ID: 400-155116-14

Date Collected: 06/12/18 19:44 Date Received: 06/15/18 09:03

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	402962	06/29/18 07:20	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402401	06/25/18 10:27	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	402845	06/28/18 09:33	RRC	TAL PEN

Client Sample ID: AY13808 MW-6 DUP Lab Sample ID: 400-155116-15

Date Collected: 06/11/18 12:24 Date Received: 06/15/18 09:03

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	402962	06/29/18 07:10	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402217	06/22/18 14:59	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	402758	06/27/18 09:55	RRC	TAL PEN

Client Sample ID: AY13809 FB-1

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-16

Date Collected: 06/11/18 15:03 **Matrix: Water** Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E	_	1	402962	06/29/18 07:10	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402217	06/22/18 15:07	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	402758	06/27/18 10:02	RRC	TAL PEN

Lab Sample ID: 400-155116-17 Client Sample ID: AY13810 MW-10 DUP

Date Collected: 06/12/18 10:51 **Matrix: Water**

Date Received: 06/15/18 09:03

Batch Batch Dilution Batch **Prepared** Method Number **Prep Type** Type Run **Factor** or Analyzed Analyst Lab 402992 06/29/18 08:27 RRC Total/NA SM 4500 CI- E TAL PEN Analysis Total/NA SM 4500 F C 402401 06/25/18 10:31 BAB TAL PEN Analysis 1 Total/NA Analysis SM 4500 SO4 E 1 402845 06/28/18 09:33 RRC TAL PEN

Client Sample ID: AY13811 FB-2 Lab Sample ID: 400-155116-18

Date Collected: 06/12/18 12:06 **Matrix: Water**

Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	402992	06/29/18 08:27	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	402401	06/25/18 10:34	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	402845	06/28/18 09:37	RRC	TAL PEN

Client Sample ID: AY13812 EB-1 Lab Sample ID: 400-155116-19

Date Collected: 06/12/18 20:11 Date Received: 06/15/18 09:03

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis SM 4500 CI- E 402992 06/29/18 08:30 RRC TAL PEN

Total/NA Analysis SM 4500 F C 1 402401 06/25/18 10:38 BAB **TAL PEN** Total/NA Analysis SM 4500 SO4 E 402845 06/28/18 09:37 RRC TAL PEN 1

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

TestAmerica Pensacola

Matrix: Water

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1

General Chemistry

Analysis Batch: 402217

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-155116-1	AY13794 MW-5	Total/NA	Water	SM 4500 F C	
400-155116-2	AY13795 MW-6	Total/NA	Water	SM 4500 F C	
400-155116-3	AY13796 MW-7	Total/NA	Water	SM 4500 F C	
400-155116-4	AY13797 MW-8	Total/NA	Water	SM 4500 F C	
400-155116-15	AY13808 MW-6 DUP	Total/NA	Water	SM 4500 F C	
400-155116-16	AY13809 FB-1	Total/NA	Water	SM 4500 F C	
MB 400-402217/3	Method Blank	Total/NA	Water	SM 4500 F C	
LCS 400-402217/4	Lab Control Sample	Total/NA	Water	SM 4500 F C	
400-155116-15 DU	AY13808 MW-6 DUP	Total/NA	Water	SM 4500 F C	

Analysis Batch: 402401

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-155116-5	AY13798 MW-9	Total/NA	Water	SM 4500 F C	
400-155116-6	AY13799 MW-10	Total/NA	Water	SM 4500 F C	
400-155116-7	AY13800 MW-11	Total/NA	Water	SM 4500 F C	
400-155116-8	AY13801 MW-12	Total/NA	Water	SM 4500 F C	
400-155116-9	AY13802 MW-13	Total/NA	Water	SM 4500 F C	
400-155116-10	AY13803 MW-1	Total/NA	Water	SM 4500 F C	
400-155116-11	AY13804 MW-15	Total/NA	Water	SM 4500 F C	
400-155116-12	AY13805 MW-3	Total/NA	Water	SM 4500 F C	
400-155116-13	AY13806 MW-14S	Total/NA	Water	SM 4500 F C	
400-155116-14	AY13807 MW-2	Total/NA	Water	SM 4500 F C	
400-155116-17	AY13810 MW-10 DUP	Total/NA	Water	SM 4500 F C	
400-155116-18	AY13811 FB-2	Total/NA	Water	SM 4500 F C	
400-155116-19	AY13812 EB-1	Total/NA	Water	SM 4500 F C	
MB 400-402401/3	Method Blank	Total/NA	Water	SM 4500 F C	
LCS 400-402401/4	Lab Control Sample	Total/NA	Water	SM 4500 F C	
400-155116-6 MS	AY13799 MW-10	Total/NA	Water	SM 4500 F C	
400-155116-6 MSD	AY13799 MW-10	Total/NA	Water	SM 4500 F C	
400-155116-5 DU	AY13798 MW-9	Total/NA	Water	SM 4500 F C	

Analysis Batch: 402581

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-155116-1	AY13794 MW-5	Total/NA	Water	SM 4500 CI- E	
400-155116-2	AY13795 MW-6	Total/NA	Water	SM 4500 CI- E	
MB 400-402581/6	Method Blank	Total/NA	Water	SM 4500 CI- E	
LCS 400-402581/7	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
MRL 400-402581/3	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
400-154556-A-2 MS	Matrix Spike	Total/NA	Water	SM 4500 CI- E	
400-154556-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 CI- E	

Analysis Batch: 402758

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-155116-1	AY13794 MW-5	Total/NA	Water	SM 4500 SO4 E	
400-155116-2	AY13795 MW-6	Total/NA	Water	SM 4500 SO4 E	
400-155116-3	AY13796 MW-7	Total/NA	Water	SM 4500 SO4 E	
400-155116-4	AY13797 MW-8	Total/NA	Water	SM 4500 SO4 E	
400-155116-5	AY13798 MW-9	Total/NA	Water	SM 4500 SO4 E	
400-155116-15	AY13808 MW-6 DUP	Total/NA	Water	SM 4500 SO4 E	
400-155116-16	AY13809 FB-1	Total/NA	Water	SM 4500 SO4 E	
MB 400-402758/6	Method Blank	Total/NA	Water	SM 4500 SO4 E	

TestAmerica Pensacola

SDG: Gaston Gypsum 1155

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

General Chemistry (Continued)

Analysis Batch: 402758 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 400-402758/7	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
MRL 400-402758/3	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
400-154588-A-2 MS	Matrix Spike	Total/NA	Water	SM 4500 SO4 E	
400-154588-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 SO4 E	
400-155115-A-4 MS	Matrix Spike	Total/NA	Water	SM 4500 SO4 E	
400-155115-A-4 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 SO4 E	
400-155116-5 DU	AY13798 MW-9	Total/NA	Water	SM 4500 SO4 E	

Analysis Batch: 402845

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-155116-6	AY13799 MW-10	Total/NA	Water	SM 4500 SO4 E	
400-155116-7	AY13800 MW-11	Total/NA	Water	SM 4500 SO4 E	
400-155116-8	AY13801 MW-12	Total/NA	Water	SM 4500 SO4 E	
400-155116-9	AY13802 MW-13	Total/NA	Water	SM 4500 SO4 E	
400-155116-10	AY13803 MW-1	Total/NA	Water	SM 4500 SO4 E	
400-155116-11	AY13804 MW-15	Total/NA	Water	SM 4500 SO4 E	
400-155116-12	AY13805 MW-3	Total/NA	Water	SM 4500 SO4 E	
400-155116-13	AY13806 MW-14S	Total/NA	Water	SM 4500 SO4 E	
400-155116-14	AY13807 MW-2	Total/NA	Water	SM 4500 SO4 E	
400-155116-17	AY13810 MW-10 DUP	Total/NA	Water	SM 4500 SO4 E	
400-155116-18	AY13811 FB-2	Total/NA	Water	SM 4500 SO4 E	
400-155116-19	AY13812 EB-1	Total/NA	Water	SM 4500 SO4 E	
MB 400-402845/6	Method Blank	Total/NA	Water	SM 4500 SO4 E	
LCS 400-402845/7	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
MRL 400-402845/3	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
400-155116-6 MS	AY13799 MW-10	Total/NA	Water	SM 4500 SO4 E	
400-155116-6 MSD	AY13799 MW-10	Total/NA	Water	SM 4500 SO4 E	

Analysis Batch: 402962

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-155116-3	AY13796 MW-7	Total/NA	Water	SM 4500 CI- E	
400-155116-4	AY13797 MW-8	Total/NA	Water	SM 4500 CI- E	
400-155116-5	AY13798 MW-9	Total/NA	Water	SM 4500 CI- E	
400-155116-6	AY13799 MW-10	Total/NA	Water	SM 4500 CI- E	
400-155116-7	AY13800 MW-11	Total/NA	Water	SM 4500 CI- E	
400-155116-8	AY13801 MW-12	Total/NA	Water	SM 4500 CI- E	
400-155116-9	AY13802 MW-13	Total/NA	Water	SM 4500 CI- E	
400-155116-10	AY13803 MW-1	Total/NA	Water	SM 4500 CI- E	
400-155116-11	AY13804 MW-15	Total/NA	Water	SM 4500 CI- E	
400-155116-12	AY13805 MW-3	Total/NA	Water	SM 4500 CI- E	
400-155116-13	AY13806 MW-14S	Total/NA	Water	SM 4500 CI- E	
400-155116-14	AY13807 MW-2	Total/NA	Water	SM 4500 CI- E	
400-155116-15	AY13808 MW-6 DUP	Total/NA	Water	SM 4500 CI- E	
400-155116-16	AY13809 FB-1	Total/NA	Water	SM 4500 CI- E	
MB 400-402962/6	Method Blank	Total/NA	Water	SM 4500 CI- E	
LCS 400-402962/7	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
MRL 400-402962/3	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
400-155116-3 MS	AY13796 MW-7	Total/NA	Water	SM 4500 CI- E	
400-155116-3 MSD	AY13796 MW-7	Total/NA	Water	SM 4500 CI- E	
400-155116-5 DU	AY13798 MW-9	Total/NA	Water	SM 4500 CI- E	

TestAmerica Pensacola

Page 19 of 29

9

3

4

6

8

46

11

13

QC Association Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

General Chemistry (Continued)

Analysis Batch: 402992

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-155116-17	AY13810 MW-10 DUP	Total/NA	Water	SM 4500 CI- E	
400-155116-18	AY13811 FB-2	Total/NA	Water	SM 4500 CI- E	
400-155116-19	AY13812 EB-1	Total/NA	Water	SM 4500 CI- E	
MB 400-402992/6	Method Blank	Total/NA	Water	SM 4500 CI- E	
LCS 400-402992/7	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
MRL 400-402992/3	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
400-155154-A-1 MS	Matrix Spike	Total/NA	Water	SM 4500 CI- E	
400-155154-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 CI- E	

4

C

9

10

11

13

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Method: SM 4500 CI- E - Chloride, Total

Lab Sample ID: MB 400-402581/6 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402581

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 2.0 Chloride <0.60 0.60 mg/L 06/26/18 14:25

Lab Sample ID: LCS 400-402581/7 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402581

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Chloride 30.0 30.9 mg/L 103 90 - 110

Lab Sample ID: MRL 400-402581/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402581

Spike MRL MRL %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Chloride 2.00 1.39 J mg/L 70 50 - 150

Lab Sample ID: 400-154556-A-2 MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 402581

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 15 10.0 24.8 101 73 - 120 mg/L

Lab Sample ID: 400-154556-A-2 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402581

Spike MSD MSD %Rec. RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 10.0 98 73 - 120 15 24.4 mg/L

Lab Sample ID: MB 400-402962/6 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 402962

MB MB Result Qualifier RL MDL Unit Prepared Analyte D Analyzed Dil Fac 20 Chloride 0.60 mg/L 06/29/18 07:10 < 0.60

Lab Sample ID: LCS 400-402962/7 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 402962

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Chloride 30.0 31.3 mg/L 104 90 - 110

Lab Sample ID: MRL 400-402962/3 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 402962

Spike MRL MRL %Rec. Added Result Qualifier Analyte Unit D %Rec Limits Chloride 2.00 1.95 J mg/L 98 50 - 150

TestAmerica Pensacola

Project/Site: CCR Plant Gaston

Lab Sample ID: 400-155116-3 MS

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Client Sample ID: AY13796 MW-7 Prep Type: Total/NA

Analysis Batch: 402962

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 10.0 73 - 120 36 15.4 mg/L 118

Lab Sample ID: 400-155116-3 MSD Client Sample ID: AY13796 MW-7 **Matrix: Water** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 402962

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	3.6		10.0	15.5		mg/L		119	73 - 120	1	8

Lab Sample ID: 400-155116-5 DU Client Sample ID: AY13798 MW-9 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402962

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier Unit **Analyte RPD** Limit Chloride 2.6 2.69 mg/L

Lab Sample ID: MB 400-402992/6 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402992

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride < 0.60 2.0 0.60 mg/L 06/29/18 08:27

MB MB

Lab Sample ID: LCS 400-402992/7 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402992

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 30.0 31.5 mg/L 105 90 - 110

Lab Sample ID: MRL 400-402992/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402992

MRL MRL Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 2.00 Chloride 1.80 J mg/L 90 50 - 150

Lab Sample ID: 400-155154-A-1 MS **Client Sample ID: Matrix Spike Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402992

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits Chloride 17 10.0 27.1 mg/L 97 73 - 120

Lab Sample ID: 400-155154-A-1 MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 402992

MSD MSD Sample Sample Spike %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 17 10.0 27.1 mg/L 97 73 - 120

TestAmerica Pensacola

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: AY13808 MW-6 DUP

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: AY13799 MW-10

Client Sample ID: AY13799 MW-10

Client Sample ID: AY13798 MW-9

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: SM 4500 F C - Fluoride

Lab Sample ID: MB 400-402217/3

Matrix: Water

Analysis Batch: 402217

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 0.10 Fluoride <0.032 0.032 mg/L 06/22/18 13:35

Lab Sample ID: LCS 400-402217/4

Matrix: Water

Analysis Batch: 402217

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Fluoride 4.00 3.79 mg/L 95 90 - 110

Lab Sample ID: 400-155116-15 DU

Matrix: Water

Analysis Batch: 402217

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Limit Analyte Unit Fluoride < 0.032 < 0.032 mg/L

Lab Sample ID: MB 400-402401/3

Matrix: Water

Analysis Batch: 402401

MR MR

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Fluoride < 0.032 0.10 0.032 mg/L 06/25/18 09:11

Lab Sample ID: LCS 400-402401/4

Matrix: Water

Analysis Batch: 402401

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Fluoride 4.00 97 3.87 mg/L 90 - 110

Lab Sample ID: 400-155116-6 MS

Matrix: Water

Analysis Batch: 402401

Sample Sample Spike MS MS %Rec. Analyte **Result Qualifier** Added Result Qualifier Unit D %Rec Limits Fluoride 1 00 < 0.032 0.980 98 75 - 125 mg/L

Lab Sample ID: 400-155116-6 MSD

Matrix: Water

Analysis Batch: 402401

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Limits RPD Analyte Unit %Rec Limit Fluoride <0.032 1.00 1.02 mg/L 102 75 - 125

Lab Sample ID: 400-155116-5 DU

Matrix: Water

Analysis Batch: 402401

DU DU Sample Sample **RPD** Analyte Result Qualifier Result Qualifier Unit D RPD Limit Fluoride 0.040 J 0.0400 J 0 mg/L

TestAmerica Pensacola

6/30/2018

Prep Type: Total/NA

Page 23 of 29

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Method:	SM	4500	SO4	Е-	Sulfate,	Total
---------	----	------	------------	----	----------	-------

Lab Sample ID: MB 400-402758/6 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402758

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Sulfate 5.0 1.4 mg/L 06/27/18 09:48 <1.4

Lab Sample ID: LCS 400-402758/7 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 402758**

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Sulfate 15.0 15.3 mg/L 102 90 - 110

Lab Sample ID: MRL 400-402758/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402758

Spike MRL MRL %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Sulfate 5.00 5.36 mg/L 107 50 - 150

Lab Sample ID: 400-154588-A-2 MS **Client Sample ID: Matrix Spike Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402758

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Sulfate <1.4 10.0 11.6 116 77 - 128 mg/L

Lab Sample ID: 400-154588-A-2 MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402758

Spike MSD MSD %Rec. RPD Sample Sample Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits RPD Limit 11.7 Sulfate 10.0 77 - 128 <1.4 mg/L 117

Lab Sample ID: 400-155115-A-4 MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 402758

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Sulfate 10.0 <1.4 11.2 112 77 - 128 mg/L

Lab Sample ID: 400-155115-A-4 MSD

Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402758

MSD MSD RPD Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Limits RPD Limit **Analyte** Unit %Rec Sulfate <1.4 10.0 11.1 mg/L 111 77 - 128

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Method: SM 4500 SO4 E - Sulfate, Total (Continued)

Lab Sample ID: 400-155116-5 DU Client Sample ID: AY13798 MW-9 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402758

Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier Unit RPD Limit D Sulfate 5.7 5.73 mg/L 0.3

Lab Sample ID: MB 400-402845/6 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402845

MB MB

MDL Unit RL Analyte Result Qualifier Analyzed Dil Fac Prepared 5.0 Sulfate <1.4 1.4 mg/L 06/28/18 09:26

Lab Sample ID: LCS 400-402845/7 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402845 Spike LCS LCS

%Rec. Added Result Qualifier Limits Analyte Unit D %Rec Sulfate 15.0 15.1 mg/L 101 90 - 110

Lab Sample ID: MRL 400-402845/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 402845

Spike MRL MRL %Rec. Analyte Added Result Qualifier Unit %Rec Limits Sulfate 5.00 5.56 mg/L 111 50 - 150

Lab Sample ID: 400-155116-6 MS Client Sample ID: AY13799 MW-10 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402845

Spike MS MS %Rec. Sample Sample Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Sulfate 1.8 J 10.0 12.9 mg/L 111 77 - 128

Lab Sample ID: 400-155116-6 MSD Client Sample ID: AY13799 MW-10 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 402845

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit Limits RPD Limit D %Rec 1.8 J 10.0 Sulfate 12.9 mg/L 111 77 - 128 0

TestAmerica Pensacola

Control Recommendary Control Recommendation Control Recommendatio	Phone (850) 474-1001 Fax (850) 478-2671			}	Bloom (money)	5	_									esiAmenc
Third Properties Color Properties Color Properties Color Properties	Client Information	Sampler. Anthony Goggins			Leb F Whit	mie. Cr	lavern la	a		1	Carner	racking No	<u>ē</u>		COC No.	
The Property of Secretarian Control of Secretaria	kent Contact Sarah Copeland	Phone			E-Ma	m euro	į		l de line	1 8	_				400-5652 Page	-24537.1
The registrate of large of the following of the followi	ompeny: Alabama Power General Test Laboratory								And						Page 1 of	7
The Propose of Part The Part The Propose of Part The Part The Propose of Part The Propose of Part The Propose of Part The Propose of Part The Part	ddress: '44 County Rd 87 GSC #8	Due Dafe Requestor	ļ.,				H		Anan		adneste		F	F	Preservat	On Codes:
Control	ky Jalera	TAT Requested (day	1						_						A - HCL B - NaOH	
100 100	hale, 2lp: 11, 35040		202	900					Del:	_					C - Zn Aceta D - Nitric Ac	
Sample Date	hone: 05-664-6121(Tel)	**04				(0			15.85£		353	2			F - MeOH	
Sumple Date Sumple Date Tribe	mat; gcopela@southernco.com	WOR				Or No	-		2sH82		ġ.	1			H - Ascorbic	P
Sample Date	roject Name: SCR	Project #				: 01 N			SeA , 6:		d			erenie	J-DiWater K-EDTA	
Sample Date Three Company	itte. Saston Gypsum 1155	SSOWIE				Hqmsi eY) Gë	-		S\$0R_(1 1 1 1 1 1	18.00	,	nuos i	L-EDA Other:	
Send Preservation Code: National Preservation Code: National Nati	Sample Identification	Sample Date		Sample Type (C=comp, G=grab)	Matrix (vener.	2 beneall? blei: 2M/2M mnotre:		3 4500 804 E	315_Ra226, 9320	4				to redmuk lato		
Serior S		V	1	Preser	vation Code:	X	+		6	1	1	1	1	1	Spe	cial Instructi
Gil 116 1224 G Webr X X X X X X X X X	1713794	6/11/18	1131	ဗ	Water		1.,	+-	×		F	t	1	1		
Serial Contract	4Y13795	6/11/18	1224	ဖ	Water		+	+-	×	1	1	+	1	1 9		
Second Tree Second B Company	VY13796	6/11/18	1444	o	Water		+	+-	×	1	#	‡	1	1 6		
Gr12/16 1051 G Welter X X X X X X X X X	1Y13797	8/12/18	0851	o	Water	F	+	+	×	1	ļ	1	1	1 6		
Gitzit G	1Y13798	6/12/18	0963	o	Water	>	+	+-	×	1	ļ	‡	7	+		
G12/18 1237 G Wotter X X X X X X X X X	VY13799	6/12/18	1051	o	Water	F	+-	+	×	t	‡	‡	‡	1		
Search Capitals 1503 G Water X X X X X X X X X	1713800	6/12/18	1237	o	Water	F	+	+	,	1	1	1	1	7		
6/12/18 1416 G Water X X X X X X X X X X X X X X X X X X X	1743801	6/12/18	1333	O	Water		+-	+	(×	+	1	#	7	2 1		
GH2/18 1503 G Weter X X X X X X X X X	1713802	6/12/18	1416	ď	Water	Ŧ	+	-	,	1	#	#	7	7		
The Contestine Company Company Received by: Contestine Company Compan	VY13803	6/12/18	1503	9 6	Water	1	-	-	< ;	1	#	#	7	17		
Company Comp				,	0000	1		-	×	1	#	#	1	12		
In Conterfine Company Content C						-	+	L	+	\pm	‡	‡	1	+		
Sample Disposal (A fee may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of the may be assessed if samples are retained longer than in the company of t							\vdash		\vdash		ŧ	‡	ļ	-		
Achieve than it is a poison B Unknown Rediciological Sample Disposal (A free may be assessed if samples are retained longer than is special histocicional/QC Requirements: Date: Date: Time: Date:							Н				F			H		
Semple Disposal (A fee may be assessed if semples are retained longer than is Semple Disposal (A fee may be assessed if semples are retained longer than is Special Instructions/QC Requirements: Determine						\pm	+							H		
Archive For Semple Disposal By Lab Archive For Special Instructional CR Requirements: Date: Date:						\pm	+	\bot	+	\pm	‡	1	#	+		
Semple Disposal (A fee may be assessed if samples are retained longer than in Recine Date: Date: Date: Company Received by: Company C						H	Н		+		þ	t	#	+		
Date: Date: Time: Time	뒴			ediological		E L	Pie Di	sposa n To ((A fee lient	a ve	Disposa	By Lah	ples an	Jage 1	ted fonger	than 1 mon
Date: Time: Date/fine: 67/4/2018: 0800 Company Received by: Date/fine:	freed, 12 D. State (all all all all all all all all all al					Spec	ial Inst	nction	S/QC R	aquiren	ents:					TAGE STATE S
Company Received by.	elinquished by: Sarah Copeland	Date/Time: 6/14/2016	Sate:					П	$\ $	П	Me	thed of Ship	oment:	1		
Detertine Company Received by Detertine Company Received by Control Detertine Company Received by Control Cont	elinquished by	Oate/Time			APC		Pecelyad	<u>.</u>				D.	te/Time:			Сощр
CLESTOSY SONI NO.	elinquished by:	Date/Time			Company		ecelved	i i				å	te/Time:			Compe
							Daviese	Ž,	7	3	W.		2-15-c	æ	90.3	

TestAmerica

Phone (850) 474-1001 Fax (850) 478-2671														a (tempera	The Control of Control of At The Paris
ormation	Sampler. Anthony Goggins			Lab P Whit	mire, C	пеуеп	24			Carrier	Carrier Tracking No(s)	(8)	2 ₹	COC No: 400-56525-24537.1	1537.1
Client Conlact Sarah Copeland	hone:			E-Ma che	enne.w	hitmire	@testa	E-Mall: cheyenne.whitmire@testamericainc.com	nc.com	_			a 0.	Page 2 of 2	
								Anah	Analysis Requested	quest	5		ક	, a	55116
ress 4 County Rd 87 GSC #8	Due Date Requested:					H		\vdash				F	E 4	Preservation Codes:	
	TAT Requested (days):	t): Routine	9			-			_			_	C M C	- NaOH - Zn Acetate	
State, Ze: AL, 35040								2660					0 00	D - Nitric Acid E - NæHSO4	P - Ne204S Q - Ne2SO3
21(Tel)	PO#:				(0)			"528"C					. 0	- MeOH	
nco.com	WO#:				3 OF 1			2268					81	I - fee	
	Project #*				95 OK			28, Ra	_					K-EDTA L-EDA	W-ph 4-5 Z-other (speci
sum 1155	SOW				19ms2 Y) 021			Z#¥_0Z						Other:	
Samole identification	Samula Date	Sample	Sample Type (C=comp,	Matrix (western	beid Filtered MSM mohe	W 4200 C(E	3 POS 009P W	248_Re226, 93					redmuh isto		
	\bigvee	1	Presen	Preservation Code:	X	+	+		t		F	+	X	Charle	Special mountainments
AY13804	6/12/18	1556	9	Water	E	1.	×	×	Ė	F	F	-	2	MW-15	
AY13805	6/12/18	1745	g	Water		×	×	×		L	F	H	2	MW-3	
AY13806	6/12/18	1856	o	Water		×	×	×	L	F	F	-	2	MW-14S	
AY13807	6/12/18	1944	v	Water		×	×	×			L	H	2	MW-2	
AY13808	6/11/18	1224	ပ	Water		×	×	×					2	W-6 Dup (S	MW-6 Dup (Sample Duplicate)
AY13809	6/11/18	1503	υ	Water		×	×	×					2	FB-1 (Field Blank)	ank)
AY13810	6/12/18	1051	9	Water		×	×	×					2	AW-10 Dup (MW-10 Dup (Sample Duplicate)
AY13811	6/12/18	1206	ဖ	Water		×	×	×			-		2	FB-2 (Field Blank)	lank)
AY13812	6/12/18	2011	o	Water		×	×	×		F	_	-	2	EB-1 (Equipment Blank)	nent Blank)
							H		Ħ	П	H	Н			
							-					-			
							+								
							+	1	7	4	-				
					+	\pm	+	1	#	7	+	+			
					#	I	+	I	Ī	Ŧ	+	+			
					\downarrow	T	+	\pm	#	-	+				
					\vdash		+		İ	F	+	+			
☐ Non-Hazard ☐ Flammable ☐ Skin Imilant ☐ Poison B	on B Unknown		Radiological		8		he Disposal (A : Return To Client	el (A fe	a may	Disposal By Lab	sed If s	seldma b	Anchi	etained longer ti Archive For	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Anchine For Manthe
, III, N. Other (specify)					S.	ecial Ir	struction	uns/QC	Special Instructions/QC Requirements	nents:					
Empty Kit Relinquished by:		Date:			Time:					Γ	Method of Shipment:	Shipment:			
Reinquished by. Sarah Copeland	Date/Time: 6/14/2016; 0800	B: 0800		Company		Received by	od by.					Date/Time			Company
Relinquished by:	Date/Time:			Company		Received by	A4 pa					Date/Time			Сотрану
ı	Date/Time;			Сотрату		Receiv	Received by:	1	1	1		Date/Tim	Date/Time.	902	Company
Name of the latest of the late								3	X my	1		0	27.0	200	7-121

Login Sample Receipt Checklist

Client: Alabama Power General Test Laboratory

Job Number: 400-155116-1 SDG Number: Gaston Gypsum 1155

Login Number: 155116 List Source: TestAmerica Pensacola

List Number: 1

Creator: Whitmire, Cheyenne R

Overtice.	A	0
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.6°C 4.2°C 3.7°C IR-8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

5

<u>-</u>

10

46

Accreditation/Certification Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-1 SDG: Gaston Gypsum 1155

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-18 *
ANAB	ISO/IEC 17025		L2471	02-22-20
Arizona	State Program	9	AZ0710	01-12-19
Arkansas DEQ	State Program	6	88-0689	09-01-18
California	State Program	9	2510	06-30-18 *
Florida	NELAP	4	E81010	06-30-19
Georgia	State Program	4	E81010 (FL)	06-30-19
Illinois	NELAP	5	200041	10-09-18
lowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	10-31-18
Kentucky (UST)	State Program	4	53	06-30-19
Kentucky (WW)	State Program	4	98030	12-31-18
Louisiana	NELAP	6	30976	06-30-19
Louisiana (DW)	NELAP	6	LA170005	12-31-18
Maryland	State Program	3	233	09-30-18
Massachusetts	State Program	1	M-FL094	06-30-19
Michigan	State Program	5	9912	06-30-18 *
New Jersey	NELAP	2	FL006	06-30-19
North Carolina (WW/SW)	State Program	4	314	12-31-18
Oklahoma	State Program	6	9810	08-31-18
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-18
South Carolina	State Program	4	96026	06-30-18 *
Tennessee	State Program	4	TN02907	06-30-19
Texas	NELAP	6	T104704286-18-14	09-30-18
US Fish & Wildlife	Federal		LE058448-0	07-31-18
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-19
Washington	State Program	10	C915	05-15-19
West Virginia DEP	State Program	3	136	06-30-18 *

•

4

6

Q

9

11

12

13

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-155116-2

TestAmerica Sample Delivery Group: Gaston Gypsum 1155 Client Project/Site: CCR Plant Gaston

For:

Alabama Power General Test Laboratory 744 County Rd 87 GSC #8 Calera, Alabama 35040

Attn: Sarah Copeland

Cheyroux Whitmin

Authorized for release by: 7/24/2018 5:03:59 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	
Sample Summary	
Client Sample Results	
Definitions	25
Chronicle	26
QC Association	31
QC Sample Results	32
Chain of Custody	34
Receipt Checklists	36
Certification Summary	38

Case Narrative

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Job ID: 400-155116-2

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-155116-2

RAD

Method(s) PrecSep 0: Radium 228 Prep Batch 160-372831: Sample aliquots reduced due to limited sample volume. AY13794 MW-5 (400-155116-1), AY13795 MW-6 (400-155116-2), AY13796 MW-7 (400-155116-3), AY13797 MW-8 (400-155116-4), AY13798 MW-9 (400-155116-5), AY13798 MW-9 (400-155116-5[DU]), AY13799 MW-10 (400-155116-6), AY13800 MW-11 (400-155116-7), AY13801 MW-12 (400-155116-8), AY13802 MW-13 (400-155116-9), AY13803 MW-1 (400-155116-10), AY13804 MW-15 (400-155116-11), AY13805 MW-3 (400-155116-12), AY13806 MW-14S (400-155116-13), AY13807 MW-2 (400-155116-14), AY13808 MW-6 DUP (400-155116-15), AY13809 FB-1 (400-155116-16), AY13810 MW-10 DUP (400-155116-17), AY13811 FB-2 (400-155116-18) and AY13812 EB-1 (400-155116-19)

Method(s) PrecSep-21: Radium 226 Prep Batch 160-372801: Sample aliquots reduced due to limited sample volume. AY13794 MW-5 (400-155116-1), AY13795 MW-6 (400-155116-2), AY13796 MW-7 (400-155116-3), AY13797 MW-8 (400-155116-4), AY13798 MW-9 (400-155116-5), AY13798 MW-9 (400-155116-5[DU]), AY13799 MW-10 (400-155116-6), AY13800 MW-11 (400-155116-7), AY13801 MW-12 (400-155116-8), AY13802 MW-13 (400-155116-9), AY13803 MW-1 (400-155116-10), AY13804 MW-15 (400-155116-11), AY13805 MW-3 (400-155116-12), AY13806 MW-14S (400-155116-13), AY13807 MW-2 (400-155116-14), AY13808 MW-6 DUP (400-155116-15), AY13809 FB-1 (400-155116-16), AY13810 MW-10 DUP (400-155116-17), AY13811 FB-2 (400-155116-18) and AY13812 EB-1 (400-155116-19)

Method Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Method	Method Description	Protocol	Laboratory
9315	Radium-226 (GFPC)	SW846	TAL SL
9320	Radium-228 (GFPC)	SW846	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
PrecSep_0	Preparation, Precipitate Separation	None	TAL SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	TAL SL

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

TestAmerica Pensacola

Page 4 of 39

9

2

4

5

7

Ö

40

Sample Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-155116-1	AY13794 MW-5	Water	06/11/18 11:31	06/15/18 09:03
400-155116-2	AY13795 MW-6	Water	06/11/18 12:24	06/15/18 09:03
400-155116-3	AY13796 MW-7	Water	06/11/18 14:44	06/15/18 09:03
400-155116-4	AY13797 MW-8	Water	06/12/18 08:51	06/15/18 09:03
400-155116-5	AY13798 MW-9	Water	06/12/18 09:53	06/15/18 09:03
400-155116-6	AY13799 MW-10	Water	06/12/18 10:51	06/15/18 09:03
400-155116-7	AY13800 MW-11	Water	06/12/18 12:37	06/15/18 09:03
400-155116-8	AY13801 MW-12	Water	06/12/18 13:33	06/15/18 09:03
400-155116-9	AY13802 MW-13	Water	06/12/18 14:16	06/15/18 09:03
400-155116-10	AY13803 MW-1	Water	06/12/18 15:03	06/15/18 09:03
400-155116-11	AY13804 MW-15	Water	06/12/18 15:56	06/15/18 09:03
400-155116-12	AY13805 MW-3	Water	06/12/18 17:45	06/15/18 09:03
400-155116-13	AY13806 MW-14S	Water	06/12/18 18:56	06/15/18 09:03
400-155116-14	AY13807 MW-2	Water	06/12/18 19:44	06/15/18 09:03
400-155116-15	AY13808 MW-6 DUP	Water	06/11/18 12:24	06/15/18 09:03
400-155116-16	AY13809 FB-1	Water	06/11/18 15:03	06/15/18 09:03
100-155116-17	AY13810 MW-10 DUP	Water	06/12/18 10:51	06/15/18 09:03
400-155116-18	AY13811 FB-2	Water	06/12/18 12:06	06/15/18 09:03
400-155116-19	AY13812 EB-1	Water	06/12/18 20:11	06/15/18 09:03

Q

9

44

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-1

Matrix: Water

Client Sample ID: AY13794 MW-5 Date Collected: 06/11/18 11:31

Date Received: 06/15/18 09:03

Method: 9315 - Ra	dium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.193	U	0.190	0.190	1.00	0.287	pCi/L	06/27/18 08:48	07/19/18 21:18	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					06/27/18 08:48	07/19/18 21:18	1

- Da Garrier	101		40-110					00/21/10 00.40	07710710 21.10	,
	Radium-228 (GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.383	Ū	0.303	0.305	1.00	0.479	pCi/L	06/27/18 12:02	07/19/18 13:23	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					06/27/18 12:02	07/19/18 13:23	1
Y Carrier	87.9		40 - 110					06/27/18 12:02	07/19/18 13:23	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.577		0.358	0.359	5.00	0.479	pCi/L		07/24/18 10:36	1

7/24/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Client Sample ID: AY13795 MW-6

Lab Sample ID: 400-155116-2 Date Collected: 06/11/18 12:24 Date Received: 06/15/18 09:03

Matrix: Water

Method: 9315 - F	Radium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.321		0.224	0.226	1.00	0.299	pCi/L	06/27/18 08:48	07/19/18 21:18	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					06/27/18 08:48	07/19/18 21:18	1

Ba Carrier	101		40 - 110					06/27/18 08:48	07/19/18 21:18	1
 Method: 9320 - F	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.116	U	0.248	0.248	1.00	0.426	pCi/L	06/27/18 12:02	07/19/18 13:24	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					06/27/18 12:02	07/19/18 13:24	1
Y Carrier	90.8		40 - 110					06/27/18 12:02	07/19/18 13:24	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	n- 228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.436		0.334	0.336	5.00	0.426	pCi/L		07/24/18 10:36	1

7/24/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-3

Matrix: Water

Client Sample ID: AY13796 MW-7

Date Collected: 06/11/18 14:44 Date Received: 06/15/18 09:03

Method: 9315 - Ra	dium-226 ((GFPC)	Count	Total						
Analyte	Result	Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0218	U	0.143	0.143	1.00	0.296	pCi/L	06/27/18 08:48	07/19/18 21:18	1
Carrier Ba Carrier	%Yield 102	Qualifier	Limits 40 - 110					Prepared 06/27/18 08:48	Analyzed 07/19/18 21:18	Dil Fac

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.177	U	0.254	0.255	1.00	0.426	pCi/L	06/27/18 12:02	07/19/18 13:24	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					06/27/18 12:02	07/19/18 13:24	1
Y Carrier	90.8		40 - 110					06/27/18 12:02	07/19/18 13:24	1

Method: Ra226 Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.199	U	0.291	0.292	5.00	0.426	pCi/L		07/24/18 10:36	1

_

3

5

9

1 U

12

13

7/24/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Client Sample ID: AY13797 MW-8

Date Collected: 06/12/18 08:51 Date Received: 06/15/18 09:03 Lab Sample ID: 400-155116-4

Matrix: Water

Method: 9315 - Ra	adium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0389	U	0.145	0.145	1.00	0.338	pCi/L	06/27/18 08:48	07/19/18 21:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.2		40 - 110					06/27/18 08:48	07/19/18 21:19	1

96.2		40 - 110					06/27/18 08:48	07/19/18 21:19	1
adium-228 ((GFPC)								
	,	Count	Total						
Deculé	Ovalifian			DI	MDC	l lmi4	Dramarad	Amalumad	Dil Fac
Result	Qualifier	(20+/-)	(20+/-)	KL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.363	U	0.285	0.287	1.00	0.449	pCi/L	06/27/18 12:02	07/19/18 13:28	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
96.2		40 - 110					06/27/18 12:02	07/19/18 13:28	1
89.7		40 - 110					06/27/18 12:02	07/19/18 13:28	1
	Result 0.363 %Yield 96.2	Result Qualifier 0.363 U %Yield Qualifier 96.2	Count Uncert. (2σ+/-) 0.363 U 0.285	Count Uncert. Uncert. (2σ+/-) (2σ+/-)	Count Total Uncert. Uncert. Uncert. Count Total Uncert. U	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC MVield Qualifier Limits 96.2 40-110 MDC M	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.363 U O.285 O.287 O.287 O.449 PCi/L	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.363 U 0.285 0.287 1.00 0.449 pCi/L 06/27/18 12:02 WYield Qualifier Limits Prepared Prepared 06/27/18 12:02 O6/27/18 O6/27/	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. Occupied Occupied

Method: Ra226 Ra2	228 - Con	nbined Ra	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.324	U	0.320	0.322	5.00	0.449	pCi/L		07/24/18 10:36	1

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-5

Matrix: Water

Client Sample ID: AY13798 MW-9

Date Collected: 06/12/18 09:53 Date Received: 06/15/18 09:03

Method: 9315 - Rad	dium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0585	U	0.167	0.167	1.00	0.320	pCi/L	06/27/18 08:48	07/19/18 21:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.7		40 - 110					06/27/18 08:48	07/19/18 21:19	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0829	U	0.273	0.273	1.00	0.476	pCi/L	06/27/18 12:02	07/19/18 13:28	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.7		40 - 110					06/27/18 12:02	07/19/18 13:28	1
Y Carrier	87.9		40 - 110					06/27/18 12:02	07/19/18 13:28	1

Method: Ra226 Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.141	U	0.320	0.320	5.00	0.476	pCi/L		07/24/18 10:36	1

7/24/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-6

Matrix: Water

Client Sample ID: AY13799 MW-10

Date Collected: 06/12/18 10:51 Date Received: 06/15/18 09:03

ium-226 (GFPC)	0	Tatal						
		Uncert.	uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
-0.0225	U	0.130	0.130	1.00	0.302	pCi/L	06/27/18 08:48	07/19/18 21:19	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
100		40 - 110					06/27/18 08:48	07/19/18 21:19	1
	Result -0.0225 %Yield	Result Qualifier -0.0225 U %Yield Qualifier 100	Count Uncert.	Count Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Count Uncert. Uncert. Uncert. Count Uncert. U	Count Total Uncert. Uncert. Uncert. Count Uncert. Uncert.	Count Total Uncert. Uncert. Count Uncert. Uncert. Count Uncert. Uncert. Count Uncert. Uncert. Count Uncert. Uncert. Count Uncert. Count Uncert. Count Uncert. Unc	Count Total Uncert. Uncert. Uncert. Prepared -0.0225 U 0.130 0.130 1.00 0.302 PCi/L -0.025 WYield Qualifier Limits Prepared -0.025 Prepared -0.025	Count Uncert. Uncert. Variety Variety

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.241	U	0.278	0.279	1.00	0.457	pCi/L	06/27/18 12:02	07/19/18 13:28	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	100		40 - 110					06/27/18 12:02	07/19/18 13:28	1
Y Carrier	90.8		40 - 110					06/27/18 12:02	07/19/18 13:28	1

Method: Ra226 Ra	228 - Combined R	adium-226 a	and Radiun	n-228					
_		Count	Total						
		Uncert.	Uncert.						
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.218 U	0.307	0.308	5.00	0.457	pCi/L		07/24/18 10:36	1

+ 228

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

Lab Sample ID: 400 155116

TestAmerica Job ID: 400-155116-2

SDG: Gaston Gypsum 1155

Client Sample ID: AY13800 MW-11

Date Collected: 06/12/18 12:37 Date Received: 06/15/18 09:03 Lab Sample ID: 400-155116-7

Matrix: Water

	Method: 9315 - Rad	dium-226 ((GFPC)								
				Count Uncert.	Total Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
ļĪ	Radium-226	0.0327	U	0.148	0.148	1.00	0.300	pCi/L	06/27/18 08:48	07/19/18 21:19	1
,	Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
	Ba Carrier	97.3		40 - 110					06/27/18 08:48	07/19/18 21:19	1

97.3		40 - 110					00/21/10 00.40	01/19/10 21.19	1
dium-228 (GFPC)								
	•	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.536		0.299	0.303	1.00	0.442	pCi/L	06/27/18 12:02	07/19/18 13:28	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
97.3		40 - 110					06/27/18 12:02	07/19/18 13:28	1
88.2		40 - 110					06/27/18 12:02	07/19/18 13:28	1
	Result 0.536 %Yield 97.3	Result Qualifier 0.536 WYield Qualifier 97.3	Count Uncert.	Count Uncert. Uncert. Uncert. (2σ+/-) (2σ+/-) (2σ+/-) (2σ+/-) (303) WYield Qualifier Limits 97.3 40-110	Count Total Uncert. Uncert. Uncert. Count Uncert. Uncert.	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC MDC MOC MOC	Count Total Uncert. Uncert. Uncert. O.536 Uncert O.299 O.303 O.442 PCi/L	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.536 0.299 0.303 1.00 0.442 pCi/L 06/27/18 12:02 WYield Qualifier Limits Prepared 06/27/18 12:02 Prepared 06/27/18 12:02 O6/27/18 O	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.536 O.299 O.303 O.442 O

Method: Ra226_Ra	228 - Combine	ed Radium-226 a	ınd Radiur	n-228					
_		Count	Total						
		Uncert.	Uncert.						
Analyte	Result Qua	lifier (2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.569	0.334	0.337	5.00	0.442	pCi/L	 -	07/24/18 10:36	1

3

6

8

9

10

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Client Sample ID: AY13801 MW-12

Date Collected: 06/12/18 13:33 Date Received: 06/15/18 09:03 Lab Sample ID: 400-155116-8

Matrix: Water

Method: 9315 - Rad	dium-226 ((GFPC)								
		•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.174	U	0.189	0.189	1.00	0.296	pCi/L	06/27/18 08:48	07/19/18 21:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.4		40 - 110					06/27/18 08:48	07/19/18 21:19	1

Ba Carrier	99.4		40 - 110					06/27/18 08:48	07/19/18 21:19	1
- Method: 9320 - R	adium-228 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.148	U	0.276	0.277	1.00	0.471	pCi/L	06/27/18 12:02	07/19/18 13:29	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.4		40 - 110					06/27/18 12:02	07/19/18 13:29	1
Y Carrier	87.9		40 - 110					06/27/18 12:02	07/19/18 13:29	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.321	U	0.335	0.335	5.00	0.471	pCi/L		07/24/18 10:36	1

+ 228

3

6

8

10

11

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-9

Matrix: Water

Client Sample ID: AY13802 MW-13 Date Collected: 06/12/18 14:16

Date Received: 06/15/18 09:03

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0101	U	0.139	0.139	1.00	0.299	pCi/L	06/27/18 08:48	07/19/18 21:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier			40 - 110					06/27/18 08:48	07/19/18 21:19	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0483	U	0.232	0.232	1.00	0.432	pCi/L	06/27/18 12:02	07/19/18 13:29	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101	-	40 - 110					06/27/18 12:02	07/19/18 13:29	1
Y Carrier	87.5		40 - 110					06/27/18 12:02	07/19/18 13:29	1

Method: Ra226_Ra	228 - Combined Ra	dium-226 a	nd Radiun	1-228				
_		Count	Total					
		Uncert.	Uncert.					
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	-0.0382 U	0.270	0.270	5.00	0.432 pCi/L		07/24/18 10:36	1

+ 228

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-10

Client Sample ID: AY13803 MW-1

Date Collected: 06/12/18 15:03 Date Received: 06/15/18 09:03

Matrix: Water

Method: 9315 - R	adium-226 (GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.564		0.263	0.267	1.00	0.259	pCi/L	06/27/18 08:48	07/19/18 21:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					06/27/18 08:48	07/19/18 21:19	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.326	U	0.260	0.262	1.00	0.409	pCi/L	06/27/18 12:02	07/19/18 13:29	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					06/27/18 12:02	07/19/18 13:29	1
Y Carrier	86.7		40 - 110					06/27/18 12:02	07/19/18 13:29	1

Method: Ra226_Ra	228 - Combined R	adium-226 a	ınd Radiur	n-228					
_		Count	Total						
		Uncert.	Uncert.						
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.890	0.370	0.374	5.00	0.409	pCi/L		07/24/18 10:36	1

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Client Sample ID: AY13804 MW-15

Lab Sample ID: 400-155116-11 Date Collected: 06/12/18 15:56 **Matrix: Water**

Date Received: 06/15/18 09:03

Method: 9315 - Rad	dium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Posult	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
			<u>`</u>							Diriac
Radium-226	0.316	U	0.240	0.241	1.00	0.329	pCi/L	06/27/18 08:48	07/19/18 21:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					06/27/18 08:48	07/19/18 21:26	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.130	U	0.245	0.245	1.00	0.419	pCi/L	06/27/18 12:02	07/19/18 13:29	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					06/27/18 12:02	07/19/18 13:29	1
Y Carrier	89.0		40 - 110					06/27/18 12:02	07/19/18 13:29	1

Method: Ra226_Ra	a228 - Combined I	Radium-226 a	and Radiu	m-228					
_		Count	Total						
		Uncert.	Uncert.						
Analyte	Result Qualifie	r (2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.446	0.343	0.344	5.00	0.419	pCi/L		07/24/18 10:36	1

7/24/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Client Sample ID: AY13805 MW-3 Lab Sample ID: 400-155116-12

Date Collected: 06/12/18 17:45 Date Received: 06/15/18 09:03

Lab	Sai	libie	ID.	400-	1001	10-12
				M	atrix:	Water

Method: 9315 - R	adium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.272	U	0.239	0.240	1.00	0.351	pCi/L	06/27/18 08:48	07/19/18 21:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.4		40 - 110					06/27/18 08:48	07/19/18 21:25	1

Method: 9320 - I	·	,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0163	Ū	0.345	0.345	1.00	0.606	pCi/L	06/27/18 12:02	07/19/18 13:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.4		40 - 110					06/27/18 12:02	07/19/18 13:21	1
Y Carrier	88.2		40 - 110					06/27/18 12:02	07/19/18 13:21	1

Method: Ra226_Ra	228 - Com	nbined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.289	U	0.420	0.420	5.00	0.606	pCi/L		07/24/18 10:36	1

+ 228

2

4

6

8

9

10

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-13

Matrix: Water

Client Sample ID: AY13806 MW-14S

Date Collected: 06/12/18 18:56 Date Received: 06/15/18 09:03

Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analvzed	Dil Fac
										Dilla
Radium-226	0.0768	U	0.196	0.196	1.00	0.368	pCi/L	06/27/18 08:48	07/19/18 21:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.5		40 - 110					06/27/18 08:48	07/19/18 21:25	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.596		0.352	0.357	1.00	0.535	pCi/L	06/27/18 12:02	07/19/18 13:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.5		40 - 110					06/27/18 12:02	07/19/18 13:21	1
Y Carrier	84.1		40 - 110					06/27/18 12:02	07/19/18 13:21	1

Method: Ra226 Ra	228 - Con	bined Rad	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.672		0.403	0.407	5.00	0.535	pCi/L		07/24/18 10:36	1

Client: Alabama Power General Test Laboratory

Client Sample ID: AY13807 MW-2

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-14

Matrix: Water

Date Collected: 06/12/18 19:44 Date Received: 06/15/18 09:03

Method: 9315 - Ra	dium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.233	U	0.261	0.262	1.00	0.419	pCi/L	06/27/18 08:48	07/19/18 21:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.9		40 - 110					06/27/18 08:48	07/19/18 21:25	1

Method: 9320 - F	Padium-228 /	GEPC)								
Analyte		Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.359		0.338	0.340	1.00		pCi/L	·	07/19/18 13:21	1
Carrier Ba Carrier	% Yield 95.9	Qualifier	Limits 40 - 110					Prepared 06/27/18 12:02	Analyzed 07/19/18 13:21	Dil Fac
Y Carrier	90.5		40 - 110					06/27/18 12:02	07/19/18 13:21	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.592		0.427	0.429	5.00	0.547	pCi/L		07/24/18 10:36	1

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-15

Client Sample ID: AY13808 MW-6 DUP Date Collected: 06/11/18 12:24

Date Received: 06/15/18 09:03

Method: 9315 - Ra	dium-226 ((GFPC)	Count	Total						
Amaluta	Decult	Ovalifian	Uncert.	Uncert.	DI	MDC	l lmi4	Dramarad	Amalumad	Dil Foo
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC		Prepared	Analyzed	Dil Fac
Radium-226	0.351	U	0.276	0.278	1.00	0.390	pCi/L	06/27/18 08:48	07/19/18 21:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.5		40 - 110					06/27/18 08:48	07/19/18 21:25	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0311	U	0.350	0.350	1.00	0.622	pCi/L	06/27/18 12:02	07/19/18 13:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.5		40 - 110					06/27/18 12:02	07/19/18 13:21	1
Y Carrier	89.3		40 - 110					06/27/18 12:02	07/19/18 13:21	1

Method: Ra226 Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.319	U	0.446	0.447	5.00	0.622	pCi/L	_	07/24/18 10:36	1

Matrix: Water

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Client Sample ID: AY13809 FB-1

Date Collected: 06/11/18 15:03 Date Received: 06/15/18 09:03 Lab Sample ID: 400-155116-16

. Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)	Count Uncert.	Total Uncert.					
Analyte Radium-226	Result 0.0293	Qualifier U	(2σ+/-) 0.161	(2σ+/-) 0.161	1.00	MDC 0.335	 Prepared 06/27/18 08:48	Analyzed 07/19/18 21:25	Dil Fac
Carrier Ba Carrier	%Yield 96.8	Qualifier	Limits 40 - 110				Prepared 06/27/18 08:48	Analyzed 07/19/18 21:25	Dil Fac

١											•
	Method: 9320 - I	Radium-228 (GFPC)								
				Count	Total						
				Uncert.	Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
	Radium-228	0.286	U	0.292	0.293	1.00	0.475	pCi/L	06/27/18 12:02	07/19/18 13:21	1
	Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
	Ba Carrier	96.8		40 - 110					06/27/18 12:02	07/19/18 13:21	
	Y Carrier	90.5		40 - 110					06/27/18 12:02	07/19/18 13:21	1

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.315	U	0.333	0.334	5.00	0.475	pCi/L		07/24/18 10:36	1

2

5

5

7

9

10

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Client Sample ID: AY13810 MW-10 DUP

Date Collected: 06/12/18 10:51 Date Received: 06/15/18 09:03 Lab Sample ID: 400-155116-17

. Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0244	U	0.151	0.151	1.00	0.344	pCi/L	06/27/18 08:48	07/19/18 21:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					06/27/18 08:48	07/19/18 21:25	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0667	Ū	0.284	0.284	1.00	0.500	pCi/L	06/27/18 12:02	07/19/18 13:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					06/27/18 12:02	07/19/18 13:21	1
Y Carrier	80.0		40 - 110					06/27/18 12:02	07/19/18 13:21	1

Method: Ra226_Ra2	28 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.0422	U	0.322	0.322	5.00	0.500	pCi/L	_	07/24/18 10:36	1

6

8

9

11

12

1

7/24/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-18

Client Sample ID: AY13811 FB-2 Date Collected: 06/12/18 12:06 **Matrix: Water** Date Received: 06/15/18 09:03

	Method: 9315 - Rad	lium-226 ((GFPC)								
			,	Count Uncert.	Total Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
	Radium-226	0.0710	U	0.176	0.177	1.00	0.335	pCi/L	06/27/18 08:48	07/19/18 21:25	1
	Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
L	Ba Carrier	97.9		40 - 110					06/27/18 08:48	07/19/18 21:25	1

Ba Carrier	97.9		40 - 110					06/27/18 08:48	07/19/18 21:25	1
	dium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0211	U	0.240	0.240	1.00	0.434	pCi/L	06/27/18 12:02	07/19/18 13:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.9		40 - 110					06/27/18 12:02	07/19/18 13:21	1
Y Carrier	105		40 - 110					06/27/18 12:02	07/19/18 13:21	1

Method: Ra226 Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.0499	Ū	0.298	0.298	5.00	0.434	pCi/L		07/24/18 10:36	1

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Client Sample ID: AY13812 EB-1

Date Collected: 06/12/18 20:11 Date Received: 06/15/18 09:03 Lab Sample ID: 400-155116-19

Matrix: Water

Method: 9318	5 - Radium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.252	U	0.228	0.229	1.00	0.340	pCi/L	06/27/18 08:48	07/19/18 21:24	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					06/27/18 08:48	07/19/18 21:24	1

104		40 - 110					06/27/18 08:48	07/19/18 21:24	1
adium-228 ((GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.0241	U	0.275	0.275	1.00	0.488	pCi/L	06/27/18 12:02	07/19/18 13:22	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
104		40 - 110					06/27/18 12:02	07/19/18 13:22	1
88.6		40 - 110					06/27/18 12:02	07/19/18 13:22	1
	Result 0.0241 %Yield 104	Result Qualifier 0.0241 U WYield Qualifier 104	Count Uncert. (2σ+/-) 0.0241 U 0.275	Count Total Uncert. Uncert. (2σ+/-) (2σ+/-)	Count Total Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) (2σ+/-) RL MDC (0.0241 U 0.275 0.275 1.00 0.488 (2σ+/-) (2σ+/-)	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.0241 U O.275 O.275 O.275 O.488 PCi/L	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.0241 U 0.275 0.275 1.00 0.488 pCi/L 06/27/18 12:02 WYield Qualifier Limits Prepared 06/27/18 12:02 06/27/18 12:02 O6/27/18 12:02 O6/27/18 12:02 O6/27/18 O6/27/18	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed O.0241 U O.275 O.275 O.275 O.488 PCi/L O6/27/18 12:02 O7/19/18 13:22

Method: Ra226 Ra2	228 - Con	nbined Ra	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.276	Ū	0.357	0.358	5.00	0.488	pCi/L	_	07/24/18 10:36	1

6

8

3

11

12

L

Definitions/Glossary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Qualifiers

Rad

DLC

Qualifier	Qualifier Description
-----------	-----------------------

U Result is less than the sample detection limit.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TestAmerica Pensacola

TestAmerica Job ID: 400-155116-2

SDG: Gaston Gypsum 1155

Client Sample ID: AY13794 MW-5

Client: Alabama Power General Test Laboratory

Date Collected: 06/11/18 11:31 Date Received: 06/15/18 09:03

Project/Site: CCR Plant Gaston

Lab Sample ID: 400-155116-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376497	07/19/18 21:18	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376497	07/19/18 13:23	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Client Sample ID: AY13795 MW-6 Lab Sample ID: 400-155116-2

Date Collected: 06/11/18 12:24

Date Received: 06/15/18 09:03

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376497	07/19/18 21:18	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376497	07/19/18 13:24	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Client Sample ID: AY13796 MW-7 Lab Sample ID: 400-155116-3

Date Collected: 06/11/18 14:44

Date Received: 06/15/18 09:03

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376497	07/19/18 21:18	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376497	07/19/18 13:24	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Client Sample ID: AY13797 MW-8 Lab Sample ID: 400-155116-4

Date Collected: 06/12/18 08:51

Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376497	07/19/18 21:19	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376498	07/19/18 13:28	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Page 26 of 39

TestAmerica Pensacola

7/24/2018

Client Sample ID: AY13798 MW-9

Client: Alabama Power General Test Laboratory

Date Collected: 06/12/18 09:53 Date Received: 06/15/18 09:03

Project/Site: CCR Plant Gaston

Lab Sample ID: 400-155116-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376497	07/19/18 21:19	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376498	07/19/18 13:28	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Client Sample ID: AY13799 MW-10 Lab Sample ID: 400-155116-6

Date Collected: 06/12/18 10:51 Date Received: 06/15/18 09:03 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376497	07/19/18 21:19	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376498	07/19/18 13:28	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Client Sample ID: AY13800 MW-11 Lab Sample ID: 400-155116-7

Date Collected: 06/12/18 12:37 Date Received: 06/15/18 09:03 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376497	07/19/18 21:19	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376498	07/19/18 13:28	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Client Sample ID: AY13801 MW-12

Date Collected: 06/12/18 13:33

Lab Sample ID: 400-155116-8

Matrix: Water

Date Collected: 06/12/18 13:33 Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376497	07/19/18 21:19	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376498	07/19/18 13:29	RTM	TAL SL
Total/NA	Analysis	Ra226 Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

TestAmerica Pensacola

Page 27 of 39

TestAmerica Job ID: 400-155116-2

SDG: Gaston Gypsum 1155

Client Sample ID: AY13802 MW-13

Client: Alabama Power General Test Laboratory

Date Collected: 06/12/18 14:16 Date Received: 06/15/18 09:03

Project/Site: CCR Plant Gaston

Lab Sample ID: 400-155116-9

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376497	07/19/18 21:19	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376498	07/19/18 13:29	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Lab Sample ID: 400-155116-10 Client Sample ID: AY13803 MW-1

Date Collected: 06/12/18 15:03 Date Received: 06/15/18 09:03

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Method Number Type Run Factor or Analyzed Analyst Lab Total/NA Prep PrecSep-21 372801 06/27/18 08:48 JLC TAL SL Total/NA Analysis 9315 1 376497 07/19/18 21:19 RTM TAL SL Total/NA TAL SL Prep PrecSep_0 372831 06/27/18 12:02 JLC Total/NA Analysis 9320 1 376498 07/19/18 13:29 RTM TAL SL TAL SL Total/NA Analysis Ra226_Ra228 1 377653 07/24/18 10:36 RTM

Client Sample ID: AY13804 MW-15 Lab Sample ID: 400-155116-11

Date Collected: 06/12/18 15:56 Date Received: 06/15/18 09:03

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376495	07/19/18 21:26	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376498	07/19/18 13:29	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Client Sample ID: AY13805 MW-3 Lab Sample ID: 400-155116-12

Date Collected: 06/12/18 17:45	Matrix: Water
Date Received: 06/15/18 09:03	

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376495	07/19/18 21:25	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376495	07/19/18 13:21	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

TestAmerica Pensacola

7/24/2018

SDG: Gaston Gypsum 1155

Client Sample ID: AY13806 MW-14S

Client: Alabama Power General Test Laboratory

Date Collected: 06/12/18 18:56 Date Received: 06/15/18 09:03

Project/Site: CCR Plant Gaston

Lab Sample ID: 400-155116-13

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376495	07/19/18 21:25	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376495	07/19/18 13:21	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Client Sample ID: AY13807 MW-2 Lab Sample ID: 400-155116-14

Date Collected: 06/12/18 19:44

Matrix: Water

Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376495	07/19/18 21:25	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376495	07/19/18 13:21	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Client Sample ID: AY13808 MW-6 DUP Lab Sample ID: 400-155116-15

Date Collected: 06/11/18 12:24 Date Received: 06/15/18 09:03

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376495	07/19/18 21:25	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376495	07/19/18 13:21	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Lah Sample ID: 400-155116 16 Client Sample ID: AY13809 FB-1

Date Collected: 06/11/18 15:03 Date Received: 06/15/18 09:03

Lab Sample ID.	400-133110-10
	Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376495	07/19/18 21:25	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376495	07/19/18 13:21	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

TestAmerica Pensacola

Lab Chronicle

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

Date Received: 06/15/18 09:03

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Lab Sample ID: 400-155116-17

Client Sample ID: AY13810 MW-10 DUP Date Collected: 06/12/18 10:51 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376495	07/19/18 21:25	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376495	07/19/18 13:21	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Client Sample ID: AY13811 FB-2 Lab Sample ID: 400-155116-18

Date Collected: 06/12/18 12:06 **Matrix: Water**

Date Received: 06/15/18 09:03

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376495	07/19/18 21:25	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376495	07/19/18 13:21	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Lab Sample ID: 400-155116-19 Client Sample ID: AY13812 EB-1

Date Collected: 06/12/18 20:11 **Matrix: Water**

Date Received: 06/15/18 09:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			372801	06/27/18 08:48	JLC	TAL SL
Total/NA	Analysis	9315		1	376495	07/19/18 21:24	RTM	TAL SL
Total/NA	Prep	PrecSep_0			372831	06/27/18 12:02	JLC	TAL SL
Total/NA	Analysis	9320		1	376495	07/19/18 13:22	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	377653	07/24/18 10:36	RTM	TAL SL

Laboratory References:

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

QC Association Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Rad

Prep Batch: 372801

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-155116-1	AY13794 MW-5	Total/NA	Water	PrecSep-21	
400-155116-2	AY13795 MW-6	Total/NA	Water	PrecSep-21	
400-155116-3	AY13796 MW-7	Total/NA	Water	PrecSep-21	
400-155116-4	AY13797 MW-8	Total/NA	Water	PrecSep-21	
400-155116-5	AY13798 MW-9	Total/NA	Water	PrecSep-21	
400-155116-6	AY13799 MW-10	Total/NA	Water	PrecSep-21	
400-155116-7	AY13800 MW-11	Total/NA	Water	PrecSep-21	
400-155116-8	AY13801 MW-12	Total/NA	Water	PrecSep-21	
400-155116-9	AY13802 MW-13	Total/NA	Water	PrecSep-21	
400-155116-10	AY13803 MW-1	Total/NA	Water	PrecSep-21	
400-155116-11	AY13804 MW-15	Total/NA	Water	PrecSep-21	
400-155116-12	AY13805 MW-3	Total/NA	Water	PrecSep-21	
400-155116-13	AY13806 MW-14S	Total/NA	Water	PrecSep-21	
400-155116-14	AY13807 MW-2	Total/NA	Water	PrecSep-21	
400-155116-15	AY13808 MW-6 DUP	Total/NA	Water	PrecSep-21	
400-155116-16	AY13809 FB-1	Total/NA	Water	PrecSep-21	
400-155116-17	AY13810 MW-10 DUP	Total/NA	Water	PrecSep-21	
400-155116-18	AY13811 FB-2	Total/NA	Water	PrecSep-21	
400-155116-19	AY13812 EB-1	Total/NA	Water	PrecSep-21	
MB 160-372801/22-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-372801/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-155116-5 DU	AY13798 MW-9	Total/NA	Water	PrecSep-21	

Prep Batch: 372831

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
400-155116-1	AY13794 MW-5	Total/NA	Water	PrecSep_0	
400-155116-2	AY13795 MW-6	Total/NA	Water	PrecSep_0	
400-155116-3	AY13796 MW-7	Total/NA	Water	PrecSep_0	
400-155116-4	AY13797 MW-8	Total/NA	Water	PrecSep_0	
400-155116-5	AY13798 MW-9	Total/NA	Water	PrecSep_0	
100-155116-6	AY13799 MW-10	Total/NA	Water	PrecSep_0	
400-155116-7	AY13800 MW-11	Total/NA	Water	PrecSep_0	
100-155116-8	AY13801 MW-12	Total/NA	Water	PrecSep_0	
100-155116-9	AY13802 MW-13	Total/NA	Water	PrecSep_0	
100-155116-10	AY13803 MW-1	Total/NA	Water	PrecSep_0	
100-155116-11	AY13804 MW-15	Total/NA	Water	PrecSep_0	
100-155116-12	AY13805 MW-3	Total/NA	Water	PrecSep_0	
100-155116-13	AY13806 MW-14S	Total/NA	Water	PrecSep_0	
00-155116-14	AY13807 MW-2	Total/NA	Water	PrecSep_0	
400-155116-15	AY13808 MW-6 DUP	Total/NA	Water	PrecSep_0	
100-155116-16	AY13809 FB-1	Total/NA	Water	PrecSep_0	
100-155116-17	AY13810 MW-10 DUP	Total/NA	Water	PrecSep_0	
100-155116-18	AY13811 FB-2	Total/NA	Water	PrecSep_0	
100-155116-19	AY13812 EB-1	Total/NA	Water	PrecSep_0	
MB 160-372831/22-A	Method Blank	Total/NA	Water	PrecSep_0	
CS 160-372831/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-155116-5 DU	AY13798 MW-9	Total/NA	Water	PrecSep 0	

2

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

on Gypsum 1155

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-372801/22-A

Matrix: Water

Matrix: Water

Analysis Batch: 376495

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 372801

-			Count	Total					
	MB	MB	Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.08852	U	0.230	0.230	1.00	0.423 pCi/L	06/27/18 08:48	07/19/18 21:24	1

MB MB

 Carrier
 %Yield
 Qualifier
 Limits

 Ba Carrier
 104
 40 - 110

06/27/18 08:48 07/19/18 21:24 1

Prepared

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 372801

Analyzed

Analysis Batch: 376497 Total Spike LCS LCS %Rec. Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL**MDC** Unit %Rec Limits Radium-226 15.1 13.31 1.65 1.00 0.304 pCi/L 88 68 - 137

LCS LCS

Lab Sample ID: LCS 160-372801/1-A

 Carrier
 %Yield Ba Carrier
 Qualifier 104
 Limits 40 - 110

Lab Sample ID: 400-155116-5 DU Client Sample ID: AY13798 MW-9

Matrix: Water

Analysis Batch: 376497

Prep Type: Total/NA

Prep Batch: 372801

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-226 0.0585 U 0.1696 U 0.198 1.00 0.318 pCi/L 0.30

DU DU

 Carrier
 %Yield Ba Carrier
 Qualifier 97.1
 Limits 40 - 110

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-372831/22-A

Client Sample ID: Method Blank

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 376495

			Count	Total					
	MB	MB	Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.2188	U	0.286	0.287	1.00	0.475 pCi/	D6/27/18 12:02	07/19/18 13:22	1

 MB MB

 Carrier
 %Yield Qualifier
 Limits
 Prepared 06/27/18 12:02
 Analyzed 07/19/18 13:22
 Dil Fac 06/27/18 12:02

 Ba Carrier
 104
 40 - 110
 06/27/18 12:02
 07/19/18 13:22
 1

 Y Carrier
 87.5
 40 - 110
 06/27/18 12:02
 07/19/18 13:22
 1

4

5

7

8

Dil Fac

10

12

1.

ole ID: Method Blan

Prep Batch: 372831

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-372831/1-A

Matrix: Water

Analysis Batch: 376497

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 372831

Total

Spike LCS LCS Uncert. %Rec. Added **Analyte** Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-228 10.8 10.01 1.20 1.00 0.415 pCi/L 92 56 - 140

LCS LCS

 Carrier
 % Yield Date
 Qualifier Qualifier
 Limits 40 - 110

 Ba Carrier
 104
 40 - 110

 Y Carrier
 82.6
 40 - 110

Lab Sample ID: 400-155116-5 DU

Client Sample ID: AY13798 MW-9

Prep Type: Total/NA

Prep Batch: 372831

Total

Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-228 0.0829 U 0.1984 U 0.294 1.00 0.492 pCi/L 0.20

DU DU

 Carrier
 %Yield
 Qualifier
 Limits

 Ba Carrier
 97.1
 40 - 110

 Y Carrier
 85.6
 40 - 110

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Lab Sample ID: 400-155116-5 DU

Matrix: Water

Matrix: Water

Analysis Batch: 376498

Analysis Batch: 377653

Client Sample ID: AY13798 MW-9

Prep Type: Total/NA

Total DU DU Sample Sample Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL MDC Unit Limit RER 0.3679 U 0.141 U Combined 0.354 5.00 0.492 pCi/L 0.34

228

Radium 226 +

TestAmerica Pensacola

2

5

7

_

10

12

Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671		Chain	ot Cus	Chain of Custody Record	CO	3								1	1 1 1 1 1 1 1 1 1	Date of the second second second second second
Client Information	Sampler. Anthony Goggins	9		Leb	2 E	l gave	1 0	1		Г	Camer Tracking No(s)	ing No(s)		03	C No.	
Client Contact Sarah Copeland	Phone			E-Ma	1000	himira	1 6		E-Mail:	T				8 E	400-56525-24537.1	4537.1
Company: Alabama Power General Test Laboratory								A	ame.co			1		Ç ş	ge 1 of 2	2111
Address: 744 County Rd 87 GSC #8	Due Date Requestrd;	ÿ					-	仁	Alianysis Requested			F	E	1 2	Preservation Codes	Codes:
Chy Calera	TAT Requested (days):	1	Positine				-							₹ 80	HCL	M - Hexane N - None
State, Z.b.: AL, 35040	T				30			Dd:						اهٔ ن	C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
Phone: 205-664-6121(Tell)	# Od				(0			15°65		-	3		-	<u></u> 6	MeOH MeOH	Q - Na2SQ3 R - Na2S2Q3
Emai: spcopela@southernco.com	WOR							*#928	_		Ą	uv	-		Ascorbic Ac	d T - TSP Dodecal
Project Name: CCR	Project # 40007143							SeA ,65	_	00	j	100	-		J-Di Water K-EDTA	V - MCAA W - ph 4-5
Ske. Gaston Gypsum 1155	SSOWE							SaR_C		100	400 455116 COC	S	-		EDA	Z - other (specify
Semple Identification			Sample Type (C=comp,	Sample Type Matrix (verses, (C=Comp., seeds, overses)	eld Filtøred S MSM moh	0 4200 F_C	1 4200 204 E	12_Ra226, 932						o redmuM la		
	Sample Date		G=grab)	STaTions, Ander		_	+	€6	+	1	1	-	1	ΙοΤ	Specia	Special Instructions/Note:
AY13794	6/11/18	1131	o	Water	8	z×	×	>			1	-	1	X	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
AY13795	6/11/18	1224	U	Water	+	+	-	+	+	t	1	+	+		45	
AY13796	6/11/18	1444	o	Water	-	+	-	-	+	\pm	1	+	+		W-7	
AY13797	8/12/18	0851	o	Water	-	+	+-	+	+	\pm	1	+	+	A MW-8	87	
AY13798	6/12/18	0963	o	Water	>	+-	+-	+-	+	t	ļ	+	$^{+}$		67	
AY13799	6/12/18	1051	o	Water	+	+-	+	+	+	\dagger	Ŧ	Ŧ	+	, c	MW-10	
AY13800	6/12/18	1237	o	Water	\vdash	+	+-	+	+	\dagger	1	Ŧ	+		MW-11	
AY13801	6/12/18	1333	o	Water	+	+-	-	-	+	\pm	Ŧ	+	$^{+}$	A C	MW-12	
AY13802	6/12/18	1416	o	Water	+	+	+-	+-	+	†	‡	Ŧ	+		MW-13	
AY13803	6/12/18	1503	o	Water	+	+	-	+	+	†	1	+	+		4.1	
					+		-	-	+	1	1	7	+	2		
					+		+	1	+	+	1	+	+	+		
					\vdash		+	I	-	t	ļ	\perp	+			
					-		\vdash	1	+	\perp	1	F	+	t		
							\vdash		\vdash			F	+			
					\dashv		-					H				
			1		+	\top	+		+	+						
1					3,		- Sons					\exists	\dashv			
Non-Hazard Flammable Skin Initant P Peliverable Requested: 1, 11, 11, N. Other (specify)	Poison B Unknown		Rediological		4	- R	7 m	Client	Return To Client Diss		Disposal By Lab	l.ab		etained for Archive For	longer th	TReturn To Client Disposal By Lab Archive For Months
Emoty Kit Refinatished by					<u>~</u>	Cial III	struction	us/oc	Requir	ements	. II					
ReInquished by: Sarah Copeland	Date/Time: 6/14/2018: 0800	Uate:	ľ		ijij.				Н		Method	Method of Shipment:	aut;			
Relinquished by	Oate/Time.		* 2	APC	1	vecenage py.	à l					Date/Time	Lime:			Company
Relinquished by:	Date/Time			Company		Received Inc.			-	1		Date/Time	į į	- 1		Company
Custody Seals Intact Custody Seal No.:					T		Jan Jan	7	E	X		9	10-15-18		903	Company CON
Δ Yes Δ No						CBOIR	emper	fureres	C and Od	er Reme	# 5·(S.600	14.30E		3.700	8-21

Control Cont	Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671		Chain	of Cu	Chain of Custody Record	Corc	_									Constitution of the last way
Comparison Com	Client Information	Sampler. Anthony Goggin			Lab P	nire, C	heyen	2				Tracking	No(s)		COC No:	1537 1
Committee Comm	Client Contact Sarah Copeland	Phone:			E-Mail chey	w.euu	hitmire	@test	meric	inc.com					Page Page 2 of 2	
The properties The	Company: Alabama Power General Test Laboratory								Ans	lysis R	sanba	Pe			Job #:	55116
Committee Comm	Address 744 County Rd 87 GSC #8	Due Dats Requestr	÷				H	H		Ļ	F				Preservation C	
Companies September Sept	Criy. Calera	TAT Requested (da	1	eğ.			_	_		_				_	B - NaOH	
100 cm	State, Zie: AL, 35040								Spec	_			_		D - Nitric Acid E - NaHSO4	
Colored Colo	Phone: 205-664-6121(Tel)	PO #				(0)		_	"SZ8"C						F - MeOH G - Amehlor	
Sample Communication Sample Sample Communication Sample Sample Communication Sample Communication Sample Communication Sample Communication Sample	Email: Socoola@southernco.com	WO#							2398			_	_	. El	I - fee	
Copporation	Project Name CCR	Project#*						_	±85, R±	_	_			enleti		W-ph 4-5 Z-other (specify)
Sumple Date Sumpl	Site. Gaston Gypsum 1155	SSOW#						_	.a9_05					102 JO		
Freehrusten Code:	Sample Identification	Samole Date	Sample	Sample Type (C=comp,	Matrix (wesses.				342 B*556, 93					TedmiN Isto		
61/21/8 1/24 G Water X X X X X X X X X		\bigvee	X	Preser	vertion Code:			+		F	-	+	1			i matructions/note:
Serior 1745 G. Weller X.	AY13804	6/12/18	1556	b	Water	E	-	-	-			H				
Self-2718 1954 G Welter X X X X X X X X X	AY13805	6/12/18	1745	ဗ	Water	E	-	-	-	F	F	\vdash		Ë		
Septembre Sept	AY13806	6/12/18	1856	ပ	Water		-	+-	+			\vdash	L	Ë	MW-14S	
611/16 1224 G Welter X X X X X X X X X	AY13807	6/12/18	1944	O	Water		-	-	-			-		Ë		
Gri 1918 1503 G Water X X X X X X X X X	AY13808	6/11/18	1224	စ	Water		-	-	-							ample Duplicate)
Gri 218 1056 G Weter X X X X X X X X X	AY13809	6/11/18	1503	ဗ	Water		×	-	-							ank)
Self-2718 1206 G Wester X X X X X X X X X	AY13810	6/12/18	1051	၅	Water		×	-	_							Sample Duplicate)
Figure F	AY13811	6/12/18	1206	ပ	Water		×	-	-		-					ank)
Couploy Seal No. Company Couploy Seal No. Company Company Couploy Seal No. Couplo	AY13812	6/12/18	2011	စ	Water		×	-	-							ent Blank)
Sample Disposal I A fee may be assessed if semples are retained longer than								Н		H		\vdash	Ħ			
Sample Disposal (A fee may be assessed if samples are retained longer then Poison B Unknown Radiological Special Instructions/GC Requirements: Sample Disposal (A fee may be assessed if samples are retained longer then								-								
Sample S							\exists	+	\Box	\dashv	+	\exists	\exists	1		
Sample Disposal (A fee may be assessed if samples are retained fonger than standard contained by: Sarah Copiand Sarah Copiand Sarah Copiand Sarah Copiand DateTime: 6ri 42016: 0300 Company Received by: Received by: Received by: Received by: Received by: DateTime: 6ri 42016: 0300							1	+	4	+	+	1	\downarrow	1		
Lequested I. II. III. N. Other (specify) Sanh Copeled Sanh Copeled Sanh Copeled DaterTime: DaterT						\pm	\downarrow	+	1	+	+	\pm	\downarrow	+		
card — Fammable — Skin Imitant Date:						+	I	+	T	-	+	t	1	+		
Sample Disposal (A fee may be assessed if samples are retained longer than Sample Disposal (A fee may be assessed if samples are retained longer than Sample Disposal (A fee may be assessed if samples are retained longer than In		-				E	I	+		+		t	1	T		
Sample Disposal (A fee may be assessed if samples are retained longer than standard longer than some lequested it. III. IV. Other (specify) Secial Instructions/QC Requirements: Time: Time: Sark Copier Date: Company Received by: Company								\vdash								
Equished hy: In III N. Other (specify) Special Instructions/IQC Requirements: Inne:	ant	Poison B Unki		Radiologica	2	S		Dispo	Sal (A	fee may	De asse	Seed If	Sample		ained longer U	an 1 month)
Sarah Copeland Date/Time: 6/14/2018: 0800 Company Received by. Date/Time: Date/Time: Date/Time: Date/Time: Company Received by. Date/Time: Date/Time: Date/Time: Company Received by. Date/Time: Date/Time: Date/Time: Seals fried: Couloge Time: Confort Time: Confort Time: Date/Time: Date/Time:						S.	Secial I	Istruct	O/suo	Requir	ements:					
Sarah Copeland Date/Time: 614/2018; 0800 Company Received by. Received by. Date/Time: Date/Time: Date/Time: Company Received by. Date/Time: Date/Time: Date/Time: Company Received by. Date/Time:	Empty Kit Relinquished by:		Date:			Time:		ı				Method	Shipmer	Į,		
Date/Time: Company Received by Date/Time: Ombany Received by Date/Time: Ompany Received by ALL SAS 903	ReInquished by: Sarah Copeland	Date/Time: 6/14/2)16; 0800		Company		Recei	yd by.					Date/T	ė		Company
Company Received by ALL Date/Time. Company Received by ALL Date/Time. Call Custody Seal No. Cacler Temperaturies Carl Other Remarks	Reinquished by:	Date/Time:			Company		Recen	yd by					Date/Tr	ae.		Company
Custody Seal No.		Date/Time;			Сотрату		Recei	yed by:	12	1	Y	ï	Date/Ti	Je.	1	Company PE
	Custody Seals Intact Custody Seal No.						Cook	Temp	rathrete	C and O	her Remari		1	2		

Login Sample Receipt Checklist

Client: Alabama Power General Test Laboratory

Job Number: 400-155116-2 SDG Number: Gaston Gypsum 1155

List Source: TestAmerica Pensacola

Login Number: 155116

List Number: 1

Creator: Whitmire, Cheyenne R

Creator: whitmire, Cheyenne R		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.6°C 4.2°C 3.7°C IR-8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Pensacola

Login Sample Receipt Checklist

Client: Alabama Power General Test Laboratory

Job Number: 400-155116-2 SDG Number: Gaston Gypsum 1155

List Source: TestAmerica St. Louis

List Creation: 06/19/18 04:33 PM

Login Number: 155116 List Number: 2

Creator: Press. Nicholas B

Creator: Press, Nicholas B		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	18,18,18
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Pensacola

4

7

9

10

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-19
ANAB	ISO/IEC 17025		L2471	02-22-20
Arizona	State Program	9	AZ0710	01-12-19
Arkansas DEQ	State Program	6	88-0689	09-01-18
California	State Program	9	2510	06-30-19
Florida	NELAP	4	E81010	06-30-19
Georgia	State Program	4	E81010 (FL)	06-30-19
Illinois	NELAP	5	200041	10-09-18
lowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	10-31-18
Kentucky (UST)	State Program	4	53	06-30-19
Kentucky (WW)	State Program	4	98030	12-31-18
Louisiana	NELAP	6	30976	06-30-19
Louisiana (DW)	NELAP	6	LA170005	12-31-18
Maryland	State Program	3	233	09-30-18
Massachusetts	State Program	1	M-FL094	06-30-19
Michigan	State Program	5	9912	06-30-19
New Jersey	NELAP	2	FL006	06-30-19
North Carolina (WW/SW)	State Program	4	314	12-31-18
Oklahoma	State Program	6	9810	08-31-18
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-18
South Carolina	State Program	4	96026	06-30-18 *
Tennessee	State Program	4	TN02907	06-30-19
Texas	NELAP	6	T104704286-18-14	09-30-18
US Fish & Wildlife	Federal		LE058448-0	07-31-18
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-19
Washington	State Program	10	C915	05-15-19
West Virginia DEP	State Program	3	136	06-30-19

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	MO00054	06-30-19
ANAB	DoD ELAP		L2305	04-06-19
Arizona	State Program	9	AZ0813	12-08-18
California	State Program	9	2886	06-30-19
Connecticut	State Program	1	PH-0241	03-31-19
Florida	NELAP	4	E87689	06-30-19
Illinois	NELAP	5	200023	11-30-18
lowa	State Program	7	373	12-01-18
Kansas	NELAP	7	E-10236	10-31-18
Kentucky (DW)	State Program	4	90125	12-31-18
Louisiana	NELAP	6	04080	06-30-19
Louisiana (DW)	NELAP	6	LA180017	12-31-18
Maryland	State Program	3	310	09-30-18 *
Michigan	State Program	5	9005	06-30-18 *
Missouri	State Program	7	780	06-30-18 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Pensacola

Page 38 of 39

9

3

5

U

0

10

11

12

Accreditation/Certification Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-155116-2 SDG: Gaston Gypsum 1155

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Nevada	State Program	9	MO000542018-1	07-31-18 *
New Jersey	NELAP	2	MO002	06-30-19
New York	NELAP	2	11616	03-31-19
North Dakota	State Program	8	R207	06-30-18 *
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-18 *
Pennsylvania	NELAP	3	68-00540	02-28-19
South Carolina	State Program	4	85002001	06-30-18 *
Texas	NELAP	6	T104704193-17-11	07-31-18 *
US Fish & Wildlife	Federal		058448	07-31-18
USDA	Federal		P330-17-0028	02-02-20
Utah	NELAP	8	MO000542016-8	07-31-18 *
Virginia	NELAP	3	460230	06-14-19
Washington	State Program	10	C592	08-30-18
West Virginia DEP	State Program	3	381	08-31-18 *

4

5

8

3

10

46

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Pensacola

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-1	6/12/2018 14:40	371.6	uS/cm	Conductivity
GN-GSA-MW-1	6/12/2018 14:40	30.42	ft	Depth to Water Detail
GN-GSA-MW-1	6/12/2018 14:40	0.15	mg/L	DO
GN-GSA-MW-1	6/12/2018 14:40	-165.8	mv	Oxidation Reduction Potention
GN-GSA-MW-1	6/12/2018 14:40	7.61	рН	рН
GN-GSA-MW-1	6/12/2018 14:40	21.33	С	Temperature
GN-GSA-MW-1	6/12/2018 14:40	1.76	NTU	Turbidity
GN-GSA-MW-1	6/12/2018 14:45	365.9	uS/cm	Conductivity
GN-GSA-MW-1	6/12/2018 14:45	30.65	ft	Depth to Water Detail
GN-GSA-MW-1	6/12/2018 14:45	0.12	mg/L	DO
GN-GSA-MW-1	6/12/2018 14:45	-161.9	mv	Oxidation Reduction Potention
GN-GSA-MW-1	6/12/2018 14:45	7.65	рН	рН
GN-GSA-MW-1	6/12/2018 14:45	21.1	С	Temperature
GN-GSA-MW-1	6/12/2018 14:45	1.76	NTU	Turbidity
GN-GSA-MW-1	6/12/2018 14:50	367.9	uS/cm	Conductivity
GN-GSA-MW-1	6/12/2018 14:50	30.88	ft	Depth to Water Detail
GN-GSA-MW-1	6/12/2018 14:50	0.1	mg/L	DO
GN-GSA-MW-1	6/12/2018 14:50	-155.3	mv	Oxidation Reduction Potention
GN-GSA-MW-1	6/12/2018 14:50	7.65	рН	рН
GN-GSA-MW-1	6/12/2018 14:50	21.04	С	Temperature
GN-GSA-MW-1	6/12/2018 14:50	1.74	NTU	Turbidity
GN-GSA-MW-1	6/12/2018 14:56	374.9	uS/cm	Conductivity
GN-GSA-MW-1	6/12/2018 14:56	31.01	ft	Depth to Water Detail
GN-GSA-MW-1	6/12/2018 14:56	0.09	mg/L	DO
GN-GSA-MW-1	6/12/2018 14:56	-146.6	mv	Oxidation Reduction Potention
GN-GSA-MW-1	6/12/2018 14:56	7.64	рН	рН
GN-GSA-MW-1	6/12/2018 14:56	21.08	С	Temperature
GN-GSA-MW-1	6/12/2018 14:56	1.88	NTU	Turbidity
GN-GSA-MW-1	6/12/2018 15:01	381.3	uS/cm	Conductivity
GN-GSA-MW-1	6/12/2018 15:01	31.12	ft	Depth to Water Detail
GN-GSA-MW-1	6/12/2018 15:01	0.09	mg/L	DO
GN-GSA-MW-1	6/12/2018 15:01	-138.1	mv	Oxidation Reduction Potention
GN-GSA-MW-1	6/12/2018 15:01	7.62	рН	рН
GN-GSA-MW-1	6/12/2018 15:01	21.03		Temperature
GN-GSA-MW-1	6/12/2018 15:01	1.86	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-2	6/12/2018 19:21	540.2	uS/cm	Conductivity
GN-GSA-MW-2	6/12/2018 19:21	20.88	ft	Depth to Water Detail
GN-GSA-MW-2	6/12/2018 19:21	1.85	mg/L	DO
GN-GSA-MW-2	6/12/2018 19:21	-98.1	mv	Oxidation Reduction Potention
GN-GSA-MW-2	6/12/2018 19:21	7.21	рН	рН
GN-GSA-MW-2	6/12/2018 19:21	22.52	С	Temperature
GN-GSA-MW-2	6/12/2018 19:21	1.68	NTU	Turbidity
GN-GSA-MW-2	6/12/2018 19:26	533.1	uS/cm	Conductivity
GN-GSA-MW-2	6/12/2018 19:26	21.2	ft	Depth to Water Detail
GN-GSA-MW-2	6/12/2018 19:26	1.97	mg/L	DO
GN-GSA-MW-2	6/12/2018 19:26	-45.7	mv	Oxidation Reduction Potention
GN-GSA-MW-2	6/12/2018 19:26	7.13	рН	рН
GN-GSA-MW-2	6/12/2018 19:26	22.04	С	Temperature
GN-GSA-MW-2	6/12/2018 19:26	1.9	NTU	Turbidity
GN-GSA-MW-2	6/12/2018 19:31	512.7	uS/cm	Conductivity
GN-GSA-MW-2	6/12/2018 19:31	21.36	ft	Depth to Water Detail
GN-GSA-MW-2	6/12/2018 19:31	2.29	mg/L	DO
GN-GSA-MW-2	6/12/2018 19:31	-18.4	mv	Oxidation Reduction Potention
GN-GSA-MW-2	6/12/2018 19:31	7.15	рН	рН
GN-GSA-MW-2	6/12/2018 19:31	22.08	С	Temperature
GN-GSA-MW-2	6/12/2018 19:31	1.86	NTU	Turbidity
GN-GSA-MW-2	6/12/2018 19:36	495.2	uS/cm	Conductivity
GN-GSA-MW-2	6/12/2018 19:36	21.47	ft	Depth to Water Detail
GN-GSA-MW-2	6/12/2018 19:36	2.43	mg/L	DO
GN-GSA-MW-2	6/12/2018 19:36	-8	mv	Oxidation Reduction Potention
GN-GSA-MW-2	6/12/2018 19:36	7.18	рН	рН
GN-GSA-MW-2	6/12/2018 19:36	21.82	С	Temperature
GN-GSA-MW-2	6/12/2018 19:36	1.75	NTU	Turbidity
GN-GSA-MW-2	6/12/2018 19:42		uS/cm	Conductivity
GN-GSA-MW-2	6/12/2018 19:42	21.58	ft	Depth to Water Detail
GN-GSA-MW-2	6/12/2018 19:42	2.42	mg/L	DO
GN-GSA-MW-2	6/12/2018 19:42	-2.8	mv	Oxidation Reduction Potention
GN-GSA-MW-2	6/12/2018 19:42	7.19	рН	рН
GN-GSA-MW-2	6/12/2018 19:42	21.86	С	Temperature
GN-GSA-MW-2	6/12/2018 19:42	1.72	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-3	6/12/2018 16:42	429.1	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 16:42	21.6	ft	Depth to Water Detail
GN-GSA-MW-3	6/12/2018 16:42	1.02	mg/L	DO
GN-GSA-MW-3	6/12/2018 16:42	31.4	mv	Oxidation Reduction Potention
GN-GSA-MW-3	6/12/2018 16:42	6.75	рН	рН
GN-GSA-MW-3	6/12/2018 16:42	23.72	С	Temperature
GN-GSA-MW-3	6/12/2018 16:42	1.95	NTU	Turbidity
GN-GSA-MW-3	6/12/2018 16:47	425.9	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 16:47	22	ft	Depth to Water Detail
GN-GSA-MW-3	6/12/2018 16:47	0.89	mg/L	DO
GN-GSA-MW-3	6/12/2018 16:47	31.6	mv	Oxidation Reduction Potention
GN-GSA-MW-3	6/12/2018 16:47	6.73	рН	рН
GN-GSA-MW-3	6/12/2018 16:47	23.54	С	Temperature
GN-GSA-MW-3	6/12/2018 16:47	2.09	NTU	Turbidity
GN-GSA-MW-3	6/12/2018 16:52	420.4	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 16:52	22.31	ft	Depth to Water Detail
GN-GSA-MW-3	6/12/2018 16:52	0.82	mg/L	DO
GN-GSA-MW-3	6/12/2018 16:52	31.7	mv	Oxidation Reduction Potention
GN-GSA-MW-3	6/12/2018 16:52	6.73	рН	рН
GN-GSA-MW-3	6/12/2018 16:52	23.25	С	Temperature
GN-GSA-MW-3	6/12/2018 16:52	1.84	NTU	Turbidity
GN-GSA-MW-3	6/12/2018 16:57	416.9	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 16:57	22.55	ft	Depth to Water Detail
GN-GSA-MW-3	6/12/2018 16:57	0.79	mg/L	DO
GN-GSA-MW-3	6/12/2018 16:57	31.9	mv	Oxidation Reduction Potention
GN-GSA-MW-3	6/12/2018 16:57	6.72	рН	рН
GN-GSA-MW-3	6/12/2018 16:57	23.03	С	Temperature
GN-GSA-MW-3	6/12/2018 16:57	1.88	NTU	Turbidity
GN-GSA-MW-3	6/12/2018 17:02	411.5	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 17:02	22.8	ft	Depth to Water Detail
GN-GSA-MW-3	6/12/2018 17:02	0.84	mg/L	DO
GN-GSA-MW-3	6/12/2018 17:02	32.3	mv	Oxidation Reduction Potention
GN-GSA-MW-3	6/12/2018 17:02	6.72	рН	рН
GN-GSA-MW-3	6/12/2018 17:02	22.9	С	Temperature
GN-GSA-MW-3	6/12/2018 17:02	1.68	NTU	Turbidity
GN-GSA-MW-3	6/12/2018 17:07	408.8	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 17:07	23.05	ft	Depth to Water Detail
GN-GSA-MW-3	6/12/2018 17:07	0.92	mg/L	DO
GN-GSA-MW-3	6/12/2018 17:07	32.8	mv	Oxidation Reduction Potention
GN-GSA-MW-3	6/12/2018 17:07	6.71	•	рН
GN-GSA-MW-3	6/12/2018 17:07	22.81	С	Temperature
GN-GSA-MW-3	6/12/2018 17:07	2.34	NTU	Turbidity
GN-GSA-MW-3	6/12/2018 17:12	408.9	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 17:12	23.28	ft	Depth to Water Detail

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-3	6/12/2018 17:12	0.98	mg/L	DO
GN-GSA-MW-3	6/12/2018 17:12	33	mv	Oxidation Reduction Potention
GN-GSA-MW-3	6/12/2018 17:12	6.72	рН	рН
GN-GSA-MW-3	6/12/2018 17:12	22.89	С	Temperature
GN-GSA-MW-3	6/12/2018 17:12	2.29	NTU	Turbidity
GN-GSA-MW-3	6/12/2018 17:17	409.9	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 17:17	23.46	ft	Depth to Water Detail
GN-GSA-MW-3	6/12/2018 17:17	1.05	mg/L	DO
GN-GSA-MW-3	6/12/2018 17:17	33.2	mv	Oxidation Reduction Potention
GN-GSA-MW-3	6/12/2018 17:17	6.72	рН	рН
GN-GSA-MW-3	6/12/2018 17:17	22.77	С	Temperature
GN-GSA-MW-3	6/12/2018 17:17	2.6	NTU	Turbidity
GN-GSA-MW-3	6/12/2018 17:22	411.1	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 17:22	23.65	ft	Depth to Water Detail
GN-GSA-MW-3	6/12/2018 17:22	1.09	mg/L	DO
GN-GSA-MW-3	6/12/2018 17:22	33.4	mv	Oxidation Reduction Potention
GN-GSA-MW-3	6/12/2018 17:22	6.73	рН	рН
GN-GSA-MW-3	6/12/2018 17:22	22.87	С	Temperature
GN-GSA-MW-3	6/12/2018 17:22	2.66	NTU	Turbidity
GN-GSA-MW-3	6/12/2018 17:27	413.9	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 17:27	23.8	ft	Depth to Water Detail
GN-GSA-MW-3	6/12/2018 17:27	1.14	mg/L	DO
GN-GSA-MW-3	6/12/2018 17:27	33.4	mv	Oxidation Reduction Potention
GN-GSA-MW-3	6/12/2018 17:27	6.74	рН	рН
GN-GSA-MW-3	6/12/2018 17:27	22.75	С	Temperature
GN-GSA-MW-3	6/12/2018 17:27	2.46	NTU	Turbidity
GN-GSA-MW-3	6/12/2018 17:32	416	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 17:32	23.94	ft	Depth to Water Detail
GN-GSA-MW-3	6/12/2018 17:32	1.14	mg/L	DO
GN-GSA-MW-3	6/12/2018 17:32	33.3	mv	Oxidation Reduction Potention
GN-GSA-MW-3	6/12/2018 17:32	6.74	рН	рН
GN-GSA-MW-3	6/12/2018 17:32	22.75	С	Temperature
GN-GSA-MW-3	6/12/2018 17:32	2.32	NTU	Turbidity
GN-GSA-MW-3	6/12/2018 17:38	417.8	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 17:38	24.09	ft	Depth to Water Detail
GN-GSA-MW-3	6/12/2018 17:38	1.14	mg/L	DO
GN-GSA-MW-3	6/12/2018 17:38	33.3	mv	Oxidation Reduction Potention
GN-GSA-MW-3	6/12/2018 17:38	6.75	рН	рН
GN-GSA-MW-3	6/12/2018 17:38	22.64	С	Temperature
GN-GSA-MW-3	6/12/2018 17:38	2.37	NTU	Turbidity
GN-GSA-MW-3	6/12/2018 17:43	418.7	uS/cm	Conductivity
GN-GSA-MW-3	6/12/2018 17:43	24.22	ft	Depth to Water Detail
GN-GSA-MW-3	6/12/2018 17:43	1.14	mg/L	DO
GN-GSA-MW-3	6/12/2018 17:43	33.3	mv	Oxidation Reduction Potention

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-3	6/12/2018 17:43	6.76	рН	рН
GN-GSA-MW-3	6/12/2018 17:43	22.58	С	Temperature
GN-GSA-MW-3	6/12/2018 17:43	2.69	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-5	6/11/2018 10:53	693.8	uS/cm	Conductivity
GN-GSA-MW-5	6/11/2018 10:53	29.76	ft	Depth to Water Detail
GN-GSA-MW-5	6/11/2018 10:53	0.31	mg/L	DO
GN-GSA-MW-5	6/11/2018 10:53	-60.7	mv	Oxidation Reduction Potention
GN-GSA-MW-5	6/11/2018 10:53	6.49	рН	рН
GN-GSA-MW-5	6/11/2018 10:53	20.3	С	Temperature
GN-GSA-MW-5	6/11/2018 10:53	10.29	NTU	Turbidity
GN-GSA-MW-5	6/11/2018 10:58	610	uS/cm	Conductivity
GN-GSA-MW-5	6/11/2018 10:58	29.76	ft	Depth to Water Detail
GN-GSA-MW-5	6/11/2018 10:58	0.34	mg/L	DO
GN-GSA-MW-5	6/11/2018 10:58	-47.6	mv	Oxidation Reduction Potention
GN-GSA-MW-5	6/11/2018 10:58	6.47	рН	рН
GN-GSA-MW-5	6/11/2018 10:58	20.48	С	Temperature
GN-GSA-MW-5	6/11/2018 10:58	8.12	NTU	Turbidity
GN-GSA-MW-5	6/11/2018 11:03	572.3	uS/cm	Conductivity
GN-GSA-MW-5	6/11/2018 11:03	29.76	ft	Depth to Water Detail
GN-GSA-MW-5	6/11/2018 11:03	0.35	mg/L	DO
GN-GSA-MW-5	6/11/2018 11:03	-40.3	mv	Oxidation Reduction Potention
GN-GSA-MW-5	6/11/2018 11:03	6.46	рН	рН
GN-GSA-MW-5	6/11/2018 11:03	20.48	С	Temperature
GN-GSA-MW-5	6/11/2018 11:03	5.29	NTU	Turbidity
GN-GSA-MW-5	6/11/2018 11:08	546.7	uS/cm	Conductivity
GN-GSA-MW-5	6/11/2018 11:08	29.76	ft	Depth to Water Detail
GN-GSA-MW-5	6/11/2018 11:08	0.36	mg/L	DO
GN-GSA-MW-5	6/11/2018 11:08	-34.5	mv	Oxidation Reduction Potention
GN-GSA-MW-5	6/11/2018 11:08	6.45	рН	рН
GN-GSA-MW-5	6/11/2018 11:08	20.51	С	Temperature
GN-GSA-MW-5	6/11/2018 11:08	5.07	NTU	Turbidity
GN-GSA-MW-5	6/11/2018 11:13	530.6	uS/cm	Conductivity
GN-GSA-MW-5	6/11/2018 11:13	29.76	ft	Depth to Water Detail
GN-GSA-MW-5	6/11/2018 11:13	0.36	mg/L	DO
GN-GSA-MW-5	6/11/2018 11:13	-29.8	mv	Oxidation Reduction Potention
GN-GSA-MW-5	6/11/2018 11:13	6.44	рН	рН
GN-GSA-MW-5	6/11/2018 11:13	20.55	С	Temperature
GN-GSA-MW-5	6/11/2018 11:13	3.52	NTU	Turbidity
GN-GSA-MW-5	6/11/2018 11:18	517.7	uS/cm	Conductivity
GN-GSA-MW-5	6/11/2018 11:18	29.76	ft	Depth to Water Detail
GN-GSA-MW-5	6/11/2018 11:18	0.36	mg/L	DO
GN-GSA-MW-5	6/11/2018 11:18	-26.2	mv	Oxidation Reduction Potention
GN-GSA-MW-5	6/11/2018 11:18	6.43	рН	рН
GN-GSA-MW-5	6/11/2018 11:18	20.56	С	Temperature
GN-GSA-MW-5	6/11/2018 11:18	4.35	NTU	Turbidity
GN-GSA-MW-5	6/11/2018 11:23	511.6	uS/cm	Conductivity
GN-GSA-MW-5	6/11/2018 11:23	29.76	ft	Depth to Water Detail

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-5	6/11/2018 11:23	0.36	mg/L	DO
GN-GSA-MW-5	6/11/2018 11:23	-22.6	mv	Oxidation Reduction Potention
GN-GSA-MW-5	6/11/2018 11:23	6.43	рН	рН
GN-GSA-MW-5	6/11/2018 11:23	20.3	С	Temperature
GN-GSA-MW-5	6/11/2018 11:23	3.07	NTU	Turbidity
GN-GSA-MW-5	6/11/2018 11:29	501.4	uS/cm	Conductivity
GN-GSA-MW-5	6/11/2018 11:29	29.76	ft	Depth to Water Detail
GN-GSA-MW-5	6/11/2018 11:29	0.36	mg/L	DO
GN-GSA-MW-5	6/11/2018 11:29	-20.8	mv	Oxidation Reduction Potention
GN-GSA-MW-5	6/11/2018 11:29	6.43	рН	рН
GN-GSA-MW-5	6/11/2018 11:29	20.17	С	Temperature
GN-GSA-MW-5	6/11/2018 11:29	4.33	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-6	6/11/2018 12:02	26.6	uS/cm	Conductivity
GN-GSA-MW-6	6/11/2018 12:02	29.21	ft	Depth to Water Detail
GN-GSA-MW-6	6/11/2018 12:02	1.14	mg/L	DO
GN-GSA-MW-6	6/11/2018 12:02	189.6	mv	Oxidation Reduction Potention
GN-GSA-MW-6	6/11/2018 12:02	4.62	рН	рН
GN-GSA-MW-6	6/11/2018 12:02	21.28	С	Temperature
GN-GSA-MW-6	6/11/2018 12:02	5.63	NTU	Turbidity
GN-GSA-MW-6	6/11/2018 12:07	27.1	uS/cm	Conductivity
GN-GSA-MW-6	6/11/2018 12:07	29.21	ft	Depth to Water Detail
GN-GSA-MW-6	6/11/2018 12:07	0.65	mg/L	DO
GN-GSA-MW-6	6/11/2018 12:07	168.9	mv	Oxidation Reduction Potention
GN-GSA-MW-6	6/11/2018 12:07	4.67	рН	рН
GN-GSA-MW-6	6/11/2018 12:07	21.32	С	Temperature
GN-GSA-MW-6	6/11/2018 12:07	2.9	NTU	Turbidity
GN-GSA-MW-6	6/11/2018 12:12	27.1	uS/cm	Conductivity
GN-GSA-MW-6	6/11/2018 12:12	29.21	ft	Depth to Water Detail
GN-GSA-MW-6	6/11/2018 12:12	0.53	mg/L	DO
GN-GSA-MW-6	6/11/2018 12:12	160.6	mv	Oxidation Reduction Potention
GN-GSA-MW-6	6/11/2018 12:12	4.67	рН	рН
GN-GSA-MW-6	6/11/2018 12:12	21.2	С	Temperature
GN-GSA-MW-6	6/11/2018 12:12	2.42	NTU	Turbidity
GN-GSA-MW-6	6/11/2018 12:17	27.4	uS/cm	Conductivity
GN-GSA-MW-6	6/11/2018 12:17	29.21	ft	Depth to Water Detail
GN-GSA-MW-6	6/11/2018 12:17	0.47	mg/L	DO
GN-GSA-MW-6	6/11/2018 12:17	155.2	mv	Oxidation Reduction Potention
GN-GSA-MW-6	6/11/2018 12:17	4.68	рН	рН
GN-GSA-MW-6	6/11/2018 12:17	21.19	С	Temperature
GN-GSA-MW-6	6/11/2018 12:17	2.31	NTU	Turbidity
GN-GSA-MW-6	6/11/2018 12:22		uS/cm	Conductivity
GN-GSA-MW-6	6/11/2018 12:22	29.21	ft	Depth to Water Detail
GN-GSA-MW-6	6/11/2018 12:22	0.43	mg/L	DO
GN-GSA-MW-6	6/11/2018 12:22	151.4	mv	Oxidation Reduction Potention
GN-GSA-MW-6	6/11/2018 12:22	4.68	рН	рН
GN-GSA-MW-6	6/11/2018 12:22	21.25	С	Temperature
GN-GSA-MW-6	6/11/2018 12:22	2.19	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-7	6/11/2018 13:41	386.6	uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 13:41	28.25	ft	Depth to Water Detail
GN-GSA-MW-7	6/11/2018 13:41	3.61	mg/L	DO
GN-GSA-MW-7	6/11/2018 13:41	-11	mv	Oxidation Reduction Potention
GN-GSA-MW-7	6/11/2018 13:41	6.86	рН	рН
GN-GSA-MW-7	6/11/2018 13:41	24	С	Temperature
GN-GSA-MW-7	6/11/2018 13:41	2.8	NTU	Turbidity
GN-GSA-MW-7	6/11/2018 13:46	383.3	uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 13:46	28.6	ft	Depth to Water Detail
GN-GSA-MW-7	6/11/2018 13:46	3.6	mg/L	DO
GN-GSA-MW-7	6/11/2018 13:46	3.1	mv	Oxidation Reduction Potention
GN-GSA-MW-7	6/11/2018 13:46	6.88	рН	рН
GN-GSA-MW-7	6/11/2018 13:46	24.06	С	Temperature
GN-GSA-MW-7	6/11/2018 13:46	2.82	NTU	Turbidity
GN-GSA-MW-7	6/11/2018 13:51	383.4	uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 13:51	28.83	ft	Depth to Water Detail
GN-GSA-MW-7	6/11/2018 13:51	3.06	mg/L	DO
GN-GSA-MW-7	6/11/2018 13:51	6.3	mv	Oxidation Reduction Potention
GN-GSA-MW-7	6/11/2018 13:51	6.85	рН	рН
GN-GSA-MW-7	6/11/2018 13:51	24.06	С	Temperature
GN-GSA-MW-7	6/11/2018 13:51	2.72	NTU	Turbidity
GN-GSA-MW-7	6/11/2018 13:56	380.7	uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 13:56	28.93	ft	Depth to Water Detail
GN-GSA-MW-7	6/11/2018 13:56	2.9	mg/L	DO
GN-GSA-MW-7	6/11/2018 13:56	16	mv	Oxidation Reduction Potention
GN-GSA-MW-7	6/11/2018 13:56	6.83	рН	рН
GN-GSA-MW-7	6/11/2018 13:56	24.2	С	Temperature
GN-GSA-MW-7	6/11/2018 13:56	2.52	NTU	Turbidity
GN-GSA-MW-7	6/11/2018 14:01		uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 14:01	29.05	ft	Depth to Water Detail
GN-GSA-MW-7	6/11/2018 14:01	2.64	mg/L	DO
GN-GSA-MW-7	6/11/2018 14:01	27.5	mv	Oxidation Reduction Potention
GN-GSA-MW-7	6/11/2018 14:01	6.81	рН	рН
GN-GSA-MW-7	6/11/2018 14:01	24.61	С	Temperature
GN-GSA-MW-7	6/11/2018 14:01	2.84	NTU	Turbidity
GN-GSA-MW-7	6/11/2018 14:06	377.8	uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 14:06	29.15	ft	Depth to Water Detail
GN-GSA-MW-7	6/11/2018 14:06	2.54	mg/L	DO
GN-GSA-MW-7	6/11/2018 14:06	45.5	mv	Oxidation Reduction Potention
GN-GSA-MW-7	6/11/2018 14:06	6.8	рН	рН
GN-GSA-MW-7	6/11/2018 14:06	24.85	С	Temperature
GN-GSA-MW-7	6/11/2018 14:06	2.61	NTU	Turbidity
GN-GSA-MW-7	6/11/2018 14:11	375.1	uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 14:11	29.19	ft	Depth to Water Detail

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-7	6/11/2018 14:11	2.31	mg/L	DO
GN-GSA-MW-7	6/11/2018 14:11	46.7	mv	Oxidation Reduction Potention
GN-GSA-MW-7	6/11/2018 14:11	6.78	рН	рН
GN-GSA-MW-7	6/11/2018 14:11	25.24	С	Temperature
GN-GSA-MW-7	6/11/2018 14:11	2.72	NTU	Turbidity
GN-GSA-MW-7	6/11/2018 14:16	371.1	uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 14:16	29.21	ft	Depth to Water Detail
GN-GSA-MW-7	6/11/2018 14:16	2.11	mg/L	DO
GN-GSA-MW-7	6/11/2018 14:16	50.4	mv	Oxidation Reduction Potention
GN-GSA-MW-7	6/11/2018 14:16	6.76	рН	рН
GN-GSA-MW-7	6/11/2018 14:16	25.23	С	Temperature
GN-GSA-MW-7	6/11/2018 14:16	2.52	NTU	Turbidity
GN-GSA-MW-7	6/11/2018 14:21	372.7	uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 14:21	29.25	ft	Depth to Water Detail
GN-GSA-MW-7	6/11/2018 14:21	1.99	mg/L	DO
GN-GSA-MW-7	6/11/2018 14:21	67.2	mv	Oxidation Reduction Potention
GN-GSA-MW-7	6/11/2018 14:21	6.75	рН	рН
GN-GSA-MW-7	6/11/2018 14:21	25.23	С	Temperature
GN-GSA-MW-7	6/11/2018 14:21	2.56	NTU	Turbidity
GN-GSA-MW-7	6/11/2018 14:26	367.6	uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 14:26	29.34	ft	Depth to Water Detail
GN-GSA-MW-7	6/11/2018 14:26	1.83	mg/L	DO
GN-GSA-MW-7	6/11/2018 14:26	85.3	mv	Oxidation Reduction Potention
GN-GSA-MW-7	6/11/2018 14:26	6.73	рН	рН
GN-GSA-MW-7	6/11/2018 14:26	24.51	С	Temperature
GN-GSA-MW-7	6/11/2018 14:26	2.65	NTU	Turbidity
GN-GSA-MW-7	6/11/2018 14:31	368.1	uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 14:31	29.43	ft	Depth to Water Detail
GN-GSA-MW-7	6/11/2018 14:31	1.76	mg/L	DO
GN-GSA-MW-7	6/11/2018 14:31	93.1	mv	Oxidation Reduction Potention
GN-GSA-MW-7	6/11/2018 14:31	6.72	рН	рН
GN-GSA-MW-7	6/11/2018 14:31	24.42	С	Temperature
GN-GSA-MW-7	6/11/2018 14:31	2.6	NTU	Turbidity
GN-GSA-MW-7	6/11/2018 14:36	366.2	uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 14:36	29.45	ft	Depth to Water Detail
GN-GSA-MW-7	6/11/2018 14:36	1.64	mg/L	DO
GN-GSA-MW-7	6/11/2018 14:36	87.3	mv	Oxidation Reduction Potention
GN-GSA-MW-7	6/11/2018 14:36	6.7	рН	рН
GN-GSA-MW-7	6/11/2018 14:36	24.88	С	Temperature
GN-GSA-MW-7	6/11/2018 14:36	2.49	NTU	Turbidity
GN-GSA-MW-7	6/11/2018 14:42	365.7	uS/cm	Conductivity
GN-GSA-MW-7	6/11/2018 14:42	29.46	ft	Depth to Water Detail
GN-GSA-MW-7	6/11/2018 14:42	1.63	mg/L	DO
GN-GSA-MW-7	6/11/2018 14:42	83.9	mv	Oxidation Reduction Potention

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-7	6/11/2018 14:42	6.7	рН	рН
GN-GSA-MW-7	6/11/2018 14:42	25.07	С	Temperature
GN-GSA-MW-7	6/11/2018 14:42	2.47	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-8	6/12/2018 8:33	332.3	uS/cm	Conductivity
GN-GSA-MW-8	6/12/2018 8:33	22	ft	Depth to Water Detail
GN-GSA-MW-8	6/12/2018 8:33	0.81	mg/L	DO
GN-GSA-MW-8	6/12/2018 8:33	-80.3	mv	Oxidation Reduction Potention
GN-GSA-MW-8	6/12/2018 8:33	7.23	рН	рН
GN-GSA-MW-8	6/12/2018 8:33	20.88	С	Temperature
GN-GSA-MW-8	6/12/2018 8:33	8.9	NTU	Turbidity
GN-GSA-MW-8	6/12/2018 8:38	331.6	uS/cm	Conductivity
GN-GSA-MW-8	6/12/2018 8:38	22.09	ft	Depth to Water Detail
GN-GSA-MW-8	6/12/2018 8:38	0.75	mg/L	DO
GN-GSA-MW-8	6/12/2018 8:38	-92	mv	Oxidation Reduction Potention
GN-GSA-MW-8	6/12/2018 8:38	7.32	рН	рН
GN-GSA-MW-8	6/12/2018 8:38	21.02	С	Temperature
GN-GSA-MW-8	6/12/2018 8:38	5.1	NTU	Turbidity
GN-GSA-MW-8	6/12/2018 8:43	329.9	uS/cm	Conductivity
GN-GSA-MW-8	6/12/2018 8:43	22.16	ft	Depth to Water Detail
GN-GSA-MW-8	6/12/2018 8:43	0.73	mg/L	DO
GN-GSA-MW-8	6/12/2018 8:43	-96.9	mv	Oxidation Reduction Potention
GN-GSA-MW-8	6/12/2018 8:43	7.37	рН	рН
GN-GSA-MW-8	6/12/2018 8:43	21.24	С	Temperature
GN-GSA-MW-8	6/12/2018 8:43	4.37	NTU	Turbidity
GN-GSA-MW-8	6/12/2018 8:49	331	uS/cm	Conductivity
GN-GSA-MW-8	6/12/2018 8:49	22.18	ft	Depth to Water Detail
GN-GSA-MW-8	6/12/2018 8:49	0.74	mg/L	DO
GN-GSA-MW-8	6/12/2018 8:49	-99.4	mv	Oxidation Reduction Potention
GN-GSA-MW-8	6/12/2018 8:49	7.4	рН	рН
GN-GSA-MW-8	6/12/2018 8:49	21.15	С	Temperature
GN-GSA-MW-8	6/12/2018 8:49	4.11	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-9	6/12/2018 9:30	224.1	uS/cm	Conductivity
GN-GSA-MW-9	6/12/2018 9:30	22.75	ft	Depth to Water Detail
GN-GSA-MW-9	6/12/2018 9:30	0.21	mg/L	DO
GN-GSA-MW-9	6/12/2018 9:30	4.3	mv	Oxidation Reduction Potention
GN-GSA-MW-9	6/12/2018 9:30	6.44	рН	рН
GN-GSA-MW-9	6/12/2018 9:30	21.11	С	Temperature
GN-GSA-MW-9	6/12/2018 9:30	6.01	NTU	Turbidity
GN-GSA-MW-9	6/12/2018 9:35	254	uS/cm	Conductivity
GN-GSA-MW-9	6/12/2018 9:35	22.55	ft	Depth to Water Detail
GN-GSA-MW-9	6/12/2018 9:35	0.2	mg/L	DO
GN-GSA-MW-9	6/12/2018 9:35	-4.2	mv	Oxidation Reduction Potention
GN-GSA-MW-9	6/12/2018 9:35	6.58	рН	рН
GN-GSA-MW-9	6/12/2018 9:35	21.1	С	Temperature
GN-GSA-MW-9	6/12/2018 9:35	10.14	NTU	Turbidity
GN-GSA-MW-9	6/12/2018 9:40	272.1	uS/cm	Conductivity
GN-GSA-MW-9	6/12/2018 9:40	22.53	ft	Depth to Water Detail
GN-GSA-MW-9	6/12/2018 9:40	0.19	mg/L	DO
GN-GSA-MW-9	6/12/2018 9:40	-8.6	mv	Oxidation Reduction Potention
GN-GSA-MW-9	6/12/2018 9:40	6.68	рН	рН
GN-GSA-MW-9	6/12/2018 9:40	21.21	С	Temperature
GN-GSA-MW-9	6/12/2018 9:40	8.49	NTU	Turbidity
GN-GSA-MW-9	6/12/2018 9:45	278.3	uS/cm	Conductivity
GN-GSA-MW-9	6/12/2018 9:45	22.46	ft	Depth to Water Detail
GN-GSA-MW-9	6/12/2018 9:45	0.19	mg/L	DO
GN-GSA-MW-9	6/12/2018 9:45	-9.5	mv	Oxidation Reduction Potention
GN-GSA-MW-9	6/12/2018 9:45	6.74	рН	рН
GN-GSA-MW-9	6/12/2018 9:45	21.11	С	Temperature
GN-GSA-MW-9	6/12/2018 9:45	5.95	NTU	Turbidity
GN-GSA-MW-9	6/12/2018 9:50		uS/cm	Conductivity
GN-GSA-MW-9	6/12/2018 9:50	22.46	ft	Depth to Water Detail
GN-GSA-MW-9	6/12/2018 9:50	0.19	mg/L	DO
GN-GSA-MW-9	6/12/2018 9:50	-9.6	mv	Oxidation Reduction Potention
GN-GSA-MW-9	6/12/2018 9:50	6.77	рН	рН
GN-GSA-MW-9	6/12/2018 9:50	21.15	С	Temperature
GN-GSA-MW-9	6/12/2018 9:50	4.07	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-10	6/12/2018 10:34	442.4	uS/cm	Conductivity
GN-GSA-MW-10	6/12/2018 10:34	22.2	ft	Depth to Water Detail
GN-GSA-MW-10	6/12/2018 10:34	0.63	mg/L	DO
GN-GSA-MW-10	6/12/2018 10:34	23.8	mv	Oxidation Reduction Potention
GN-GSA-MW-10	6/12/2018 10:34	7.08	рН	рН
GN-GSA-MW-10	6/12/2018 10:34	21.6	С	Temperature
GN-GSA-MW-10	6/12/2018 10:34	2.2	NTU	Turbidity
GN-GSA-MW-10	6/12/2018 10:39	442.5	uS/cm	Conductivity
GN-GSA-MW-10	6/12/2018 10:39	22.2	ft	Depth to Water Detail
GN-GSA-MW-10	6/12/2018 10:39	0.42	mg/L	DO
GN-GSA-MW-10	6/12/2018 10:39	22.7	mv	Oxidation Reduction Potention
GN-GSA-MW-10	6/12/2018 10:39	7.07	рН	рН
GN-GSA-MW-10	6/12/2018 10:39	21.69	С	Temperature
GN-GSA-MW-10	6/12/2018 10:39	1.94	NTU	Turbidity
GN-GSA-MW-10	6/12/2018 10:44	443.1	uS/cm	Conductivity
GN-GSA-MW-10	6/12/2018 10:44	22.2	ft	Depth to Water Detail
GN-GSA-MW-10	6/12/2018 10:44	0.38	mg/L	DO
GN-GSA-MW-10	6/12/2018 10:44	22.5	mv	Oxidation Reduction Potention
GN-GSA-MW-10	6/12/2018 10:44	7.07	рН	рН
GN-GSA-MW-10	6/12/2018 10:44	21.6	С	Temperature
GN-GSA-MW-10	6/12/2018 10:44	1.91	NTU	Turbidity
GN-GSA-MW-10	6/12/2018 10:49	442.5	uS/cm	Conductivity
GN-GSA-MW-10	6/12/2018 10:49	22.2	ft	Depth to Water Detail
GN-GSA-MW-10	6/12/2018 10:49	0.32	mg/L	DO
GN-GSA-MW-10	6/12/2018 10:49	22.7	mv	Oxidation Reduction Potention
GN-GSA-MW-10	6/12/2018 10:49	7.07	рН	рН
GN-GSA-MW-10	6/12/2018 10:49	21.69	С	Temperature
GN-GSA-MW-10	6/12/2018 10:49	1.76	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-11	6/12/2018 11:54	158.1	uS/cm	Conductivity
GN-GSA-MW-11	6/12/2018 11:54	21.85	ft	Depth to Water Detail
GN-GSA-MW-11	6/12/2018 11:54	1.51	mg/L	DO
GN-GSA-MW-11	6/12/2018 11:54	136.3	mv	Oxidation Reduction Potention
GN-GSA-MW-11	6/12/2018 11:54	6.65	рН	рН
GN-GSA-MW-11	6/12/2018 11:54	21.35	С	Temperature
GN-GSA-MW-11	6/12/2018 11:54	1.75	NTU	Turbidity
GN-GSA-MW-11	6/12/2018 11:59	150.8	uS/cm	Conductivity
GN-GSA-MW-11	6/12/2018 11:59	21.85	ft	Depth to Water Detail
GN-GSA-MW-11	6/12/2018 11:59	0.96	mg/L	DO
GN-GSA-MW-11	6/12/2018 11:59	82.8	mv	Oxidation Reduction Potention
GN-GSA-MW-11	6/12/2018 11:59	6.43	рН	рН
GN-GSA-MW-11	6/12/2018 11:59	21.19	С	Temperature
GN-GSA-MW-11	6/12/2018 11:59	1.78	NTU	Turbidity
GN-GSA-MW-11	6/12/2018 12:04	153.2	uS/cm	Conductivity
GN-GSA-MW-11	6/12/2018 12:04	21.85	ft	Depth to Water Detail
GN-GSA-MW-11	6/12/2018 12:04	0.87	mg/L	DO
GN-GSA-MW-11	6/12/2018 12:04	64	mv	Oxidation Reduction Potention
GN-GSA-MW-11	6/12/2018 12:04	6.37	рН	рН
GN-GSA-MW-11	6/12/2018 12:04	21.29	С	Temperature
GN-GSA-MW-11	6/12/2018 12:04	1.73	NTU	Turbidity
GN-GSA-MW-11	6/12/2018 12:09	143.1	uS/cm	Conductivity
GN-GSA-MW-11	6/12/2018 12:09	21.85	ft	Depth to Water Detail
GN-GSA-MW-11	6/12/2018 12:09	0.68	mg/L	DO
GN-GSA-MW-11	6/12/2018 12:09	57.8	mv	Oxidation Reduction Potention
GN-GSA-MW-11	6/12/2018 12:09	6.31	рН	рН
GN-GSA-MW-11	6/12/2018 12:09	21.28	С	Temperature
GN-GSA-MW-11	6/12/2018 12:09	1.78	NTU	Turbidity
GN-GSA-MW-11	6/12/2018 12:14	136.1	uS/cm	Conductivity
GN-GSA-MW-11	6/12/2018 12:14	21.85	ft	Depth to Water Detail
GN-GSA-MW-11	6/12/2018 12:14	0.65	mg/L	DO
GN-GSA-MW-11	6/12/2018 12:14	59.2	mv	Oxidation Reduction Potention
GN-GSA-MW-11	6/12/2018 12:14	6.25	рН	рН
GN-GSA-MW-11	6/12/2018 12:14	21.33	С	Temperature
GN-GSA-MW-11	6/12/2018 12:14	1.68	NTU	Turbidity
GN-GSA-MW-11	6/12/2018 12:19	130.4	uS/cm	Conductivity
GN-GSA-MW-11	6/12/2018 12:19	21.85	ft	Depth to Water Detail
GN-GSA-MW-11	6/12/2018 12:19	0.58	mg/L	DO
GN-GSA-MW-11	6/12/2018 12:19	58.2	mv	Oxidation Reduction Potention
GN-GSA-MW-11	6/12/2018 12:19	6.21	рН	рН
GN-GSA-MW-11	6/12/2018 12:19	21.42	С	Temperature
GN-GSA-MW-11	6/12/2018 12:19	1.73	NTU	Turbidity
GN-GSA-MW-11	6/12/2018 12:24	126.4	uS/cm	Conductivity
GN-GSA-MW-11	6/12/2018 12:24	21.85	ft	Depth to Water Detail

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-11	6/12/2018 12:24	0.51	mg/L	DO
GN-GSA-MW-11	6/12/2018 12:24	59.2	mv	Oxidation Reduction Potention
GN-GSA-MW-11	6/12/2018 12:24	6.17	рН	рН
GN-GSA-MW-11	6/12/2018 12:24	21.23	С	Temperature
GN-GSA-MW-11	6/12/2018 12:24	2.08	NTU	Turbidity
GN-GSA-MW-11	6/12/2018 12:29	122.1	uS/cm	Conductivity
GN-GSA-MW-11	6/12/2018 12:29	21.85	ft	Depth to Water Detail
GN-GSA-MW-11	6/12/2018 12:29	0.43	mg/L	DO
GN-GSA-MW-11	6/12/2018 12:29	62.8	mv	Oxidation Reduction Potention
GN-GSA-MW-11	6/12/2018 12:29	6.14	рН	рН
GN-GSA-MW-11	6/12/2018 12:29	21.02	С	Temperature
GN-GSA-MW-11	6/12/2018 12:29	1.72	NTU	Turbidity
GN-GSA-MW-11	6/12/2018 12:35	120.7	uS/cm	Conductivity
GN-GSA-MW-11	6/12/2018 12:35	21.85	ft	Depth to Water Detail
GN-GSA-MW-11	6/12/2018 12:35	0.41	mg/L	DO
GN-GSA-MW-11	6/12/2018 12:35	64.3	mv	Oxidation Reduction Potention
GN-GSA-MW-11	6/12/2018 12:35	6.13	рН	рН
GN-GSA-MW-11	6/12/2018 12:35	21.11	С	Temperature
GN-GSA-MW-11	6/12/2018 12:35	1.61	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-12	6/12/2018 13:17	413.8	uS/cm	Conductivity
GN-GSA-MW-12	6/12/2018 13:17	20.3	ft	Depth to Water Detail
GN-GSA-MW-12	6/12/2018 13:17	0.58	mg/L	DO
GN-GSA-MW-12	6/12/2018 13:17	19	mv	Oxidation Reduction Potention
GN-GSA-MW-12	6/12/2018 13:17	7.22	рН	рН
GN-GSA-MW-12	6/12/2018 13:17	20.93	С	Temperature
GN-GSA-MW-12	6/12/2018 13:17	3.08	NTU	Turbidity
GN-GSA-MW-12	6/12/2018 13:22	407.2	uS/cm	Conductivity
GN-GSA-MW-12	6/12/2018 13:22	20.3	ft	Depth to Water Detail
GN-GSA-MW-12	6/12/2018 13:22	0.43	mg/L	DO
GN-GSA-MW-12	6/12/2018 13:22	7.9	mv	Oxidation Reduction Potention
GN-GSA-MW-12	6/12/2018 13:22	7.22	рН	рН
GN-GSA-MW-12	6/12/2018 13:22	20.74	С	Temperature
GN-GSA-MW-12	6/12/2018 13:22	1.74	NTU	Turbidity
GN-GSA-MW-12	6/12/2018 13:27	402.2	uS/cm	Conductivity
GN-GSA-MW-12	6/12/2018 13:27	20.3	ft	Depth to Water Detail
GN-GSA-MW-12	6/12/2018 13:27	0.3	mg/L	DO
GN-GSA-MW-12	6/12/2018 13:27	2.5	mv	Oxidation Reduction Potention
GN-GSA-MW-12	6/12/2018 13:27	7.2	рН	рН
GN-GSA-MW-12	6/12/2018 13:27	20.84	С	Temperature
GN-GSA-MW-12	6/12/2018 13:27	1.78	NTU	Turbidity
GN-GSA-MW-12	6/12/2018 13:32	395.8	uS/cm	Conductivity
GN-GSA-MW-12	6/12/2018 13:32	20.3	ft	Depth to Water Detail
GN-GSA-MW-12	6/12/2018 13:32	0.23	mg/L	DO
GN-GSA-MW-12	6/12/2018 13:32	-3.5	mv	Oxidation Reduction Potention
GN-GSA-MW-12	6/12/2018 13:32	7.19	рН	рН
GN-GSA-MW-12	6/12/2018 13:32	20.78	С	Temperature
GN-GSA-MW-12	6/12/2018 13:32	1.83	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-13	6/12/2018 13:59	492.3	uS/cm	Conductivity
GN-GSA-MW-13	6/12/2018 13:59	24.22	ft	Depth to Water Detail
GN-GSA-MW-13	6/12/2018 13:59	0.56	mg/L	DO
GN-GSA-MW-13	6/12/2018 13:59	20.5	mv	Oxidation Reduction Potention
GN-GSA-MW-13	6/12/2018 13:59	7.09	рН	рН
GN-GSA-MW-13	6/12/2018 13:59	21.57	С	Temperature
GN-GSA-MW-13	6/12/2018 13:59	1.83	NTU	Turbidity
GN-GSA-MW-13	6/12/2018 14:04	490.8	uS/cm	Conductivity
GN-GSA-MW-13	6/12/2018 14:04	24.22	ft	Depth to Water Detail
GN-GSA-MW-13	6/12/2018 14:04	0.53	mg/L	DO
GN-GSA-MW-13	6/12/2018 14:04	20.6	mv	Oxidation Reduction Potention
GN-GSA-MW-13	6/12/2018 14:04	7.08	рН	рН
GN-GSA-MW-13	6/12/2018 14:04	21.36	С	Temperature
GN-GSA-MW-13	6/12/2018 14:04	2.19	NTU	Turbidity
GN-GSA-MW-13	6/12/2018 14:09	488.8	uS/cm	Conductivity
GN-GSA-MW-13	6/12/2018 14:09	24.22	ft	Depth to Water Detail
GN-GSA-MW-13	6/12/2018 14:09	0.52	mg/L	DO
GN-GSA-MW-13	6/12/2018 14:09	21.2	mv	Oxidation Reduction Potention
GN-GSA-MW-13	6/12/2018 14:09	7.09	рН	рН
GN-GSA-MW-13	6/12/2018 14:09	21.33	С	Temperature
GN-GSA-MW-13	6/12/2018 14:09	2.7	NTU	Turbidity
GN-GSA-MW-13	6/12/2018 14:14	487.7	uS/cm	Conductivity
GN-GSA-MW-13	6/12/2018 14:14	24.22	ft	Depth to Water Detail
GN-GSA-MW-13	6/12/2018 14:14	0.51	mg/L	DO
GN-GSA-MW-13	6/12/2018 14:14	21.2	mv	Oxidation Reduction Potention
GN-GSA-MW-13	6/12/2018 14:14	7.09	рН	рН
GN-GSA-MW-13	6/12/2018 14:14	21.4	С	Temperature
GN-GSA-MW-13	6/12/2018 14:14	2.39	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-14S	6/12/2018 18:39	352.2	uS/cm	Conductivity
GN-GSA-MW-14S	6/12/2018 18:39	22.05	ft	Depth to Water Detail
GN-GSA-MW-14S	6/12/2018 18:39	0.3	mg/L	DO
GN-GSA-MW-14S	6/12/2018 18:39	-48.6	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	6/12/2018 18:39	7.52	рН	рН
GN-GSA-MW-14S	6/12/2018 18:39	20.59	С	Temperature
GN-GSA-MW-14S	6/12/2018 18:39	3.42	NTU	Turbidity
GN-GSA-MW-14S	6/12/2018 18:44	352.1	uS/cm	Conductivity
GN-GSA-MW-14S	6/12/2018 18:44	22.05	ft	Depth to Water Detail
GN-GSA-MW-14S	6/12/2018 18:44	0.34	mg/L	DO
GN-GSA-MW-14S	6/12/2018 18:44	-50.2	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	6/12/2018 18:44	7.53	рН	рН
GN-GSA-MW-14S	6/12/2018 18:44	20.51	С	Temperature
GN-GSA-MW-14S	6/12/2018 18:44	3.04	NTU	Turbidity
GN-GSA-MW-14S	6/12/2018 18:49	350.2	uS/cm	Conductivity
GN-GSA-MW-14S	6/12/2018 18:49	22.05	ft	Depth to Water Detail
GN-GSA-MW-14S	6/12/2018 18:49	0.39	mg/L	DO
GN-GSA-MW-14S	6/12/2018 18:49	-50.3	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	6/12/2018 18:49	7.53	рН	рН
GN-GSA-MW-14S	6/12/2018 18:49	20.39	С	Temperature
GN-GSA-MW-14S	6/12/2018 18:49	2.83	NTU	Turbidity
GN-GSA-MW-14S	6/12/2018 18:54	348.5	uS/cm	Conductivity
GN-GSA-MW-14S	6/12/2018 18:54	22.05	ft	Depth to Water Detail
GN-GSA-MW-14S	6/12/2018 18:54	0.44	mg/L	DO
GN-GSA-MW-14S	6/12/2018 18:54	-50.3	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	6/12/2018 18:54	7.53	рН	рН
GN-GSA-MW-14S	6/12/2018 18:54	20.3	С	Temperature
GN-GSA-MW-14S	6/12/2018 18:54	2.86	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-15	6/12/2018 15:28	55.9	uS/cm	Conductivity
GN-GSA-MW-15	6/12/2018 15:28	19.54	ft	Depth to Water Detail
GN-GSA-MW-15	6/12/2018 15:28	1.86	mg/L	DO
GN-GSA-MW-15	6/12/2018 15:28	31.1	mv	Oxidation Reduction Potention
GN-GSA-MW-15	6/12/2018 15:28	6.46	рН	рН
GN-GSA-MW-15	6/12/2018 15:28	22.49	С	Temperature
GN-GSA-MW-15	6/12/2018 15:28	4.2	NTU	Turbidity
GN-GSA-MW-15	6/12/2018 15:33	52.7	uS/cm	Conductivity
GN-GSA-MW-15	6/12/2018 15:33	19.74	ft	Depth to Water Detail
GN-GSA-MW-15	6/12/2018 15:33	2.02	mg/L	DO
GN-GSA-MW-15	6/12/2018 15:33	45.1	mv	Oxidation Reduction Potention
GN-GSA-MW-15	6/12/2018 15:33	6.22	рН	рН
GN-GSA-MW-15	6/12/2018 15:33	22.3	С	Temperature
GN-GSA-MW-15	6/12/2018 15:33	3.62	NTU	Turbidity
GN-GSA-MW-15	6/12/2018 15:38	51.9	uS/cm	Conductivity
GN-GSA-MW-15	6/12/2018 15:38	19.95	ft	Depth to Water Detail
GN-GSA-MW-15	6/12/2018 15:38	2.04	mg/L	DO
GN-GSA-MW-15	6/12/2018 15:38	50.2	mv	Oxidation Reduction Potention
GN-GSA-MW-15	6/12/2018 15:38	6.13	рН	рН
GN-GSA-MW-15	6/12/2018 15:38	22.5	С	Temperature
GN-GSA-MW-15	6/12/2018 15:38	3.15	NTU	Turbidity
GN-GSA-MW-15	6/12/2018 15:43	51.6	uS/cm	Conductivity
GN-GSA-MW-15	6/12/2018 15:43	20.09	ft	Depth to Water Detail
GN-GSA-MW-15	6/12/2018 15:43	1.94	mg/L	DO
GN-GSA-MW-15	6/12/2018 15:43	50.5	mv	Oxidation Reduction Potention
GN-GSA-MW-15	6/12/2018 15:43	6.09	рН	рН
GN-GSA-MW-15	6/12/2018 15:43	23.07	С	Temperature
GN-GSA-MW-15	6/12/2018 15:43	4.38	NTU	Turbidity
GN-GSA-MW-15	6/12/2018 15:48	50.7	uS/cm	Conductivity
GN-GSA-MW-15	6/12/2018 15:48	20.23	ft	Depth to Water Detail
GN-GSA-MW-15	6/12/2018 15:48	1.86	mg/L	DO
GN-GSA-MW-15	6/12/2018 15:48	51.4	mv	Oxidation Reduction Potention
GN-GSA-MW-15	6/12/2018 15:48	6.07	рН	рН
GN-GSA-MW-15	6/12/2018 15:48	23.16	С	Temperature
GN-GSA-MW-15	6/12/2018 15:48	2.55	NTU	Turbidity
GN-GSA-MW-15	6/12/2018 15:54	50.7	uS/cm	Conductivity
GN-GSA-MW-15	6/12/2018 15:54	20.29	ft	Depth to Water Detail
GN-GSA-MW-15	6/12/2018 15:54	1.84	mg/L	DO
GN-GSA-MW-15	6/12/2018 15:54	51.5	mv	Oxidation Reduction Potention
GN-GSA-MW-15	6/12/2018 15:54	6.05	рН	рН
GN-GSA-MW-15	6/12/2018 15:54	22.49	С	Temperature
GN-GSA-MW-15	6/12/2018 15:54	2.63	NTU	Turbidity

Analytical Report

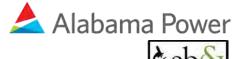
Sample Group: WMWGASG_1176

Project/Site: Gaston Gypsum

Wilsonville, AL 35186

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243


Attention: Dustin Brooks & Greg Dyer

Released By: Laura Midkiff

(205) 664-6197

lbmidkif@southernco.com

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Metals ICP

Gaston Gypsum

WMWGASG_1176

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
AY25233	632110	WMWGASG_1176
AY25234	632110	WMWGASG_1176
AY25235	632110	WMWGASG_1176
AY25236	632110	WMWGASG_1176
AY25237	632110	WMWGASG_1176
AY25238	632110	WMWGASG_1176
AY25239	632110	WMWGASG_1176
AY25240	632110	WMWGASG_1176
AY25241	632110	WMWGASG_1176
AY25242	632110	WMWGASG_1176
AY25243	632111	WMWGASG_1176
AY25244	632111	WMWGASG_1176
AY25245	632111	WMWGASG_1176
AY25246	632111	WMWGASG_1176
AY25247	632111	WMWGASG_1176
AY25367	632111	WMWGASG_1176
AY25368	632111	WMWGASG_1176
AY25369	632111	WMWGASG_1176
AY25370	632111	WMWGASG_1176

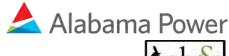
- 4. All of the above samples were analyzed by EPA 200.7 and prepared by EPA 1638.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The spectral interference check associated with EPA 200.7 was analyzed and all acceptance criteria were met.
- All sample internal standard criteria were met.
- The high standard readbacks associated with EPA 200.7 were within acceptance criteria.
- It is noted that the QC summary page typically provides the QC results from the original batch analytical sequence. If dilutions were subsequently performed to bring sample concentrations within the calibration range, any additional QC data from the dilution analyses may need to be obtained from the laboratory. Any qualifications applied to original analyses or dilution re-analyses are based upon QC data available at the time of review.

Matrix Specific Quality Control Procedures:


Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICP batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed at a x2.03 dilution to compensate for potential matrix effects except for the following:

Sample ID	<u>Analyte</u>	<u>Dilution</u>
AY25238	Calcium	x10.15
AY25243	Calcium	x10.15
AY25368	Calcium	x10.15

8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Metals ICPMS

Gaston Gypsum

WMWGASG_1176

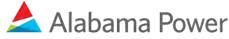
- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
AY25233	631149	WMWGASG_1176
AY25234	631149	WMWGASG_1176
AY25235	631149	WMWGASG_1176
AY25236	631149	WMWGASG_1176
AY25237	631149	WMWGASG_1176
AY25238	631149	WMWGASG_1176
AY25239	631149	WMWGASG_1176
AY25240	631149	WMWGASG_1176
AY25241	631149	WMWGASG_1176
AY25242	631149	WMWGASG_1176
AY25243	631150	WMWGASG_1176
AY25244	631150	WMWGASG_1176
AY25245	631150	WMWGASG_1176
AY25246	631150	WMWGASG_1176
AY25247	631150	WMWGASG_1176
AY25367	631150	WMWGASG_1176
AY25368	631150	WMWGASG_1176
AY25369	631150	WMWGASG_1176
AY25370	631150	WMWGASG_1176

- 4. All of the above samples were analyzed by EPA 200.8 and prepared by EPA 1638.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

General Quality Control Procedures:


- All tune and calibration met criteria for all requested analytes.
- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the limit of quantitation for all requested analytes.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analytes.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analytes.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch passed all acceptance criteria for all requested analytes.
- The interference check samples associated with EPA 200.8 were analyzed and passed for all requested analytes.
- All sample internal standard criteria were met.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each ICPMS batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed at a dilution of 1 to 5.075 to compensate for any matrix.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Mercury

Gaston Gypsum

WMWGASG_1176

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
AY25233	631371	WMWGASG_1176
AY25234	631371	WMWGASG_1176
AY25235	631371	WMWGASG_1176
AY25236	631371	WMWGASG_1176
AY25237	631371	WMWGASG_1176
AY25238	631371	WMWGASG_1176
AY25239	631371	WMWGASG_1176
AY25240	631371	WMWGASG_1176
AY25241	631371	WMWGASG_1176
AY25242	631371	WMWGASG_1176
AY25243	631372	WMWGASG_1176
AY25244	631372	WMWGASG_1176
AY25245	631372	WMWGASG_1176
AY25246	631372	WMWGASG_1176
AY25247	631372	WMWGASG_1176
AY25367	631372	WMWGASG_1176
AY25368	631372	WMWGASG_1176
AY25369	631372	WMWGASG_1176
AY25370	631372	WMWGASG_1176

- 4. All of the above samples were analyzed and prepared by EPA 245.1.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

General Quality Control Procedures:

- Prior to sample analysis, an initial calibration verification (ICV) was analyzed and all criteria were met.
- Following the ICV, an initial calibration blank (ICB) was analyzed and was below the method detection limit for the requested analyte.
- All continued calibration verification (CCV) were within the acceptance criteria for the requested analyte.
- All continued calibration blanks (CCB) were below the limit of quantitation for the requested analyte.
- A preparation method blank and laboratory control sample were digested and analyzed with the samples in each digestion batch.
- All laboratory control sample criteria were met.
- The method blank associated with each digestion batch was below the limit of quantitation for the requested analyte.
- All calibration met criteria for the requested analyte.
- All response signals were satisfactory.

Matrix Specific Quality Control Procedures:

Similarity of matrix and therefore relevance of matrix specific QC results should not be automatically inferred for any sample other than the sample selected for QC.

- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
- A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- 7. All samples were analyzed without a dilution.
- 8. The raw data results are shown with dilution factors included.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

TDS

Gaston Gypsum

WMWGASG_1176

- 1. This report consists of all MWs and corresponding Lab IDs listed on the Chain of Custody.
- 2. Refer to comments on Chain of Custody for information regarding sample receipt.
- 3. All standards and solutions are NIST/ISO/IEC/Guide 34 traceable and were used within their recommended shelf life.

Sample ID	Batch ID	Project ID
AY25233	631290	WMWGASG_1176
AY25234	631290	WMWGASG_1176
AY25235	631290	WMWGASG_1176
AY25236	631290	WMWGASG_1176
AY25237	631290	WMWGASG_1176
AY25238	631290	WMWGASG_1176
AY25239	631290	WMWGASG_1176
AY25240	631352	WMWGASG_1176
AY25241	631352	WMWGASG_1176
AY25242	631352	WMWGASG_1176
AY25243	631352	WMWGASG_1176
AY25244	631352	WMWGASG_1176
AY25245	631290	WMWGASG_1176
AY25246	631290	WMWGASG_1176
AY25247	631352	WMWGASG_1176
AY25367	631352	WMWGASG_1176
AY25368	631352	WMWGASG_1176
AY25369	631352	WMWGASG_1176
AY25370	631352	WMWGASG_1176

- 4. All of the above samples were analyzed by Standard Method 2540C.
- 5. All samples were analyzed within the established hold times.
- 6. All in house quality control procedures were followed, as described below.

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

General Quality Control Procedures:

- A Method Blank was analyzed with each batch. All criteria were met.
- All final weights of samples, standards, and blanks agreed within 0.5mg of the previous weight.
- A sample duplicate was analyzed with each batch. RPD/2 was less than 5%.
- A laboratory control sample was analyzed with each batch. All criteria were met.
- Samples were between 2.5mg and 200mg residue.
- All samples with residue <2.5mg had the maximum volume of 150mL filtered. Affected samples are as follows:
 - o AY25234
 - o AY25246
 - o AY25369
 - o AY25370

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-5

Laboratory ID Number: AY25233

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	J 0.00188	mg/L
Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	0.0711	mg/L
Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U Not Dete	ected mg/L
Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	J 0.0456	mg/L
Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	60.6	mg/L
Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U Not Dete	ected mg/L
Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U Not Dete	ected mg/L
Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	J 0.00490	mg/L
Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Dete	ected mg/L
Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U Not Dete	ected mg/L
Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Dete	ected mg/L
Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Dete	ected mg/L
Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Dete	ected mg/L
Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Dete	ected mg/L
Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U Not Dete	ected mg/L
General Characteristics							
Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	292	mg/L
Filter Completion Date	CRB 10/25/2018	SM 2540C	1			10/25/20	018 Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-5

Laboratory ID Number: AY25233

		MB					LCS	Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limi
AY25242 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.105	0.107	0.112	0.085 to 0.115	105 70 to 130	2.10	20
AY25242 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.100	0.105	0.101	0.085 to 0.115	100 70 to 130	4.23	20
Y25242 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0890	0.0905	0.0911	0.085 to 0.115	89.0 70 to 130	1.70	20
AY25242 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.100	0.102	0.0974	0.085 to 0.115	100 70 to 130	1.90	20
Y25242 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0901	0.0947	0.0897	0.085 to 0.115	90.1 70 to 130	4.93	20
Y25242 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0886	0.0880	0.0979	0.085 to 0.115	88.6 70 to 130	0.648	20
Y25242 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.112	0.111	0.113	0.085 to 0.115	112 70 to 130	0.696	20
AY25242 Boron, Total	mg/L 0.000649	0.044	1.00	1.02	1.01	0.992	0.85 to 1.15	98.5 70 to 130	0.985	20
Y25242 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0958	0.0989	0.0930	0.085 to 0.115	95.8 70 to 130	3.12	20
AY25242 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.105	0.103	0.102	0.085 to 0.115	105 70 to 130	1.36	20
AY25242 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.122	0.124	0.0955	0.085 to 0.115	105 70 to 130	0.876	20
AY25242 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.112	0.113	0.107	0.085 to 0.115	112 70 to 130	1.31	20
Y25242 Lithium, Total	mg/L 0.0000529	0.022	0.200	0.206	0.205	0.196	0.17 to 0.23	103 70 to 130	0.487	20
AY25242 Calcium, Total	mg/L -0.00268	0.22	5.00	68.4	68.7	4.92	4.25 to 5.75	82.0 70 to 130	0.438	20
AY25242 Mercury, Total by CVAA	mg/L 0.000114	0.0005	0.004	0.00311	0.00307	0.00402	0.0034 to 0.0046	77.7 70 to 130	1.06	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-5

Laboratory ID Number: AY25233

			MB			Sample)	LCS	Rec	1	Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplica	ite LCS	Limit	Rec Limit	Prec	Limit
AY25246	Solids, Dissolved	mg/L 0.0000	25			0.67	52.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-6

Laboratory ID Number: AY25234

Name	Analyst Test D	ate Reference	e Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols				,				
* Arsenic, Total	ABB 10/29/2	2018 EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Barium, Total	ABB 10/29/2	2018 EPA 200.8	5.075	0.002	0.01		0.0185	mg/L
* Beryllium, Total	ABB 10/29/2	2018 EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
* Boron, Total	RDA 11/9/20	18 EPA 200.	7 2.03	0.02	0.1	U	Not Detected	mg/L
* Calcium, Total	RDA 11/9/20	18 EPA 200.	7 2.03	0.1	0.5		0.790	mg/L
* Cadmium, Total	ABB 10/29/2	2018 EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
 Antimony, Total 	ABB 10/29/2	2018 EPA 200.8	5.075	0.0008	0.003	U	Not Detected	mg/L
* Cobalt, Total	ABB 10/29/2	2018 EPA 200.8	5.075	0.002	0.005	U	Not Detected	mg/L
* Chromium, Total	ABB 10/29/2	2018 EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
 Mercury, Total by CVAA 	GAS 10/31/2	2018 EPA 245.	1	0.00025	0.0005	U	Not Detected	mg/L
* Lithium, Total	RDA 11/9/20	18 EPA 200.	7 2.03	0.01	0.02	U	Not Detected	mg/L
 Molybdenum, Total 	ABB 10/29/2	2018 EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Lead, Total	ABB 10/29/2	2018 EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Selenium, Total	ABB 10/29/2	2018 EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Thallium, Total	ABB 10/29/2	2018 EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics								
* Solids, Dissolved	CRB 10/30/2	2018 SM 25400	1		25	U	Not Detected	mg/L
Filter Completion Date	CRB 10/25/2	2018 SM 25400	1				10/25/2018	Date

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Expiration: June 30, 2019

Comments: TDS result is qualified due to sample did not meet the 2.5mg requirement. Max volume of 150mL was filtered. LBM 11/13/18

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-6

Laboratory ID Number: AY25234

										—
		MB					LCS	Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
AY25242 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.100	0.105	0.101	0.085 to 0.115	100 70 to 13	0 4.23	20
AY25242 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.105	0.107	0.112	0.085 to 0.115	105 70 to 13	0 2.10	20
AY25242 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0890	0.0905	0.0911	0.085 to 0.115	89.0 70 to 13	0 1.70	20
AY25242 Calcium, Total	mg/L -0.00268	0.22	5.00	68.4	68.7	4.92	4.25 to 5.75	82.0 70 to 13	0 0.438	20
AY25242 Mercury, Total by CVAA	mg/L 0.000114	0.0005	0.004	0.00311	0.00307	0.00402	0.0034 to 0.0046	77.7 70 to 13	0 1.06	20
AY25242 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.100	0.102	0.0974	0.085 to 0.115	100 70 to 13	0 1.90	20
AY25242 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0901	0.0947	0.0897	0.085 to 0.115	90.1 70 to 13	0 4.93	20
AY25242 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0886	0.0880	0.0979	0.085 to 0.115	88.6 70 to 13	0.648	20
AY25242 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.105	0.103	0.102	0.085 to 0.115	105 70 to 13	0 1.36	20
AY25242 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.122	0.124	0.0955	0.085 to 0.115	105 70 to 13	0.876	20
AY25242 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.112	0.113	0.107	0.085 to 0.115	112 70 to 13	0 1.31	20
AY25242 Lithium, Total	mg/L 0.0000529	0.022	0.200	0.206	0.205	0.196	0.17 to 0.23	103 70 to 13	0 0.487	20
AY25242 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.112	0.111	0.113	0.085 to 0.115	112 70 to 13	0.696	20
AY25242 Boron, Total	mg/L 0.000649	0.044	1.00	1.02	1.01	0.992	0.85 to 1.15	98.5 70 to 13	0.985	20
AY25242 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0958	0.0989	0.0930	0.085 to 0.115	95.8 70 to 13	0 3.12	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: TDS result is qualified due to sample did not meet the 2.5mg requirement. Max volume of 150mL was filtered. LBM 11/13/18

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-6

Laboratory ID Number: AY25234

			MB		Sample	,	LCS	Rec		Prec	
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY25246	Solids, Dissolved	mg/L 0.0000	25			0.67	52.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health

Expiration: June 30, 2019

Comments: TDS result is qualified due to sample did not meet the 2.5mg requirement. Max volume of 150mL was filtered. LBM 11/13/18

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-7

Laboratory ID Number: AY25235

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	0.0228	mg/L
* Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
* Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	70.3	mg/L
* Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U Not Detected	mg/L
* Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U Not Detected	mg/L
* Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Detected	mg/L
 Molybdenum, Total 	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	209	mg/L
Filter Completion Date	CRB 10/25/2018	SM 2540C	1			10/25/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-7

Laboratory ID Number: AY25235

		MB				,	LCS	Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
AY25242 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.100	0.105	0.101	0.085 to 0.115	100 70 to 13	0 4.23	20
AY25242 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0890	0.0905	0.0911	0.085 to 0.115	89.0 70 to 13	0 1.70	20
AY25242 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.105	0.107	0.112	0.085 to 0.115	105 70 to 13	0 2.10	20
AY25242 Calcium, Total	mg/L -0.00268	0.22	5.00	68.4	68.7	4.92	4.25 to 5.75	82.0 70 to 13	0 0.438	20
AY25242 Mercury, Total by CVAA	mg/L 0.000114	0.0005	0.004	0.00311	0.00307	0.00402	0.0034 to 0.0046	77.7 70 to 13	0 1.06	20
AY25242 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.112	0.111	0.113	0.085 to 0.115	112 70 to 13	0.696	20
AY25242 Boron, Total	mg/L 0.000649	0.044	1.00	1.02	1.01	0.992	0.85 to 1.15	98.5 70 to 13	0.985	20
AY25242 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0958	0.0989	0.0930	0.085 to 0.115	95.8 70 to 13	0 3.12	20
AY25242 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.105	0.103	0.102	0.085 to 0.115	105 70 to 13	0 1.36	20
AY25242 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.122	0.124	0.0955	0.085 to 0.115	105 70 to 13	0.876	20
AY25242 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.112	0.113	0.107	0.085 to 0.115	112 70 to 13	0 1.31	20
AY25242 Lithium, Total	mg/L 0.0000529	0.022	0.200	0.206	0.205	0.196	0.17 to 0.23	103 70 to 13	0 0.487	20
AY25242 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.100	0.102	0.0974	0.085 to 0.115	100 70 to 13	0 1.90	20
AY25242 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0901	0.0947	0.0897	0.085 to 0.115	90.1 70 to 13	0 4.93	20
AY25242 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0886	0.0880	0.0979	0.085 to 0.115	88.6 70 to 13	0.648	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-7

Laboratory ID Number: AY25235

-			MB		Sample)	LCS	Rec		Prec	
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplica	ate LCS	Limit	Rec Limit	Prec	Limit
AY25246	Solids, Dissolved	mg/L 0.0000	25			0.67	52.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-8

Laboratory ID Number: AY25236

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	J 0.00150	mg/L
* Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	0.0314	mg/L
* Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detect	ed mg/L
* Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U Not Detect	ed mg/L
* Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	55.4	mg/L
* Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detect	ed mg/L
* Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U Not Detect	ed mg/L
* Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U Not Detect	ed mg/L
* Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detect	ed mg/L
 Mercury, Total by CVAA 	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U Not Detect	ed mg/L
* Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Detect	ed mg/L
* Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	J 0.00359	mg/L
* Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detect	ed mg/L
* Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detect	ed mg/L
* Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detect	ed mg/L
General Characteristics							
* Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	184	mg/L
Filter Completion Date	CRB 10/25/2018	SM 2540C	1			10/25/2018	B Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-8

Laboratory ID Number: AY25236

Edboratory is Italiason 71120200	,										
	,	MB					LCS		Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limi
Y25242 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.105	0.107	0.112	0.085 to 0.115	105	70 to 130	2.10	20
Y25242 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.100	0.105	0.101	0.085 to 0.115	100	70 to 130	4.23	20
Y25242 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0890	0.0905	0.0911	0.085 to 0.115	89.0	70 to 130	1.70	20
Y25242 Calcium, Total	mg/L -0.00268	0.22	5.00	68.4	68.7	4.92	4.25 to 5.75	82.0	70 to 130	0.438	20
Y25242 Mercury, Total by CVAA	mg/L 0.000114	0.0005	0.004	0.00311	0.00307	0.00402	0.0034 to 0.0046	77.7	70 to 130	1.06	20
Y25242 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.112	0.111	0.113	0.085 to 0.115	112	70 to 130	0.696	20
Y25242 Boron, Total	mg/L 0.000649	0.044	1.00	1.02	1.01	0.992	0.85 to 1.15	98.5	70 to 130	0.985	20
Y25242 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0958	0.0989	0.0930	0.085 to 0.115	95.8	70 to 130	3.12	20
Y25242 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.100	0.102	0.0974	0.085 to 0.115	100	70 to 130	1.90	20
Y25242 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0901	0.0947	0.0897	0.085 to 0.115	90.1	70 to 130	4.93	20
Y25242 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0886	0.0880	0.0979	0.085 to 0.115	88.6	70 to 130	0.648	20
Y25242 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.105	0.103	0.102	0.085 to 0.115	105	70 to 130	1.36	20
Y25242 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.122	0.124	0.0955	0.085 to 0.115	105	70 to 130	0.876	20
Y25242 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.112	0.113	0.107	0.085 to 0.115	112	70 to 130	1.31	20
Y25242 Lithium, Total	mg/L 0.0000529	0.022	0.200	0.206	0.205	0.196	0.17 to 0.23	103	70 to 130	0.487	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-8

Laboratory ID Number: AY25236

			MB		Sample	,	LCS	Rec		Prec	
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY25246	Solids, Dissolved	mg/L 0.0000	25			0.67	52.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-9

Laboratory ID Number: AY25237

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	0.0265	mg/L
Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	52.4	mg/L
Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U Not Detected	mg/L
Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U Not Detected	mg/L
Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Detected	mg/L
Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	177	mg/L
Filter Completion Date	CRB 10/25/2018	SM 2540C	1			10/25/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-9

Laboratory ID Number: AY25237

									_	
		MB					LCS	Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
AY25242 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.105	0.107	0.112	0.085 to 0.115	105 70 to 1	30 2.10	20
AY25242 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.100	0.105	0.101	0.085 to 0.115	100 70 to 1	30 4.23	20
AY25242 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0890	0.0905	0.0911	0.085 to 0.115	89.0 70 to 1	30 1.70	20
AY25242 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.100	0.102	0.0974	0.085 to 0.115	100 70 to 1	30 1.90	20
AY25242 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0901	0.0947	0.0897	0.085 to 0.115	90.1 70 to 1	30 4.93	20
AY25242 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0886	0.0880	0.0979	0.085 to 0.115	88.6 70 to 1	30 0.648	20
AY25242 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.112	0.111	0.113	0.085 to 0.115	112 70 to 1	30 0.696	20
AY25242 Boron, Total	mg/L 0.000649	0.044	1.00	1.02	1.01	0.992	0.85 to 1.15	98.5 70 to 1	30 0.985	20
AY25242 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0958	0.0989	0.0930	0.085 to 0.115	95.8 70 to 1	30 3.12	20
AY25242 Calcium, Total	mg/L -0.00268	0.22	5.00	68.4	68.7	4.92	4.25 to 5.75	82.0 70 to 1	30 0.438	20
AY25242 Mercury, Total by CVAA	mg/L 0.000114	0.0005	0.004	0.00311	0.00307	0.00402	0.0034 to 0.0046	77.7 70 to 1	30 1.06	20
AY25242 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.105	0.103	0.102	0.085 to 0.115	105 70 to 1	30 1.36	20
AY25242 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.122	0.124	0.0955	0.085 to 0.115	105 70 to 1	30 0.876	20
AY25242 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.112	0.113	0.107	0.085 to 0.115	112 70 to 1	30 1.31	20
AY25242 Lithium, Total	mg/L 0.0000529	0.022	0.200	0.206	0.205	0.196	0.17 to 0.23	103 70 to 1	30 0.487	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-9

Laboratory ID Number: AY25237

			MB		Sample)	LCS	Rec	1	Prec	
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplica	ite LCS	Limit	Rec Limit	Prec	Limit
AY25246	Solids, Dissolved	mg/L 0.0000	25			0.67	52.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-2

Laboratory ID Number: AY25238

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols								
* Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01		0.0324	mg/L
* Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
* Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U	Not Detected	mg/L
* Calcium, Total	RDA 11/9/2018	EPA 200.7	10.15	1.015	5.075		96.9	mg/L
* Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
* Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U	Not Detected	mg/L
* Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U	Not Detected	mg/L
* Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
 Mercury, Total by CVAA 	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
* Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U	Not Detected	mg/L
 Molybdenum, Total 	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
* Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics								
* Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25		278	mg/L
Filter Completion Date	CRB 10/25/2018	SM 2540C	1				10/25/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-2

Laboratory ID Number: AY25238

		MB					LCS	Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
AY25242 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.100	0.105	0.101	0.085 to 0.115	100 70 to 13	0 4.23	20
AY25242 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.105	0.107	0.112	0.085 to 0.115	105 70 to 13	0 2.10	20
AY25242 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0890	0.0905	0.0911	0.085 to 0.115	89.0 70 to 13	0 1.70	20
AY25242 Calcium, Total	mg/L -0.00268	0.22	5.00	68.4	68.7	4.92	4.25 to 5.75	82.0 70 to 13	0 0.438	20
AY25242 Mercury, Total by CVAA	mg/L 0.000114	0.0005	0.004	0.00311	0.00307	0.00402	0.0034 to 0.0046	77.7 70 to 13	0 1.06	20
AY25242 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.112	0.111	0.113	0.085 to 0.115	112 70 to 13	0 0.696	20
AY25242 Boron, Total	mg/L 0.000649	0.044	1.00	1.02	1.01	0.992	0.85 to 1.15	98.5 70 to 13	0 0.985	20
AY25242 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0958	0.0989	0.0930	0.085 to 0.115	95.8 70 to 13	0 3.12	20
AY25242 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.105	0.103	0.102	0.085 to 0.115	105 70 to 13	0 1.36	20
AY25242 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.122	0.124	0.0955	0.085 to 0.115	105 70 to 13	0 0.876	20
AY25242 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.112	0.113	0.107	0.085 to 0.115	112 70 to 13	0 1.31	20
AY25242 Lithium, Total	mg/L 0.0000529	0.022	0.200	0.206	0.205	0.196	0.17 to 0.23	103 70 to 13	0 0.487	20
AY25242 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.100	0.102	0.0974	0.085 to 0.115	100 70 to 13	0 1.90	20
AY25242 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0901	0.0947	0.0897	0.085 to 0.115	90.1 70 to 13	0 4.93	20
AY25242 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0886	0.0880	0.0979	0.085 to 0.115	88.6 70 to 13	0 0.648	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-2

Laboratory ID Number: AY25238

			MB		Sample)	LCS	Rec	1	Prec	
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplica	ite LCS	Limit	Rec Limit	Prec	Limit
AY25246	Solids, Dissolved	mg/L 0.0000	25			0.67	52.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-15

Laboratory ID Number: AY25239

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	J 0.00948	mg/L
Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	5.94	mg/L
Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U Not Detected	mg/L
Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U Not Detected	mg/L
Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Detected	mg/L
Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	27.3	mg/L
Filter Completion Date	CRB 10/25/2018	SM 2540C	1			10/25/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-15

Laboratory ID Number: AY25239

Edbordtory is italiason /tizozoo	,										
	,	MB					LCS		Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limi
Y25242 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.105	0.107	0.112	0.085 to 0.115	105	70 to 130	2.10	20
Y25242 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.100	0.105	0.101	0.085 to 0.115	100	70 to 130	4.23	20
Y25242 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0890	0.0905	0.0911	0.085 to 0.115	89.0	70 to 130	1.70	20
Y25242 Calcium, Total	mg/L -0.00268	0.22	5.00	68.4	68.7	4.92	4.25 to 5.75	82.0	70 to 130	0.438	20
Y25242 Mercury, Total by CVAA	mg/L 0.000114	0.0005	0.004	0.00311	0.00307	0.00402	0.0034 to 0.0046	77.7	70 to 130	1.06	20
Y25242 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.100	0.102	0.0974	0.085 to 0.115	100	70 to 130	1.90	20
Y25242 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0901	0.0947	0.0897	0.085 to 0.115	90.1	70 to 130	4.93	20
Y25242 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0886	0.0880	0.0979	0.085 to 0.115	88.6	70 to 130	0.648	20
Y25242 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.112	0.111	0.113	0.085 to 0.115	112	70 to 130	0.696	20
Y25242 Boron, Total	mg/L 0.000649	0.044	1.00	1.02	1.01	0.992	0.85 to 1.15	98.5	70 to 130	0.985	20
Y25242 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0958	0.0989	0.0930	0.085 to 0.115	95.8	70 to 130	3.12	20
Y25242 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.105	0.103	0.102	0.085 to 0.115	105	70 to 130	1.36	20
Y25242 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.122	0.124	0.0955	0.085 to 0.115	105	70 to 130	0.876	20
Y25242 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.112	0.113	0.107	0.085 to 0.115	112	70 to 130	1.31	20
Y25242 Lithium, Total	mg/L 0.0000529	0.022	0.200	0.206	0.205	0.196	0.17 to 0.23	103	70 to 130	0.487	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-15

Laboratory ID Number: AY25239

			MB	MB)	LCS	Rec	1	Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	ite LCS	Limit	Rec Limit	Prec	Limit
AY25246	Solids, Dissolved	mg/L 0.0000	25		0.67	52.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-3

Laboratory ID Number: AY25240

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	0.0350	mg/L
* Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
* Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	68.8	mg/L
* Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U Not Detected	mg/L
* Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U Not Detected	mg/L
* Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Detected	mg/L
* Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	215	mg/L
Filter Completion Date	CRB 10/26/2018	SM 2540C	1			10/26/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-3

Laboratory ID Number: AY25240

,										
		MB					LCS	Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limi
AY25242 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.100	0.105	0.101	0.085 to 0.115	100 70 to 13	30 4.23	20
AY25242 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.105	0.107	0.112	0.085 to 0.115	105 70 to 13	30 2.10	20
AY25242 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0890	0.0905	0.0911	0.085 to 0.115	89.0 70 to 13	30 1.70	20
AY25242 Calcium, Total	mg/L -0.00268	0.22	5.00	68.4	68.7	4.92	4.25 to 5.75	82.0 70 to 13	30 0.438	20
AY25242 Mercury, Total by CVAA	mg/L 0.000114	0.0005	0.004	0.00311	0.00307	0.00402	0.0034 to 0.0046	77.7 70 to 13	30 1.06	20
AY25242 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.105	0.103	0.102	0.085 to 0.115	105 70 to 13	30 1.36	20
AY25242 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.122	0.124	0.0955	0.085 to 0.115	105 70 to 13	30 0.876	20
AY25242 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.112	0.113	0.107	0.085 to 0.115	112 70 to 13	30 1.31	20
AY25242 Lithium, Total	mg/L 0.0000529	0.022	0.200	0.206	0.205	0.196	0.17 to 0.23	103 70 to 13	30 0.487	20
AY25242 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.100	0.102	0.0974	0.085 to 0.115	100 70 to 13	30 1.90	20
AY25242 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0901	0.0947	0.0897	0.085 to 0.115	90.1 70 to 13	30 4.93	20
AY25242 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0886	0.0880	0.0979	0.085 to 0.115	88.6 70 to 13	30 0.648	20
AY25242 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.112	0.111	0.113	0.085 to 0.115	112 70 to 13	30 0.696	20
AY25242 Boron, Total	mg/L 0.000649	0.044	1.00	1.02	1.01	0.992	0.85 to 1.15	98.5 70 to 13	30 0.985	20
AY25242 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0958	0.0989	0.0930	0.085 to 0.115	95.8 70 to 13	30 3.12	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-3

Laboratory ID Number: AY25240

			MB		Sample		LCS	Rec	1	Prec	
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY25370	Solids, Dissolved	mg/L 0.0000	25			0.67	49.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-14S

Laboratory ID Number: AY25241

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	0.0320	mg/L
Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	44.4	mg/L
Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U Not Detected	mg/L
Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U Not Detected	mg/L
Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Detected	mg/L
Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	204	mg/L
Filter Completion Date	CRB 10/26/2018	SM 2540C	1			10/26/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-14S

Laboratory ID Number: AY25241

		MB				,	LCS	Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
AY25242 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.100	0.105	0.101	0.085 to 0.115	100 70 to 13	0 4.23	20
AY25242 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0890	0.0905	0.0911	0.085 to 0.115	89.0 70 to 13	0 1.70	20
AY25242 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.105	0.107	0.112	0.085 to 0.115	105 70 to 13	0 2.10	20
AY25242 Calcium, Total	mg/L -0.00268	0.22	5.00	68.4	68.7	4.92	4.25 to 5.75	82.0 70 to 13	0 0.438	20
AY25242 Mercury, Total by CVAA	mg/L 0.000114	0.0005	0.004	0.00311	0.00307	0.00402	0.0034 to 0.0046	77.7 70 to 13	0 1.06	20
AY25242 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.112	0.111	0.113	0.085 to 0.115	112 70 to 13	0.696	20
AY25242 Boron, Total	mg/L 0.000649	0.044	1.00	1.02	1.01	0.992	0.85 to 1.15	98.5 70 to 13	0.985	20
AY25242 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0958	0.0989	0.0930	0.085 to 0.115	95.8 70 to 13	0 3.12	20
AY25242 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.105	0.103	0.102	0.085 to 0.115	105 70 to 13	0 1.36	20
AY25242 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.122	0.124	0.0955	0.085 to 0.115	105 70 to 13	0.876	20
AY25242 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.112	0.113	0.107	0.085 to 0.115	112 70 to 13	0 1.31	20
AY25242 Lithium, Total	mg/L 0.0000529	0.022	0.200	0.206	0.205	0.196	0.17 to 0.23	103 70 to 13	0 0.487	20
AY25242 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.100	0.102	0.0974	0.085 to 0.115	100 70 to 13	0 1.90	20
AY25242 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0901	0.0947	0.0897	0.085 to 0.115	90.1 70 to 13	0 4.93	20
AY25242 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0886	0.0880	0.0979	0.085 to 0.115	88.6 70 to 13	0.648	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-14S

Laboratory ID Number: AY25241

			MB	MB		Sample		LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY25370	Solids, Dissolved	mg/L 0.0000	25			0.67	49.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-12

Laboratory ID Number: AY25242

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols				-				
Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01		0.0176	mg/L
Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	J	0.0347	mg/L
Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5		64.3	mg/L
Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U	Not Detected	mg/L
Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U	Not Detected	mg/L
Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U	Not Detected	mg/L
Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics								
Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25		201	mg/L
Filter Completion Date	CRB 10/26/2018	SM 2540C	1				10/26/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-12

Laboratory ID Number: AY25242

										—
		MB					LCS	Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec	Limit
AY25242 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.105	0.107	0.112	0.085 to 0.115	105 70 to 13	0 2.10	20
AY25242 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.100	0.105	0.101	0.085 to 0.115	100 70 to 13	0 4.23	20
AY25242 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0890	0.0905	0.0911	0.085 to 0.115	89.0 70 to 13	0 1.70	20
AY25242 Calcium, Total	mg/L -0.00268	0.22	5.00	68.4	68.7	4.92	4.25 to 5.75	82.0 70 to 13	0 0.438	20
AY25242 Mercury, Total by CVAA	mg/L 0.000114	0.0005	0.004	0.00311	0.00307	0.00402	0.0034 to 0.0046	77.7 70 to 13	0 1.06	20
AY25242 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.112	0.111	0.113	0.085 to 0.115	112 70 to 13	0 0.696	20
AY25242 Boron, Total	mg/L 0.000649	0.044	1.00	1.02	1.01	0.992	0.85 to 1.15	98.5 70 to 13	0 0.985	20
AY25242 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0958	0.0989	0.0930	0.085 to 0.115	95.8 70 to 13	0 3.12	20
AY25242 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.100	0.102	0.0974	0.085 to 0.115	100 70 to 13	0 1.90	20
AY25242 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0901	0.0947	0.0897	0.085 to 0.115	90.1 70 to 13	0 4.93	20
AY25242 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0886	0.0880	0.0979	0.085 to 0.115	88.6 70 to 13	0 0.648	20
AY25242 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.105	0.103	0.102	0.085 to 0.115	105 70 to 13	0 1.36	20
AY25242 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.122	0.124	0.0955	0.085 to 0.115	105 70 to 13	0 0.876	20
AY25242 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.112	0.113	0.107	0.085 to 0.115	112 70 to 13	0 1.31	20
AY25242 Lithium, Total	mg/L 0.0000529	0.022	0.200	0.206	0.205	0.196	0.17 to 0.23	103 70 to 13	0 0.487	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-12

Laboratory ID Number: AY25242

			MB	MB		Sample		LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY25370	Solids, Dissolved	mg/L 0.0000	25			0.67	49.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-13

Laboratory ID Number: AY25243

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols				-				
Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01		0.0457	mg/L
Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U	Not Detected	mg/L
Calcium, Total	RDA 11/9/2018	EPA 200.7	10.15	1.015	5.075		97.6	mg/L
Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U	Not Detected	mg/L
Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U	Not Detected	mg/L
Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U	Not Detected	mg/L
Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics								
Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25		279	mg/L
Filter Completion Date	CRB 10/26/2018	SM 2540C	1				10/26/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-13

Laboratory ID Number: AY25243

-		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
AY25247 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.120	0.117	0.0955	0.085 to 0.115	99.3	70 to 130	2.33	20
AY25247 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0949	0.0950	0.0930	0.085 to 0.115	94.9	70 to 130	0.0616	20
AY25370 Boron, Total	mg/L 0.000448	0.044	1.00	0.948	0.962	0.971	0.85 to 1.15	94.8	70 to 130	1.47	20
AY25247 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0909	0.0894	0.0911	0.085 to 0.115	90.9	70 to 130	1.69	20
AY25247 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0894	0.0884	0.0897	0.085 to 0.115	89.4	70 to 130	1.17	20
AY25247 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.104	0.0973	0.102	0.085 to 0.115	104	70 to 130	6.96	20
AY25247 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.101	0.0993	0.101	0.085 to 0.115	100	70 to 130	2.01	20
AY25247 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.111	0.104	0.107	0.085 to 0.115	111	70 to 130	6.22	20
AY25247 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0907	0.0909	0.0979	0.085 to 0.115	90.7	70 to 130	0.315	20
AY25370 Calcium, Total	mg/L -0.000845	0.22	5.00	4.83	4.80	4.87	4.25 to 5.75	96.6	70 to 130	0.623	20
AY25370 Lithium, Total	mg/L 0.0000534	0.022	0.200	0.187	0.190	0.189	0.17 to 0.23	93.5	70 to 130	1.59	20
AY25370 Mercury, Total by CVAA	mg/L 0.000109	0.0005	0.004	0.00336	0.00340	0.00380	0.0034 to 0.0046	84.0	70 to 130	1.17	20
AY25247 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.113	0.114	0.113	0.085 to 0.115	113	70 to 130	0.859	20
AY25247 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.102	0.103	0.0974	0.085 to 0.115	102	70 to 130	0.780	20
AY25247 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.110	0.115	0.112	0.085 to 0.115	110	70 to 130	3.93	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-13

Laboratory ID Number: AY25243

			MB			Sample		LCS	Rec	'	Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplicate	e LCS	Limit	Rec Limit	Prec	Limit
AY25370	Solids, Dissolved	mg/L 0.0000	25			0.67	49.0	40 to 60	_	0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-1

Laboratory ID Number: AY25244

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols				,				
Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005		0.00829	mg/L
Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01		2.22	mg/L
Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U	Not Detected	mg/L
Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	J	0.0345	mg/L
Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5		38.9	mg/L
Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U	Not Detected	mg/L
Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U	Not Detected	mg/L
Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U	Not Detected	mg/L
Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U	Not Detected	mg/L
Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U	Not Detected	mg/L
Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	J	0.00600	mg/L
Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U	Not Detected	mg/L
Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U	Not Detected	mg/L
General Characteristics								
Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25		195	mg/L
Filter Completion Date	CRB 10/26/2018	SM 2540C	1				10/26/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-1

Laboratory ID Number: AY25244

	,	MB				,	LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
AY25247 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.120	0.117	0.0955	0.085 to 0.115	99.3	70 to 130	2.33	20
AY25370 Boron, Total	mg/L 0.000448	0.044	1.00	0.948	0.962	0.971	0.85 to 1.15	94.8	70 to 130	1.47	20
AY25247 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0949	0.0950	0.0930	0.085 to 0.115	94.9	70 to 130	0.0616	20
AY25247 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.104	0.0973	0.102	0.085 to 0.115	104	70 to 130	6.96	20
AY25247 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0909	0.0894	0.0911	0.085 to 0.115	90.9	70 to 130	1.69	20
AY25247 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0894	0.0884	0.0897	0.085 to 0.115	89.4	70 to 130	1.17	20
AY25370 Calcium, Total	mg/L -0.000845	0.22	5.00	4.83	4.80	4.87	4.25 to 5.75	96.6	70 to 130	0.623	20
AY25370 Lithium, Total	mg/L 0.0000534	0.022	0.200	0.187	0.190	0.189	0.17 to 0.23	93.5	70 to 130	1.59	20
AY25370 Mercury, Total by CVAA	mg/L 0.000109	0.0005	0.004	0.00336	0.00340	0.00380	0.0034 to 0.0046	84.0	70 to 130	1.17	20
AY25247 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.113	0.114	0.113	0.085 to 0.115	113	70 to 130	0.859	20
AY25247 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.102	0.103	0.0974	0.085 to 0.115	102	70 to 130	0.780	20
AY25247 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.110	0.115	0.112	0.085 to 0.115	110	70 to 130	3.93	20
AY25247 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.101	0.0993	0.101	0.085 to 0.115	100	70 to 130	2.01	20
AY25247 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.111	0.104	0.107	0.085 to 0.115	111	70 to 130	6.22	20
AY25247 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0907	0.0909	0.0979	0.085 to 0.115	90.7	70 to 130	0.315	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-1

Laboratory ID Number: AY25244

			MB		Sample		LCS	Rec	1	Prec	
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplicat	e LCS	Limit	Rec Limit	Prec	Limit
AY25370	Solids, Dissolved	mg/L 0.0000	25			0.67	49.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-6 DUP

Laboratory ID Number: AY25245

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	0.0148	mg/L
* Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
* Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	0.804	mg/L
* Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U Not Detected	mg/L
* Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U Not Detected	mg/L
* Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Detected	mg/L
* Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	U Not Detected	mg/L
Filter Completion Date	CRB 10/25/2018	SM 2540C	1			10/25/2018	Date

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: Max volume of 150mL was filtered. LBM 11/13/18

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-6 DUP

Laboratory ID Number: AY25245

		MB		,	,	,	LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
AY25247 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.104	0.0973	0.102	0.085 to 0.115	104	70 to 130	6.96	20
AY25247 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0949	0.0950	0.0930	0.085 to 0.115	94.9	70 to 130	0.0616	20
AY25247 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.120	0.117	0.0955	0.085 to 0.115	99.3	70 to 130	2.33	20
AY25370 Boron, Total	mg/L 0.000448	0.044	1.00	0.948	0.962	0.971	0.85 to 1.15	94.8	70 to 130	1.47	20
AY25247 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0909	0.0894	0.0911	0.085 to 0.115	90.9	70 to 130	1.69	20
AY25247 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0894	0.0884	0.0897	0.085 to 0.115	89.4	70 to 130	1.17	20
AY25247 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.101	0.0993	0.101	0.085 to 0.115	100	70 to 130	2.01	20
AY25247 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.111	0.104	0.107	0.085 to 0.115	111	70 to 130	6.22	20
AY25247 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0907	0.0909	0.0979	0.085 to 0.115	90.7	70 to 130	0.315	20
AY25370 Calcium, Total	mg/L -0.000845	0.22	5.00	4.83	4.80	4.87	4.25 to 5.75	96.6	70 to 130	0.623	20
AY25370 Lithium, Total	mg/L 0.0000534	0.022	0.200	0.187	0.190	0.189	0.17 to 0.23	93.5	70 to 130	1.59	20
AY25370 Mercury, Total by CVAA	mg/L 0.000109	0.0005	0.004	0.00336	0.00340	0.00380	0.0034 to 0.0046	84.0	70 to 130	1.17	20
AY25247 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.113	0.114	0.113	0.085 to 0.115	113	70 to 130	0.859	20
AY25247 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.102	0.103	0.0974	0.085 to 0.115	102	70 to 130	0.780	20
AY25247 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.110	0.115	0.112	0.085 to 0.115	110	70 to 130	3.93	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: Max volume of 150mL was filtered. LBM 11/13/18

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-6 DUP

Laboratory ID Number: AY25245

			MB	MB)	LCS	Rec	1	Prec
Sample	Analysis	Units MB	Limit	Spike LFM	Duplica	ite LCS	Limit	Rec Limit	Prec	Limit
AY25246	Solids, Dissolved	mg/L 0.0000	25		0.67	52.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments: Max volume of 150mL was filtered. LBM 11/13/18

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB

Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY25246

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols				,			
* Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
* Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	U Not Detected	mg/L
* Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U Not Detected	mg/L
* Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U Not Detected	mg/L
* Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
 Mercury, Total by CVAA 	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Detected	mg/L
* Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	U Not Detected	mg/L
Filter Completion Date	CRB 10/25/2018	SM 2540C	1			10/25/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health
Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY25246

Editoratory ID Italinibor /trzoz-to											
		MB					LCS		Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limi
Y25247 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0949	0.0950	0.0930	0.085 to 0.115	94.9	70 to 130	0.0616	20
Y25247 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.104	0.0973	0.102	0.085 to 0.115	104	70 to 130	6.96	20
Y25247 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.120	0.117	0.0955	0.085 to 0.115	99.3	70 to 130	2.33	20
Y25370 Boron, Total	mg/L 0.000448	0.044	1.00	0.948	0.962	0.971	0.85 to 1.15	94.8	70 to 130	1.47	20
Y25247 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0909	0.0894	0.0911	0.085 to 0.115	90.9	70 to 130	1.69	20
Y25247 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0894	0.0884	0.0897	0.085 to 0.115	89.4	70 to 130	1.17	20
Y25370 Calcium, Total	mg/L -0.000845	0.22	5.00	4.83	4.80	4.87	4.25 to 5.75	96.6	70 to 130	0.623	20
Y25370 Lithium, Total	mg/L 0.0000534	0.022	0.200	0.187	0.190	0.189	0.17 to 0.23	93.5	70 to 130	1.59	20
Y25370 Mercury, Total by CVAA	mg/L 0.000109	0.0005	0.004	0.00336	0.00340	0.00380	0.0034 to 0.0046	84.0	70 to 130	1.17	20
Y25247 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.101	0.0993	0.101	0.085 to 0.115	100	70 to 130	2.01	20
Y25247 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.111	0.104	0.107	0.085 to 0.115	111	70 to 130	6.22	20
Y25247 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0907	0.0909	0.0979	0.085 to 0.115	90.7	70 to 130	0.315	20
Y25247 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.113	0.114	0.113	0.085 to 0.115	113	70 to 130	0.859	20
Y25247 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.102	0.103	0.0974	0.085 to 0.115	102	70 to 130	0.780	20
Y25247 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.110	0.115	0.112	0.085 to 0.115	110	70 to 130	3.93	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY25246

			MB		S	Sample		LCS	Rec		Prec
Sample	Analysis	Units MB	Limit	Spike LFN	I D	Ouplica	ate LCS	Limit	Rec Limit	Prec	Limit
AY25246	Solids, Dissolved	mg/L 0.0000	25	'	0.	.67	52.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-12 DUP

Laboratory ID Number: AY25247

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Re	esults	Units
Metals, Cyanide, Total Phenols								
Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	J 0.	00110	mg/L
Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	0.	0204	mg/L
Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U N	ot Detected	mg/L
Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	J 0.	0329	mg/L
Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	64	1.6	mg/L
Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U N	ot Detected	mg/L
Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U N	ot Detected	mg/L
Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U N	ot Detected	mg/L
Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U N	ot Detected	mg/L
Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U N	ot Detected	mg/L
Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U N	ot Detected	mg/L
Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U N	ot Detected	mg/L
Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U N	ot Detected	mg/L
Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U N	ot Detected	mg/L
Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U N	ot Detected	mg/L
General Characteristics								
Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	20)3	mg/L
Filter Completion Date	CRB 10/26/2018	SM 2540C	1			10	0/26/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-12 DUP

Laboratory ID Number: AY25247

Zaboratory is Italiason /tizozar											
	,	MB					LCS		Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limi
Y25370 Boron, Total	mg/L 0.000448	0.044	1.00	0.948	0.962	0.971	0.85 to 1.15	94.8	70 to 130	1.47	20
Y25247 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0949	0.0950	0.0930	0.085 to 0.115	94.9	70 to 130	0.0616	20
Y25247 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.120	0.117	0.0955	0.085 to 0.115	99.3	70 to 130	2.33	20
Y25247 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.104	0.0973	0.102	0.085 to 0.115	104	70 to 130	6.96	20
Y25247 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0909	0.0894	0.0911	0.085 to 0.115	90.9	70 to 130	1.69	20
Y25247 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0894	0.0884	0.0897	0.085 to 0.115	89.4	70 to 130	1.17	20
Y25247 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.101	0.0993	0.101	0.085 to 0.115	100	70 to 130	2.01	20
Y25247 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.111	0.104	0.107	0.085 to 0.115	111	70 to 130	6.22	20
Y25247 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0907	0.0909	0.0979	0.085 to 0.115	90.7	70 to 130	0.315	20
Y25370 Calcium, Total	mg/L -0.000845	0.22	5.00	4.83	4.80	4.87	4.25 to 5.75	96.6	70 to 130	0.623	20
Y25370 Lithium, Total	mg/L 0.0000534	0.022	0.200	0.187	0.190	0.189	0.17 to 0.23	93.5	70 to 130	1.59	20
Y25370 Mercury, Total by CVAA	mg/L 0.000109	0.0005	0.004	0.00336	0.00340	0.00380	0.0034 to 0.0046	84.0	70 to 130	1.17	20
Y25247 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.113	0.114	0.113	0.085 to 0.115	113	70 to 130	0.859	20
Y25247 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.102	0.103	0.0974	0.085 to 0.115	102	70 to 130	0.780	20
Y25247 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.110	0.115	0.112	0.085 to 0.115	110	70 to 130	3.93	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-12 DUP

Laboratory ID Number: AY25247

			MB			Sample	,	LCS	Rec	1	Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY25370	Solids, Dissolved	mg/L 0.0000	25			0.67	49.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-11

Laboratory ID Number: AY25367

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
Arsenic, Total	ABB 10/29/2018	8 EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	ABB 10/29/2018	8 EPA 200.8	5.075	0.002	0.01	J 0.00522	mg/L
Beryllium, Total	ABB 10/29/2018	3 EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	J 0.0416	mg/L
Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	7.73	mg/L
Cadmium, Total	ABB 10/29/2018	B EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	ABB 10/29/2018	B EPA 200.8	5.075	0.0008	0.003	U Not Detected	mg/L
Cobalt, Total	ABB 10/29/2018	B EPA 200.8	5.075	0.002	0.005	J 0.00286	mg/L
Chromium, Total	ABB 10/29/2018	B EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	GAS 10/31/2018	3 EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Detected	mg/L
Molybdenum, Total	ABB 10/29/2018	B EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	ABB 10/29/2018	B EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Selenium, Total	ABB 10/29/2018	3 EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	ABB 10/29/2018	B EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	68.0	mg/L
Filter Completion Date	CRB 10/26/2018	SM 2540C	1			10/26/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-11

Laboratory ID Number: AY25367

	MD					1.00		Doo		
	IVID					103				Pred
Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	_Limi
mg/L 0.0000302	0.0044	0.10	0.120	0.117	0.0955	0.085 to 0.115	99.3	70 to 130	2.33	20
mg/L 0.000448	0.044	1.00	0.948	0.962	0.971	0.85 to 1.15	94.8	70 to 130	1.47	20
mg/L 0.0000208	0.0044	0.10	0.0949	0.0950	0.0930	0.085 to 0.115	94.9	70 to 130	0.0616	20
mg/L 0.0000510	0.00176	0.10	0.104	0.0973	0.102	0.085 to 0.115	104	70 to 130	6.96	20
mg/L 0.00000437	0.0022	0.10	0.0909	0.0894	0.0911	0.085 to 0.115	90.9	70 to 130	1.69	20
mg/L 0.0000187	0.0044	0.10	0.0894	0.0884	0.0897	0.085 to 0.115	89.4	70 to 130	1.17	20
mg/L -0.000845	0.22	5.00	4.83	4.80	4.87	4.25 to 5.75	96.6	70 to 130	0.623	20
mg/L 0.0000534	0.022	0.200	0.187	0.190	0.189	0.17 to 0.23	93.5	70 to 130	1.59	20
mg/L 0.000109	0.0005	0.004	0.00336	0.00340	0.00380	0.0034 to 0.0046	84.0	70 to 130	1.17	20
mg/L 0.0000160	0.0022	0.10	0.101	0.0993	0.101	0.085 to 0.115	100	70 to 130	2.01	20
mg/L 0.0000303	0.00066	0.10	0.111	0.104	0.107	0.085 to 0.115	111	70 to 130	6.22	20
mg/L 0.0000142	0.00044	0.10	0.0907	0.0909	0.0979	0.085 to 0.115	90.7	70 to 130	0.315	20
mg/L 0.0000312	0.00132	0.10	0.113	0.114	0.113	0.085 to 0.115	113	70 to 130	0.859	20
mg/L 0.0000233	0.0044	0.10	0.102	0.103	0.0974	0.085 to 0.115	102	70 to 130	0.780	20
mg/L 0.0000844	0.0044	0.10	0.110	0.115	0.112	0.085 to 0.115	110	70 to 130	3.93	20
A	mg/L 0.0000302 mg/L 0.0000448 mg/L 0.0000208 mg/L 0.0000510 mg/L 0.00000437 mg/L 0.0000187 mg/L -0.000845 mg/L 0.0000534 mg/L 0.0000109 mg/L 0.0000160 mg/L 0.0000303 mg/L 0.0000142 mg/L 0.0000312 mg/L 0.0000233	mg/L 0.0000302 0.0044 mg/L 0.000448 0.044 mg/L 0.0000208 0.0044 mg/L 0.0000510 0.00176 mg/L 0.00000437 0.0022 mg/L 0.0000187 0.0044 mg/L -0.000845 0.22 mg/L 0.0000534 0.022 mg/L 0.000109 0.0005 mg/L 0.0000160 0.0022 mg/L 0.0000303 0.00066 mg/L 0.0000142 0.00044 mg/L 0.0000312 0.00132 mg/L 0.0000233 0.0044	Units MB Limit Spike mg/L 0.0000302 0.0044 0.10 mg/L 0.000448 0.044 1.00 mg/L 0.0000208 0.0044 0.10 mg/L 0.0000510 0.00176 0.10 mg/L 0.00000437 0.0022 0.10 mg/L 0.0000187 0.0044 0.10 mg/L -0.000845 0.22 5.00 mg/L 0.0000534 0.022 0.200 mg/L 0.0000160 0.0022 0.10 mg/L 0.0000303 0.00066 0.10 mg/L 0.0000312 0.00132 0.10 mg/L 0.0000233 0.0044 0.10	Units MB Limit Spike MS mg/L 0.0000302 0.0044 0.10 0.120 mg/L 0.000448 0.044 1.00 0.948 mg/L 0.0000208 0.0044 0.10 0.0949 mg/L 0.0000510 0.00176 0.10 0.104 mg/L 0.00000437 0.0022 0.10 0.0909 mg/L 0.0000187 0.0044 0.10 0.0894 mg/L -0.000845 0.22 5.00 4.83 mg/L 0.0000534 0.022 0.200 0.187 mg/L 0.0000109 0.0005 0.004 0.00336 mg/L 0.0000160 0.0022 0.10 0.101 mg/L 0.0000142 0.00044 0.10 0.0907 mg/L 0.0000312 0.00132 0.10 0.113 mg/L 0.0000233 0.0044 0.10 0.102	Units MB Limit Spike MS MSD mg/L 0.0000302 0.0044 0.10 0.120 0.117 mg/L 0.000448 0.044 1.00 0.948 0.962 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 mg/L 0.0000510 0.00176 0.10 0.104 0.0973 mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 mg/L 0.000845 0.22 5.00 4.83 4.80 mg/L 0.0000534 0.022 0.200 0.187 0.190 Mg/L 0.0000160 0.0022 0.10 0.101 0.0993 mg/L 0.0000303 0.00066 0.10 0.111 0.104 mg/L 0.0000312 0.00132 0.10 0.113 0.114 mg/L 0.0000233 0.0044 0.10 0.102 0.103 <td>Units MB Limit Spike MS MSD LCS mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 mg/L 0.0000448 0.044 1.00 0.948 0.962 0.971 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0911 mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 0.0897 mg/L 0.000845 0.22 5.00 4.83 4.80 4.87 mg/L 0.0000534 0.022 0.200 0.187 0.190 0.189 mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 mg/L 0.0000160 0.0022 0.10 0.111 0.104 0.107 mg/L 0.0000</td> <td>Units MB Limit Spike MS MSD LCS Limit mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 mg/L 0.0000187 0.0044 0.10 0.0894 0.0897 0.085 to 0.115 mg/L 0.000845 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 mg/L 0.0000160 0.0022 0.10 0.101 0.104 0</td> <td>Units MB Limit Spike MS MSD LCS Limit Rec mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 mg/L 0.0000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 94.8 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 mg/L 0.0000187 0.0044 0.10 0.0894 0.0897 0.085 to 0.115 89.4 mg/L 0.0000845 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 96.6 mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046<td>Units MB Limit Spike MS MSD LCS Limit Rec Limit mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 70 to 130 mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 94.8 70 to 130 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 70 to 130 mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 70 to 130 mg/L 0.0000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 70 to 130 mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 0.0897 0.085 to 0.115 89.4 70 to 130 mg/L -0.000845 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 96.6 70 to 130 mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 84.0 70 to 130 mg/L 0.0000160 0.0022 0.10 0.101 0.0993 0.101 0.085 to 0.115 100 70 to 130 mg/L 0.0000162 0.00023 0.0066 0.10 0.111 0.104 0.107 0.085 to 0.115 111 70 to 130 mg/L 0.0000312 0.00044 0.10 0.0907 0.0909 0.0979 0.085 to 0.115 113 70 to 130 mg/L 0.0000312 0.000132 0.10 0.113 0.114 0.113 0.085 to 0.115 113 70 to 130 mg/L 0.0000233 0.00044 0.10 0.102 0.103 0.0974 0.085 to 0.115 100 70 to 130 mg/L 0.0000312 0.000132 0.10 0.113 0.114 0.113 0.085 to 0.115 102 70 to 130 mg/L 0.0000233 0.00044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130</td><td>Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 70 to 130 2.33 mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 94.8 70 to 130 1.47 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 70 to 130 0.0616 mg/L 0.00000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 70 to 130 0.96 mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 70 to 130 1.69 mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 0.0897 0.085 to 0.115 89.4 70 to 130 1.69 mg/L 0.0000534 0.022</td></td>	Units MB Limit Spike MS MSD LCS mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 mg/L 0.0000448 0.044 1.00 0.948 0.962 0.971 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0911 mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 0.0897 mg/L 0.000845 0.22 5.00 4.83 4.80 4.87 mg/L 0.0000534 0.022 0.200 0.187 0.190 0.189 mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 mg/L 0.0000160 0.0022 0.10 0.111 0.104 0.107 mg/L 0.0000	Units MB Limit Spike MS MSD LCS Limit mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 mg/L 0.0000187 0.0044 0.10 0.0894 0.0897 0.085 to 0.115 mg/L 0.000845 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 mg/L 0.0000160 0.0022 0.10 0.101 0.104 0	Units MB Limit Spike MS MSD LCS Limit Rec mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 mg/L 0.0000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 94.8 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 mg/L 0.0000187 0.0044 0.10 0.0894 0.0897 0.085 to 0.115 89.4 mg/L 0.0000845 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 96.6 mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 <td>Units MB Limit Spike MS MSD LCS Limit Rec Limit mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 70 to 130 mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 94.8 70 to 130 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 70 to 130 mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 70 to 130 mg/L 0.0000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 70 to 130 mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 0.0897 0.085 to 0.115 89.4 70 to 130 mg/L -0.000845 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 96.6 70 to 130 mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 84.0 70 to 130 mg/L 0.0000160 0.0022 0.10 0.101 0.0993 0.101 0.085 to 0.115 100 70 to 130 mg/L 0.0000162 0.00023 0.0066 0.10 0.111 0.104 0.107 0.085 to 0.115 111 70 to 130 mg/L 0.0000312 0.00044 0.10 0.0907 0.0909 0.0979 0.085 to 0.115 113 70 to 130 mg/L 0.0000312 0.000132 0.10 0.113 0.114 0.113 0.085 to 0.115 113 70 to 130 mg/L 0.0000233 0.00044 0.10 0.102 0.103 0.0974 0.085 to 0.115 100 70 to 130 mg/L 0.0000312 0.000132 0.10 0.113 0.114 0.113 0.085 to 0.115 102 70 to 130 mg/L 0.0000233 0.00044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130</td> <td>Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 70 to 130 2.33 mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 94.8 70 to 130 1.47 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 70 to 130 0.0616 mg/L 0.00000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 70 to 130 0.96 mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 70 to 130 1.69 mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 0.0897 0.085 to 0.115 89.4 70 to 130 1.69 mg/L 0.0000534 0.022</td>	Units MB Limit Spike MS MSD LCS Limit Rec Limit mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 70 to 130 mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 94.8 70 to 130 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 70 to 130 mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 70 to 130 mg/L 0.0000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 70 to 130 mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 0.0897 0.085 to 0.115 89.4 70 to 130 mg/L -0.000845 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 96.6 70 to 130 mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 84.0 70 to 130 mg/L 0.0000160 0.0022 0.10 0.101 0.0993 0.101 0.085 to 0.115 100 70 to 130 mg/L 0.0000162 0.00023 0.0066 0.10 0.111 0.104 0.107 0.085 to 0.115 111 70 to 130 mg/L 0.0000312 0.00044 0.10 0.0907 0.0909 0.0979 0.085 to 0.115 113 70 to 130 mg/L 0.0000312 0.000132 0.10 0.113 0.114 0.113 0.085 to 0.115 113 70 to 130 mg/L 0.0000233 0.00044 0.10 0.102 0.103 0.0974 0.085 to 0.115 100 70 to 130 mg/L 0.0000312 0.000132 0.10 0.113 0.114 0.113 0.085 to 0.115 102 70 to 130 mg/L 0.0000233 0.00044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130	Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 70 to 130 2.33 mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 94.8 70 to 130 1.47 mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 70 to 130 0.0616 mg/L 0.00000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 70 to 130 0.96 mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 70 to 130 1.69 mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 0.0897 0.085 to 0.115 89.4 70 to 130 1.69 mg/L 0.0000534 0.022

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-11

Laboratory ID Number: AY25367

			MB			Sample	,	LCS	Rec	1	Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY25370	Solids, Dissolved	mg/L 0.0000	25			0.67	49.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-10

Laboratory ID Number: AY25368

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	0.0393	mg/L
* Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
* Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
* Calcium, Total	RDA 11/9/2018	EPA 200.7	10.15	1.015	5.075	104	mg/L
* Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
* Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U Not Detected	mg/L
* Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U Not Detected	mg/L
* Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
* Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Detected	mg/L
 Molybdenum, Total 	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
* Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
* Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
* Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	265	mg/L
Filter Completion Date	CRB 10/26/2018	SM 2540C	1			10/26/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-10

Laboratory ID Number: AY25368

Edboratory ID Italiibor 71120000	<u>, </u>										
		MB					LCS		Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limi
Y25370 Boron, Total	mg/L 0.000448	0.044	1.00	0.948	0.962	0.971	0.85 to 1.15	94.8	70 to 130	1.47	20
Y25247 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.120	0.117	0.0955	0.085 to 0.115	99.3	70 to 130	2.33	20
Y25247 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0949	0.0950	0.0930	0.085 to 0.115	94.9	70 to 130	0.0616	20
Y25247 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.104	0.0973	0.102	0.085 to 0.115	104	70 to 130	6.96	20
Y25370 Calcium, Total	mg/L -0.000845	0.22	5.00	4.83	4.80	4.87	4.25 to 5.75	96.6	70 to 130	0.623	20
Y25370 Lithium, Total	mg/L 0.0000534	0.022	0.200	0.187	0.190	0.189	0.17 to 0.23	93.5	70 to 130	1.59	20
Y25370 Mercury, Total by CVAA	mg/L 0.000109	0.0005	0.004	0.00336	0.00340	0.00380	0.0034 to 0.0046	84.0	70 to 130	1.17	20
Y25247 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.101	0.0993	0.101	0.085 to 0.115	100	70 to 130	2.01	20
Y25247 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.111	0.104	0.107	0.085 to 0.115	111	70 to 130	6.22	20
Y25247 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0907	0.0909	0.0979	0.085 to 0.115	90.7	70 to 130	0.315	20
Y25247 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.113	0.114	0.113	0.085 to 0.115	113	70 to 130	0.859	20
Y25247 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.102	0.103	0.0974	0.085 to 0.115	102	70 to 130	0.780	20
Y25247 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.110	0.115	0.112	0.085 to 0.115	110	70 to 130	3.93	20
Y25247 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0909	0.0894	0.0911	0.085 to 0.115	90.9	70 to 130	1.69	20
Y25247 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0894	0.0884	0.0897	0.085 to 0.115	89.4	70 to 130	1.17	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-10

Laboratory ID Number: AY25368

			MB			Sample	,	LCS	Rec	1	Prec
Sample	Analysis	Units MB	Limit	Spike	LFM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY25370	Solids, Dissolved	mg/L 0.0000	25			0.67	49.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB 24-Oct-18

Sample Date:

Customer ID: Delivery Date: 24-Oct-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY25369

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols				,			
Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	U Not Detected	mg/L
Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U Not Detected	mg/L
Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U Not Detected	mg/L
Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Detected	mg/L
Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	U Not Detected	mg/L
Filter Completion Date	CRB 10/26/2018	SM 2540C	1			10/26/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY25369

	1	MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
AY25247 Barium, Total	mg/L 0.0000302	0.0044	0.10	0.120	0.117	0.0955	0.085 to 0.115	99.3	70 to 130	2.33	20
AY25370 Boron, Total	mg/L 0.000448	0.044	1.00	0.948	0.962	0.971	0.85 to 1.15	94.8	70 to 130	1.47	20
AY25247 Chromium, Total	mg/L 0.0000208	0.0044	0.10	0.0949	0.0950	0.0930	0.085 to 0.115	94.9	70 to 130	0.0616	20
AY25247 Antimony, Total	mg/L 0.0000510	0.00176	0.10	0.104	0.0973	0.102	0.085 to 0.115	104	70 to 130	6.96	20
AY25247 Lead, Total	mg/L 0.00000437	0.0022	0.10	0.0909	0.0894	0.0911	0.085 to 0.115	90.9	70 to 130	1.69	20
AY25247 Molybdenum, Total	mg/L 0.0000187	0.0044	0.10	0.0894	0.0884	0.0897	0.085 to 0.115	89.4	70 to 130	1.17	20
AY25247 Arsenic, Total	mg/L 0.0000160	0.0022	0.10	0.101	0.0993	0.101	0.085 to 0.115	100	70 to 130	2.01	20
AY25247 Cadmium, Total	mg/L 0.0000303	0.00066	0.10	0.111	0.104	0.107	0.085 to 0.115	111	70 to 130	6.22	20
AY25247 Thallium, Total	mg/L 0.0000142	0.00044	0.10	0.0907	0.0909	0.0979	0.085 to 0.115	90.7	70 to 130	0.315	20
AY25370 Calcium, Total	mg/L -0.000845	0.22	5.00	4.83	4.80	4.87	4.25 to 5.75	96.6	70 to 130	0.623	20
AY25370 Lithium, Total	mg/L 0.0000534	0.022	0.200	0.187	0.190	0.189	0.17 to 0.23	93.5	70 to 130	1.59	20
AY25370 Mercury, Total by CVAA	mg/L 0.000109	0.0005	0.004	0.00336	0.00340	0.00380	0.0034 to 0.0046	84.0	70 to 130	1.17	20
AY25247 Beryllium, Total	mg/L 0.0000312	0.00132	0.10	0.113	0.114	0.113	0.085 to 0.115	113	70 to 130	0.859	20
AY25247 Cobalt, Total	mg/L 0.0000233	0.0044	0.10	0.102	0.103	0.0974	0.085 to 0.115	102	70 to 130	0.780	20
AY25247 Selenium, Total	mg/L 0.0000844	0.0044	0.10	0.110	0.115	0.112	0.085 to 0.115	110	70 to 130	3.93	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY25369

	-		MB			Sample)	LCS	Rec	1	Prec
Sample	Analysis	Units MB	Limit	Spike L	-FM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY25370	Solids, Dissolved	mg/L 0.0000	25			0.67	49.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGEB

Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Equipment Blank

Laboratory ID Number: AY25370

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
Arsenic, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Barium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Beryllium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0006	0.003	U Not Detected	mg/L
Boron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.02	0.1	U Not Detected	mg/L
Calcium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	U Not Detected	mg/L
Cadmium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0003	0.001	U Not Detected	mg/L
Antimony, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0008	0.003	U Not Detected	mg/L
Cobalt, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.005	U Not Detected	mg/L
Chromium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Mercury, Total by CVAA	GAS 10/31/2018	EPA 245.1	1	0.00025	0.0005	U Not Detected	mg/L
Lithium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.02	U Not Detected	mg/L
Molybdenum, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Lead, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	U Not Detected	mg/L
Selenium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.002	0.01	U Not Detected	mg/L
Thallium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.0002	0.001	U Not Detected	mg/L
General Characteristics							
Solids, Dissolved	CRB 10/30/2018	SM 2540C	1		25	U Not Detected	mg/L
Filter Completion Date	CRB 10/26/2018	SM 2540C	1			10/26/2018	Date

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGEB Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Equipment Blank

Laboratory ID Number: AY25370

			145			-		1.00				
			MB					LUS		Rec		Prec
Analysis	Units	MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Chromium, Total	mg/L	0.0000208	0.0044	0.10	0.0949	0.0950	0.0930	0.085 to 0.115	94.9	70 to 130	0.0616	20
Barium, Total	mg/L	0.0000302	0.0044	0.10	0.120	0.117	0.0955	0.085 to 0.115	99.3	70 to 130	2.33	20
Antimony, Total	mg/L	0.0000510	0.00176	0.10	0.104	0.0973	0.102	0.085 to 0.115	104	70 to 130	6.96	20
Boron, Total	mg/L	0.000448	0.044	1.00	0.948	0.962	0.971	0.85 to 1.15	94.8	70 to 130	1.47	20
Calcium, Total	mg/L	-0.000845	0.22	5.00	4.83	4.80	4.87	4.25 to 5.75	96.6	70 to 130	0.623	20
Lithium, Total	mg/L	0.0000534	0.022	0.200	0.187	0.190	0.189	0.17 to 0.23	93.5	70 to 130	1.59	20
Mercury, Total by CVAA	mg/L	0.000109	0.0005	0.004	0.00336	0.00340	0.00380	0.0034 to 0.0046	84.0	70 to 130	1.17	20
Lead, Total	mg/L	0.00000437	0.0022	0.10	0.0909	0.0894	0.0911	0.085 to 0.115	90.9	70 to 130	1.69	20
Molybdenum, Total	mg/L	0.0000187	0.0044	0.10	0.0894	0.0884	0.0897	0.085 to 0.115	89.4	70 to 130	1.17	20
Arsenic, Total	mg/L	0.0000160	0.0022	0.10	0.101	0.0993	0.101	0.085 to 0.115	100	70 to 130	2.01	20
Cadmium, Total	mg/L	0.0000303	0.00066	0.10	0.111	0.104	0.107	0.085 to 0.115	111	70 to 130	6.22	20
Thallium, Total	mg/L	0.0000142	0.00044	0.10	0.0907	0.0909	0.0979	0.085 to 0.115	90.7	70 to 130	0.315	20
Beryllium, Total	mg/L	0.0000312	0.00132	0.10	0.113	0.114	0.113	0.085 to 0.115	113	70 to 130	0.859	20
Cobalt, Total	mg/L	0.0000233	0.0044	0.10	0.102	0.103	0.0974	0.085 to 0.115	102	70 to 130	0.780	20
Selenium, Total	mg/L	0.0000844	0.0044	0.10	0.110	0.115	0.112	0.085 to 0.115	110	70 to 130	3.93	20
	Chromium, Total Barium, Total Barium, Total Antimony, Total Boron, Total Calcium, Total Lithium, Total Mercury, Total by CVAA Lead, Total Molybdenum, Total Arsenic, Total Cadmium, Total Thallium, Total Beryllium, Total Cobalt, Total	Chromium, Total mg/L Barium, Total mg/L Antimony, Total mg/L Boron, Total mg/L Calcium, Total mg/L Lithium, Total mg/L Mercury, Total by CVAA mg/L Lead, Total mg/L Molybdenum, Total mg/L Arsenic, Total mg/L Cadmium, Total mg/L Thallium, Total mg/L Beryllium, Total mg/L Cobalt, Total mg/L	Chromium, Total mg/L 0.0000208 Barium, Total mg/L 0.0000302 Antimony, Total mg/L 0.0000510 Boron, Total mg/L 0.000448 Calcium, Total mg/L -0.000845 Lithium, Total mg/L 0.0000534 Mercury, Total by CVAA mg/L 0.0000199 Lead, Total mg/L 0.0000187 Arsenic, Total mg/L 0.0000160 Cadmium, Total mg/L 0.0000142 Beryllium, Total mg/L 0.0000312 Cobalt, Total mg/L 0.0000233	Chromium, Total mg/L 0.0000208 0.0044 Barium, Total mg/L 0.0000302 0.0044 Antimony, Total mg/L 0.0000510 0.00176 Boron, Total mg/L 0.000448 0.044 Calcium, Total mg/L -0.000845 0.22 Lithium, Total mg/L 0.0000534 0.022 Mercury, Total by CVAA mg/L 0.000109 0.0005 Lead, Total mg/L 0.0000187 0.0022 Molybdenum, Total mg/L 0.0000187 0.0044 Arsenic, Total mg/L 0.0000187 0.0022 Cadmium, Total mg/L 0.0000160 0.0022 Cadmium, Total mg/L 0.0000303 0.00066 Thallium, Total mg/L 0.0000312 0.00132 Cobalt, Total mg/L 0.0000233 0.0044	Analysis Units MB Limit Spike Chromium, Total mg/L 0.0000208 0.0044 0.10 Barium, Total mg/L 0.0000302 0.0044 0.10 Antimony, Total mg/L 0.0000510 0.00176 0.10 Boron, Total mg/L 0.000448 0.044 1.00 Calcium, Total mg/L -0.000845 0.22 5.00 Lithium, Total mg/L 0.0000534 0.022 0.200 Mercury, Total by CVAA mg/L 0.000109 0.0005 0.004 Lead, Total mg/L 0.0000187 0.0022 0.10 Molybdenum, Total mg/L 0.0000187 0.0044 0.10 Arsenic, Total mg/L 0.0000160 0.0022 0.10 Cadmium, Total mg/L 0.0000303 0.00066 0.10 Thallium, Total mg/L 0.0000312 0.00132 0.10 Beryllium, Total mg/L 0.0000233 0.0044 0.10	Analysis Units MB Limit Spike MS Chromium, Total mg/L 0.0000208 0.0044 0.10 0.0949 Barium, Total mg/L 0.0000302 0.0044 0.10 0.120 Antimony, Total mg/L 0.0000510 0.00176 0.10 0.104 Boron, Total mg/L 0.0000448 0.044 1.00 0.948 Calcium, Total mg/L 0.000845 0.22 5.00 4.83 Lithium, Total mg/L 0.0000534 0.022 0.200 0.187 Mercury, Total by CVAA mg/L 0.000109 0.0005 0.004 0.00336 Lead, Total mg/L 0.0000437 0.0022 0.10 0.0999 Molybdenum, Total mg/L 0.0000187 0.0044 0.10 0.0894 Arsenic, Total mg/L 0.0000160 0.0022 0.10 0.101 Cadmium, Total mg/L 0.0000142 0.00044 0.10 0.0907 Beryllium, Total<	Analysis Units MB Limit Spike MS MSD Chromium, Total mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 Barium, Total mg/L 0.0000302 0.0044 0.10 0.120 0.117 Antimony, Total mg/L 0.0000510 0.00176 0.10 0.104 0.0973 Boron, Total mg/L 0.000448 0.044 1.00 0.948 0.962 Calcium, Total mg/L 0.000845 0.22 5.00 4.83 4.80 Lithium, Total mg/L 0.0000534 0.022 0.200 0.187 0.190 Mercury, Total by CVAA mg/L 0.000109 0.0005 0.004 0.00336 0.00340 Lead, Total mg/L 0.0000187 0.0022 0.10 0.0909 0.0894 Molybdenum, Total mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 Arsenic, Total mg/L 0.0000303 0.0066 0.10 <t< td=""><td>Analysis Units MB Limit Spike MS MSD LCS Chromium, Total mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 Barium, Total mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 Antimony, Total mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 Boron, Total mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 Calcium, Total mg/L 0.000845 0.22 5.00 4.83 4.80 4.87 Lithium, Total mg/L 0.0000534 0.022 0.200 0.187 0.190 0.189 Mercury, Total by CVAA mg/L 0.0000109 0.0005 0.004 0.00336 0.00340 0.00380 Lead, Total mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0891 Molybdenum, Total mg/L 0.0000160 0.0022 0.10 0.101 0.0993 0.101 Cadmium, Total mg/L 0.000030</td><td>Analysis Units MB Limit Spike MS MSD LCS Limit Chromium, Total mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 Barium, Total mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 Antimony, Total mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 Boron, Total mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 Calcium, Total mg/L 0.000845 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 Lithium, Total mg/L 0.0000534 0.022 0.200 0.187 0.190 0.189 0.17 to 0.23 Mercury, Total by CVAA mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 Lead, Total mg/L 0.0000187 0.0044<</td><td>Analysis Units MB Limit Spike MS MSD LCS Limit Rec Chromium, Total mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 Barium, Total mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 Antimony, Total mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 Boron, Total mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 94.8 Calcium, Total mg/L 0.000845 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 96.6 Lithium, Total mg/L 0.0000534 0.022 0.200 0.187 0.190 0.189 0.17 to 0.23 93.5 Mercury, Total by CVAA mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 84.0 Lead, Total mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 Molybdenum, Total mg/L 0.0000160 0.0022 0.10 0.0993 0.101 0.085 to 0.115 100 Cadmium, Total mg/L 0.0000142 0.00044 0.10 0.0997 0.0999 0.0979 0.085 to 0.115 111 Thallium, Total mg/L 0.0000312 0.00132 0.10 0.113 0.114 0.113 0.085 to 0.115 113 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102</td><td>Analysis Units MB Limit Spike MS MSD LCS Limit Rec Limit Chromium, Total mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 70 to 130 mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 70 to 130 Antimony, Total mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 70 to 130 Boron, Total mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.115 94.8 70 to 130 Calcium, Total mg/L 0.0000534 0.022 0.200 0.187 0.190 0.189 0.17 to 0.23 93.5 70 to 130 Mercury, Total by CVAA mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 84.0 70 to 130 Molybdenum, Total mg/L 0.0000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 70 to 130 Molybdenum, Total mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 0.0897 0.085 to 0.115 90.9 70 to 130 Molybdenum, Total mg/L 0.0000160 0.0022 0.10 0.101 0.0993 0.101 0.085 to 0.115 100 70 to 130 Cadmium, Total mg/L 0.0000142 0.00044 0.10 0.0907 0.0909 0.0979 0.085 to 0.115 11 70 to 130 Thallium, Total mg/L 0.0000142 0.00044 0.10 0.0907 0.0909 0.0979 0.085 to 0.115 11 70 to 130 Beryllium, Total mg/L 0.0000132 0.00132 0.10 0.113 0.114 0.113 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total</td><td>Analysis Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec Chromium, Total mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 70 to 130 0.0616 Barium, Total mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 70 to 130 2.33 Antimony, Total mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 70 to 130 6.96 Boron, Total mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 94.8 70 to 130 1.47 Calcium, Total mg/L 0.000455 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 96.6 70 to 130 0.623 Lithium, Total mg/L 0.0000534 0.022 0.200 0.187 0.190 0.189 0.17 to 0.23 93.5 70 to 130 1.59 Mercury, Total by CVAA mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 84.0 70 to 130 1.17 Lead, Total mg/L 0.0000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 70 to 130 1.17 Arsenic, Total mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 0.0897 0.085 to 0.115 90.9 70 to 130 1.17 Molybdenum, Total mg/L 0.0000160 0.0022 0.10 0.101 0.0993 0.101 0.085 to 0.115 90.9 70 to 130 1.17 Cadmium, Total mg/L 0.0000160 0.0022 0.10 0.101 0.0993 0.101 0.085 to 0.115 100 70 to 130 2.01 Cadmium, Total mg/L 0.0000142 0.00044 0.10 0.0907 0.0909 0.0979 0.085 to 0.115 90.7 70 to 130 0.315 Beryllium, Total mg/L 0.000033 0.0044 0.10 0.0132 0.10 0.113 0.114 0.113 0.085 to 0.115 113 70 to 130 0.859 Cobalt, Total mg/L 0.000033 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 0.780</td></t<>	Analysis Units MB Limit Spike MS MSD LCS Chromium, Total mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 Barium, Total mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 Antimony, Total mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 Boron, Total mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 Calcium, Total mg/L 0.000845 0.22 5.00 4.83 4.80 4.87 Lithium, Total mg/L 0.0000534 0.022 0.200 0.187 0.190 0.189 Mercury, Total by CVAA mg/L 0.0000109 0.0005 0.004 0.00336 0.00340 0.00380 Lead, Total mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0891 Molybdenum, Total mg/L 0.0000160 0.0022 0.10 0.101 0.0993 0.101 Cadmium, Total mg/L 0.000030	Analysis Units MB Limit Spike MS MSD LCS Limit Chromium, Total mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 Barium, Total mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 Antimony, Total mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 Boron, Total mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 Calcium, Total mg/L 0.000845 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 Lithium, Total mg/L 0.0000534 0.022 0.200 0.187 0.190 0.189 0.17 to 0.23 Mercury, Total by CVAA mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 Lead, Total mg/L 0.0000187 0.0044<	Analysis Units MB Limit Spike MS MSD LCS Limit Rec Chromium, Total mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 Barium, Total mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 Antimony, Total mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 Boron, Total mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 94.8 Calcium, Total mg/L 0.000845 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 96.6 Lithium, Total mg/L 0.0000534 0.022 0.200 0.187 0.190 0.189 0.17 to 0.23 93.5 Mercury, Total by CVAA mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 84.0 Lead, Total mg/L 0.00000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 Molybdenum, Total mg/L 0.0000160 0.0022 0.10 0.0993 0.101 0.085 to 0.115 100 Cadmium, Total mg/L 0.0000142 0.00044 0.10 0.0997 0.0999 0.0979 0.085 to 0.115 111 Thallium, Total mg/L 0.0000312 0.00132 0.10 0.113 0.114 0.113 0.085 to 0.115 113 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102	Analysis Units MB Limit Spike MS MSD LCS Limit Rec Limit Chromium, Total mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 70 to 130 mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 70 to 130 Antimony, Total mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 70 to 130 Boron, Total mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.115 94.8 70 to 130 Calcium, Total mg/L 0.0000534 0.022 0.200 0.187 0.190 0.189 0.17 to 0.23 93.5 70 to 130 Mercury, Total by CVAA mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 84.0 70 to 130 Molybdenum, Total mg/L 0.0000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 70 to 130 Molybdenum, Total mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 0.0897 0.085 to 0.115 90.9 70 to 130 Molybdenum, Total mg/L 0.0000160 0.0022 0.10 0.101 0.0993 0.101 0.085 to 0.115 100 70 to 130 Cadmium, Total mg/L 0.0000142 0.00044 0.10 0.0907 0.0909 0.0979 0.085 to 0.115 11 70 to 130 Thallium, Total mg/L 0.0000142 0.00044 0.10 0.0907 0.0909 0.0979 0.085 to 0.115 11 70 to 130 Beryllium, Total mg/L 0.0000132 0.00132 0.10 0.113 0.114 0.113 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total mg/L 0.0000233 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 Cobalt, Total	Analysis Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec Chromium, Total mg/L 0.0000208 0.0044 0.10 0.0949 0.0950 0.0930 0.085 to 0.115 94.9 70 to 130 0.0616 Barium, Total mg/L 0.0000302 0.0044 0.10 0.120 0.117 0.0955 0.085 to 0.115 99.3 70 to 130 2.33 Antimony, Total mg/L 0.0000510 0.00176 0.10 0.104 0.0973 0.102 0.085 to 0.115 104 70 to 130 6.96 Boron, Total mg/L 0.000448 0.044 1.00 0.948 0.962 0.971 0.85 to 1.15 94.8 70 to 130 1.47 Calcium, Total mg/L 0.000455 0.22 5.00 4.83 4.80 4.87 4.25 to 5.75 96.6 70 to 130 0.623 Lithium, Total mg/L 0.0000534 0.022 0.200 0.187 0.190 0.189 0.17 to 0.23 93.5 70 to 130 1.59 Mercury, Total by CVAA mg/L 0.000109 0.0005 0.004 0.00336 0.00340 0.00380 0.0034 to 0.0046 84.0 70 to 130 1.17 Lead, Total mg/L 0.0000437 0.0022 0.10 0.0909 0.0894 0.0911 0.085 to 0.115 90.9 70 to 130 1.17 Arsenic, Total mg/L 0.0000187 0.0044 0.10 0.0894 0.0884 0.0897 0.085 to 0.115 90.9 70 to 130 1.17 Molybdenum, Total mg/L 0.0000160 0.0022 0.10 0.101 0.0993 0.101 0.085 to 0.115 90.9 70 to 130 1.17 Cadmium, Total mg/L 0.0000160 0.0022 0.10 0.101 0.0993 0.101 0.085 to 0.115 100 70 to 130 2.01 Cadmium, Total mg/L 0.0000142 0.00044 0.10 0.0907 0.0909 0.0979 0.085 to 0.115 90.7 70 to 130 0.315 Beryllium, Total mg/L 0.000033 0.0044 0.10 0.0132 0.10 0.113 0.114 0.113 0.085 to 0.115 113 70 to 130 0.859 Cobalt, Total mg/L 0.000033 0.0044 0.10 0.102 0.103 0.0974 0.085 to 0.115 102 70 to 130 0.780

MDL's and RL's are adjusted for sample dilution, as applicable

Comments:

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGEB Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Equipment Blank

Laboratory ID Number: AY25370

	-		MB			Sample)	LCS	Rec	1	Prec
Sample	Analysis	Units MB	Limit	Spike L	-FM	Duplica	te LCS	Limit	Rec Limit	Prec	Limit
AY25370	Solids, Dissolved	mg/L 0.0000	25			0.67	49.0	40 to 60		0.00	5

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114
Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments:

CC:

Definitions

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Abbreviation	Description
DF	Dilution Factor
LCS	Lab Control Sample
LFM	Lab Fortified Matrix
MB	Method Blank
MDL	Method Detection Limit; minimum concentration of an analyte that can be determined with 99% confidence that the
	concentration is greater than zero.
MS	Matrix Spike
MSD	Matrix Spike Duplicate
Prec	Precision (% RPD)
Q	Qualifier; comment used to note deviations or additional information associated with analytical results.
QC	Quality Control
Rec	Recovery of Matrix Spike
RL	Reporting Limit; lowest concentration at which an analyte can be quantitatively measured.
Vio Spec	Violation Specification; regulatory limit which has been exceeded by the sample analyzed.

Qualifier	Description
В	Analyte found in reagent blank. Indicates possible reagent or background contamination.
Е	Estimated reported value exceeded calibration range.
J	Reported value is an estimate because concentration is less than reporting limit.
N	Organic constituents tentatively identified. Confirmation is needed.
R	Matrix spike recovery is out of range.
U	Compound was analyzed, but not detected.
Р	Precision is out of range.
С	Analyte was verified by re-analysis.
Н	The holding time for this test is immediately following sample collection. The samples were analyzed as soon as
	possible after receipt by the laboratory.
L	Check standard is outside of the required specification limit.
D	All samples were stored at less than or equal to 6 °C and for no longer than 48 hours from time of sampling, unless
	otherwise noted.
F	Water Field Group (WFG) qualifier; see comments for more information

Chain of Custody	Field Complete	Outside Lab
Field Groundwater APC General Testing Labors	Lab Complete	
APC General Testing Labors	etory.	

Lab ETA 10/23/2018 17:40

								_							
Reques	ste	d Complete I	Date	Routir	ne			Results To Dustin Brooks, Greg Dyer							
Site Representative Tanisha Fenderson									Requested By Greg Dyer						
		Colle	ector	Anthony Goggins					Location Gaston			Gypsum			
Bottles	1	Metals	500 n	nL 3		TDS	500 mL	5	N/A	N/A	7	N/A	N/A		
	2	Hg	250 m	nL	4	N/A	N/A		N/A	N/A	8	N/A	N/A		
	С	omments	elinquis	hed to E	Biolo	ogy Shipping Lab	n GS	SC Building 8							

Sample #	Date	Time	Bottle Count	Description	Lab Filter	Lab Id
MW-5	10/22/18	09:57	3	Groundwater	THE	AY25233
MW-6	10/22/2018	10:56	3	Groundwater	<u> </u>	AY25234
MW-7	10/22/2018	12:17	3	Groundwater		AY25235
MW-8	10/22/2018	13:50	3	Groundwater		AY25236
MW-9	10/22/2018	15:10	3	Groundwater		AY25237
MW-2	10/22/2018	17:08	3	Groundwater		AY25238
MW-15	10/23/2018	09:11	3	Groundwater		AY25239
MW-3	10/23/2018	10:50	3	Groundwater		AY25240
MW-14S	10/23/2018	11:56	3	Groundwater		AY25241
MW-12	10/23/2018	12:53	3	Groundwater		AY25242
MW-13	10/23/2018	13:52	3	Groundwater		AY25243
MW-1	10/23/2018	14:45	3	Groundwater		AY25244
MW-6DUP	10/22/2018	10:56	3	Sample Duplicate		AY25245
FB-1	10/22/2018	16:40	3	Field Blank		AY25246
MW-12DUP	10/23/2018	12:53	3	Sample Duplicate		AY25247

AN C. 2		
and Go	Laura Midkiff Digitally signed by Laura Midkiff Dit: cn=Laura Midkiff, cn=Albarna Power Company, ous_Environmental Affais, email=Ibmidkife/southernco.com, c=US Date: 2018.10.24 07:3333-0500	10/24/2018 07:33

 SmarTroll ID
 4696-23443-3-2

 Turbidity ID
 5160-26211-1-1

 Sample Event
 1176

All metals and radiological bottles have pH < 2
Cooler Temp 0.3 degrees C

Thermometer ID 5408-27568-2-2

pH Strip ID 6959-37696-30-17

Alabama Por Carlos Ervice	Chain (of Custo dwater eral Testing L	Í	La	eld Com	_		Outsio		∡ab	ETA	10/24/20)18 15	:30	
Pogue	ested Comple			7			Results To Dustin Brooks, Greg Dyer								
Reque		ntative Tanis		Fondorcon	`		╣.	Requested By			ks, Grec	g Dyer			
	-	ollector Nick			<u>I</u>		┤╴	Location	_		/neum	.		\dashv	
			_				ᆜ								
Bottles	\vdash	500 mL 250 mL	3	TDS N/A				5 N/A N/A			7 N/A 8 N/A		N/A		
	2 Hg	N/A		6	N/A	N/A				N/A					
	Comments						_			_					
	Bottle Lab														
	Sample #	Date		Time	Count			Description			ilter	Lab Io	d l		
Ī	MW-11	10/24/18	8	11:28	3	Grour	ıdv	vater		Г		AY253	57		
Ī	MW-10	10/24/20	18	13:05	3	Grour	ndv	vater		Г	T	AY2536	58		
Ī	FB-2	10/24/20	18	11:50	3	Field I	 Bla	ınk		Г		AY2536	59		
F	EB-1	10/24/20	18	13:40	3	Equip	mε	ent Blank		Г		AY2537	' 0		
										L					
										L					
										L					
										L					
										L					
										L					
										L					
									_	L					
										L					
										L					
										L					
										L					
										L					
										L					
							_			L					
	Relin	quished By				Received By					/Time				
Str Her								Laura Maker				10/24/20)18 15	:57	
							_							\dashv	
							_			_					
Ç	marTroll ID	5141-26150-1			٦	д 11	m	etals and radi	ological l	hoi	ttles k	nave nH /	2 1	1	
	Turbidity ID		1	7 111						are pii v	` <u>-</u> -	ı			
	ample Event		Cooler Temp 0.3 degrees C Thermometer ID 5408-27568-2-2												
06	mipic nvent	•			_	11	101					7			
								pH Strip ID 6959-37696-30-17							

Page 69 of 71

Alabama Power	Chain of Custody	~
Field	Chain of Custody Groundwater	~
	APC General Testing Labora	tory

Field Complete

•	Outside Lab

Lab Complete

Lab ETA 10/23/2018 17:40

Reques	d Complete D	ate	Routine						Results To	Dustin Bro	Dustin Brooks, Greg Dyer				
Site Representative Tanisha Fenderson								F	Requested By	Greg Dye	Greg Dyer				
Collector Anthony Goggins								Location Gaston Gypsum							
Bottles Radium 1 L 3				3 N/A N/A			5	N/A	N/A	7	N/A	N/A			
	2	Anions	250 m	ıL	4	N/A	N/A		6	N/A	N/A	8	N/A	N/A	

Comments | Radium Duplicate collected MW5; Test America. Relinquished to secure location Biology Shipping Lab GSC Building 8

			Bottle		Lab	
Sample #	Date	Time	Count	Description	Filter	Lab Id
MW-5	10/22/18	09:57	4	Groundwater		AY25248
MW-6	10/22/2018	10:56	2	Groundwater		AY25249
MW-7	10/22/2018	12:17	2	Groundwater		AY25250
MW-8	10/22/2018	13:50	2	Groundwater		AY25251
MW-9	10/22/2018	15:10	2	Groundwater		AY25252
MW-2	10/22/2018	17:08	2	Groundwater		AY25253
MW-15	10/23/2018	09:11	2	Groundwater		AY25254
MW-3	10/23/2018	10:50	2	Groundwater		AY25255
MW-14S	10/23/2018	11:56	2	Groundwater		AY25256
MW-12	10/23/2018	12:53	2	Groundwater		AY25257
MW-13	10/23/2018	13:52	2	Groundwater		AY25258
MW-1	10/23/2018	14:45	2	Groundwater		AY25259
MW-6DUP	10/22/2018	10:56	2	Sample Duplicate		AY25260
FB-1	10/22/2018	16:40	2	Field Blank		AY25261
MW-12DUP	10/23/2018	12:53	2	Sample Duplicate		AY25262

Relinquished By	Received By	Date/Time
and off	Laura Midkiff Digitally signed by Laura Midkiff Dit: cn-Laura Midk	10/24/2018 07:34

SmarTroll ID | 4696-23443-3-2 Turbidity ID 5160-26211-1-1 Sample Event | 1176

All metals and radiological bottles have pH < 2 🔽 Cooler Temp | 0.3 degrees C Thermometer ID | 5408-27568-2-2

pH Strip ID 6959-37696-30-17

Page 70 of 71

Alabama Power Laboratoria Chain of Cu Field SERVICES APC General Test	Field Complete Lab Complete ing Laboratory	Outside	e Lab
Requested Complete Date	Routine	Results To	Dustir

Lab ETA 10/24/2018 15:30

	A	PC Gene	erai	Testing L	at	00	ratory		Lab ETA 10/24/2016 15.50									
Requ	ested	Comple	ete I	Date Rout	ine	e							Results To	Dustin Br	ooks, Gr	– eg) Dyer	
	Site	e Represe	enta	tive Tani	sh	a	Fendersor	า				Red	quested By	Greg Dy	er			
		_		ctor Nick									Gaston	Gypsum				
Bottle	<u>. []</u>	Radium		1 L	1 [3	N/A		N/A			N/A		N/A 7			N/A	
bottie	° —	Anions		250 mL	╁	4	N/A		N/A 6 N/A					N/A N/A	7 N/ 8 N/			
	2	Allions	ᆛ	250 IIIL	J L	4	INA		IN/A		Lo	IN//	n	IN/A	° IN/.	<u> </u>	N/A	
	Co																	
																=		
							В	ottle						Lab				
	S	ample#		Date			Time	C	ount			D	escription		Filter		Lab Id	
	MW-1	11		10/24/1	8		11:28		2	Grou	ndv	wate	er				AY25371	
	MW-1	10		10/24/20	18	3	13:05		2	Grou	nd	wate	er		_	Τ	AY25372	
	FB-2			10/24/20	18		11:50		2	Field	Bla	ank					AY25373	
	EB-1 10/24/2018 13:40							2	Equip	ome	ent	Blank			Ī	AY25374		
						T										Ť		
						T										Ť		
						\uparrow										Ť		
			一			1								-		Ť		
						\dagger										T		
						\dagger										t		
						\dagger										t		
						\dagger				<u> </u>						t		
						\dagger										\dagger		
			\dashv			\dagger				<u> </u>						\dagger		
						\dagger				<u> </u>				_		\dagger		
			\dashv			+										+		
			\dashv			+										+		
			\dashv			+										+		
						+				<u> </u> 						+		
			\dashv			+		_								+		
			\dashv			+										+		
																_		
	Relinquished By											Re	eceived By		·		Date/Tim	ie
Le Pto								П				Q.	va Melet			7	10/24/2018 1	
							╟			(/	190	on raise)		4	10/24/2010 1	3.36	
																1		
								ΙL								<u>_</u>		
SmarTroll ID 5141-26150-1-1							٦		д 11	l m	eta	le and radi	ological ¹	bottles have pH < 2				
Turbidity ID 3901-20009-2-1						\dashv		All			oler Temp			11	ave pii < 2			
	Sample Event 1176						\dashv		т			ometer ID	5408-275					
5	oampl	ie Event	11/	U				╛		1	116							
												pi	n strip ID	0939-3/6	7696-30-17			

Page 71 of 71

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-161261-1

TestAmerica Sample Delivery Group: Gaston Gypsum 1176

Client Project/Site: CCR Plant Gaston

For:

Alabama Power General Test Laboratory 744 County Rd 87 GSC #8 Calera, Alabama 35040

Attn: Laura Midkiff

Authorized for release by: 11/8/2018 4:16:53 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	7
Sample Summary	8
Client Sample Results	9
Definitions	13
Chronicle	14
QC Association	18
QC Sample Results	21
Chain of Custody	27
Receipt Checklists	29
Certification Summary	30

4

5

7

0

10

12

13

14

Case Narrative

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Job ID: 400-161261-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-161261-1

General Chemistry

Method(s) SM 4500 F C: The sample duplicate precision for the following sample associated with analytical batch 417824 was outside control limits: (400-160851-A-4 DU). The associated Laboratory Control Sample(LCS) met acceptance criteria.

Method(s) SM 4500 CI- E: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 418722 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) SM 4500 SO4 E: Due to the concentration of sulfates in the parent sample the MS/MSD were diluted after the spike. The spike amounts were adjusted by the dilution factor. (400-161135-B-1 MS) and (400-161135-B-1 MSD)

Method(s) SM 4500 SO4 E: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 418748 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) SM 4500 SO4 E: The following samples were diluted to bring the concentration of target analytes within the calibration range: AY25248 MW-5 (400-161261-1), (400-161135-B-1), (400-161135-B-1 MS) and (400-161135-B-1 MSD). Elevated reporting limits (RLs) are provided.

2

3

9

11

12

13

14

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Client Sample ID: AY25248 MW-5	Lab Sample ID: 400-161261-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	14		2.0	1.4	mg/L	1	_	SM 4500 CI- E	Total/NA
Fluoride	0.060	J	0.10	0.032	mg/L	1		SM 4500 F C	Total/NA
Sulfate	40		10	2.8	mg/L	2		SM 4500 SO4 E	Total/NA

Client Sample ID: AY25249 MW-6 Lab Sample ID: 400-161261-2

Ar	nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Ch	loride	2.6		2.0	1.4	mg/L	1	_	SM 4500 CI- E	Total/NA

Client Sample ID: AY25250 MW-7 Lab Sample ID: 400-161261-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	3.7	2.0	1.4 mg/L		SM 4500 CI- E	Total/NA
Fluoride	0.10	0.10	0.032 mg/L	1	SM 4500 F C	Total/NA
Sulfate	8.8	5.0	1.4 mg/L	1	SM 4500 SO4 E	Total/NA

Client Sample ID: AY25251 MW-8 Lab Sample ID: 400-161261-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoride	0.15		0.10	0.032	mg/L	1	_	SM 4500 F C	Total/NA
Sulfate	2.2	J	5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA

Client Sample ID: AY25252 MW-9 Lab Sample ID: 400-161261-5

Analyte	Result Qu	alifier RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	2.0	2.0	1.4	mg/L		SM 4500 CI- E	Total/NA
Fluoride	0.050 J	0.10	0.032	mg/L	1	SM 4500 F C	Total/NA
Sulfate	5.1	5.0	1.4	mg/L	1	SM 4500 SO4 E	Total/NA

Client Sample ID: AY25253 MW-2 Lab Sample ID: 400-161261-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type	
Chloride	3.6	2.0	1.4 mg/L		SM 4500 CI- E	Total/NA	
Sulfate	8.3	5.0	1.4 mg/L	1	SM 4500 SO4 E	Total/NA	

Client Sample ID: AY25254 MW-15 Lab Sample ID: 400-161261-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Chloride	1.5 J	2.0	1.4 mg/L	1 SM 4500 Cl- E	Total/NA

Client Sample ID: AY25255 MW-3 Lab Sample ID: 400-161261-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	2.6		2.0	1.4	mg/L	1	_	SM 4500 CI- E	Total/NA
Fluoride	0.050	J	0.10	0.032	mg/L	1		SM 4500 F C	Total/NA
Sulfate	12		5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA

Client Sample ID: AY25256 MW-14S Lab Sample ID: 400-161261-9

This Detection Summary does not include radiochemical test results.

11/8/2018

Client: Alabama Power General Test Laboratory

Client Sample ID: AY25256 MW-14S (Continued)

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-9

Lab Sample ID: 400-161261-10

Lab Sample ID: 400-161261-11

Lab Sample ID: 400-161261-12

Lab Sample ID: 400-161261-13

Lab Sample ID: 400-161261-14

Lab Sample ID: 400-161261-15

Lab Sample ID: 400-161261-16

Lab Sample ID: 400-161261-17

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	3.4	2.0	1.4	mg/L		SM 4500 CI- E	Total/NA
Fluoride	0.070 J	0.10	0.032	mg/L	1	SM 4500 F C	Total/NA
Sulfate	5.4	5.0	1.4	mg/L	1	SM 4500 SO4 E	Total/NA

Client Sample ID: AY25257 MW-12

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	2.1	2.0	1.4	mg/L		SM 4500 CI- E	Total/NA
Fluoride	0.060 J	0.10	0.032	mg/L	1	SM 4500 F C	Total/NA
Sulfate	4.8 J	5.0	1.4	ma/L	1	SM 4500 SO4 E	Total/NA

Client Sample ID: AY25258 MW-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fa	: D	Method	Prep Type
Chloride	3.5		2.0	1.4	mg/L		ī —	SM 4500 CI- E	Total/NA
Fluoride	0.050	J	0.10	0.032	mg/L			SM 4500 F C	Total/NA
Sulfate	6.7		5.0	1.4	mg/L		l	SM 4500 SO4 E	Total/NA

Client Sample ID: AY25259 MW-1

Analyte	Result Qualifier	RL	MDL (Unit	Dil Fac	D Method	Prep Type
Chloride	2.1	2.0	1.4	mg/L		SM 4500 CI- E	Total/NA
Fluoride	0.39	0.10	0.032 ı	mg/L	1	SM 4500 F C	Total/NA
Sulfate	3.0 J	5.0	1.4 ו	mg/L	1	SM 4500 SO4 E	Total/NA

Client Sample ID: AY25260 MW-6 DUP

Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	2.4	2.0	1.4	mg/L	1	SM 4500 CI- E	Total/NA

Client Sample ID: AY25261 FB-1

No Detections.

Client Sample ID: AY25262 MW-12 DUP

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	2.6		2.0	1.4	mg/L	1	_	SM 4500 CI- E	Total/NA
Fluoride	0.050	J	0.10	0.032	mg/L	1		SM 4500 F C	Total/NA
Sulfate	5.0		5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA

Client Sample ID: AY25371 MW-11

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Chloride	7.2	2.0	1.4 mg/L	1 SM 4500 Cl- E	Total/NA
Sulfate	2.4 J	5.0	1.4 mg/L	1 SM 4500 SO4 E	Total/NA

Client Sample ID: AY25372 MW-10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Chloride	2.9	2.0	1.4 mg/L	1 SM 4500 CI- E	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Page 5 of 30

-0

5

6

ا

9

11

13

14

11/8/2018

Detection Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Client Sample ID: AY25373 FB-2 Lab Sample ID: 400-161261-18

No Detections.

Client Sample ID: AY25374 EB-1 Lab Sample ID: 400-161261-19

No Detections.

5

6

<u>۾</u>

9

11

13

14

Method Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Method	Method Description	Protocol	Laboratory
SM 4500 CI- E	Chloride, Total	SM	TAL PEN
SM 4500 F C	Fluoride	SM	TAL PEN
SM 4500 SO4 E	Sulfate, Total	SM	TAL PEN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Sample Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Lab Sample ID	Client Sample ID	Matrix	Collected Receive
400-161261-1	AY25248 MW-5	Water	10/22/18 09:57 10/29/18 1
400-161261-2	AY25249 MW-6	Water	10/22/18 10:56 10/29/18 1
400-161261-3	AY25250 MW-7	Water	10/22/18 12:17 10/29/18 1
400-161261-4	AY25251 MW-8	Water	10/22/18 13:50 10/29/18 1
400-161261-5	AY25252 MW-9	Water	10/22/18 15:10 10/29/18 1
400-161261-6	AY25253 MW-2	Water	10/22/18 17:08 10/29/18 1
400-161261-7	AY25254 MW-15	Water	10/23/18 09:11 10/29/18 1
400-161261-8	AY25255 MW-3	Water	10/23/18 10:50 10/29/18 1
400-161261-9	AY25256 MW-14S	Water	10/23/18 11:56 10/29/18 1
400-161261-10	AY25257 MW-12	Water	10/23/18 12:53 10/29/18 1
400-161261-11	AY25258 MW-13	Water	10/23/18 13:52 10/29/18 1
400-161261-12	AY25259 MW-1	Water	10/23/18 14:45 10/29/18 1
400-161261-13	AY25260 MW-6 DUP	Water	10/22/18 10:56 10/29/18 1
400-161261-14	AY25261 FB-1	Water	10/22/18 16:40 10/29/18 1
400-161261-15	AY25262 MW-12 DUP	Water	10/23/18 12:53 10/29/18 1
400-161261-16	AY25371 MW-11	Water	10/24/18 11:28 10/29/18 1
400-161261-17	AY25372 MW-10	Water	10/24/18 13:05 10/29/18 1
400-161261-18	AY25373 FB-2	Water	10/24/18 11:50 10/29/18 1
400-161261-19	AY25374 EB-1	Water	10/24/18 13:40 10/29/18 1

-4

5

7

0

9

10

12

13

4 /

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

Client Sample ID: AY25248 MW-5 Lab Sample ID: 400-161261-1 Date Collected: 10/22/18 09:57

Matrix: Water

Date Received: 10/29/18 16:45

	General Chemistry									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	14		2.0	1.4	mg/L			11/07/18 14:36	1
	Fluoride	0.060	J	0.10	0.032	mg/L			10/31/18 13:09	1
l	Sulfate	40		10	2.8	mg/L			11/07/18 16:56	2

Client Sample ID: AY25249 MW-6 Lab Sample ID: 400-161261-2

Date Collected: 10/22/18 10:56 **Matrix: Water**

Date Received: 10/29/18 16:45

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.6		2.0	1.4	mg/L			11/07/18 14:36	1
Fluoride	<0.032		0.10	0.032	mg/L			10/31/18 13:13	1
Sulfate	<1.4		5.0	1.4	mg/L			11/07/18 16:10	1

Client Sample ID: AY25250 MW-7 Lab Sample ID: 400-161261-3 Date Collected: 10/22/18 12:17 **Matrix: Water**

Date Received: 10/29/18 16:45

General Chemistry Analyte RL MDL Unit D Dil Fac Result Qualifier Prepared Analyzed 2.0 1.4 mg/L 11/07/18 14:36 Chloride 3.7 **Fluoride** 0.10 0.032 mg/L 10/31/18 13:17 0.10 11/07/18 16:11 **Sulfate** 8.8 5.0 1.4 mg/L

Client Sample ID: AY25251 MW-8 Lab Sample ID: 400-161261-4 **Matrix: Water**

Date Collected: 10/22/18 13:50 Date Received: 10/29/18 16:45

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<1.4	F1	2.0	1.4	mg/L			11/07/18 14:36	1
Fluoride	0.15		0.10	0.032	mg/L			10/31/18 13:20	1
Sulfate	2.2	J	5.0	1.4	mg/L			11/07/18 16:11	1

Lab Sample ID: 400-161261-5 Client Sample ID: AY25252 MW-9

Date Collected: 10/22/18 15:10 Date Received: 10/29/18 16:45

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.0		2.0	1.4	mg/L			11/07/18 14:36	1
Fluoride	0.050	J	0.10	0.032	mg/L			10/31/18 13:22	1
Sulfate	5.1		5.0	1.4	mg/L			11/08/18 07:46	1

Matrix: Water

Client Sample Results

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Client Sample ID: AY25253 MW-2

Date Collected: 10/22/18 17:08 Date Received: 10/29/18 16:45 Lab Sample ID: 400-161261-6

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.6		2.0	1.4	mg/L			11/07/18 14:36	1
Fluoride	< 0.032		0.10	0.032	mg/L			10/31/18 13:26	1
Sulfate	8.3		5.0	1.4	mg/L			11/08/18 07:52	1

Lab Sample ID: 400-161261-7 Client Sample ID: AY25254 MW-15

Date Collected: 10/23/18 09:11 Date Received: 10/29/18 16:45

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.5	J	2.0	1.4	mg/L			11/08/18 10:49	1
Fluoride	<0.032		0.10	0.032	mg/L			10/31/18 13:29	1
Sulfate	<1.4		5.0	1.4	mg/L			11/08/18 07:59	1

Client Sample ID: AY25255 MW-3 Lab Sample ID: 400-161261-8 Date Collected: 10/23/18 10:50

Date Received: 10/29/18 16:45

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.6		2.0	1.4	mg/L			11/08/18 10:49	1
Fluoride	0.050	J	0.10	0.032	mg/L			10/31/18 13:32	1
Sulfate	12		5.0	1.4	mg/L			11/08/18 07:59	1

Lab Sample ID: 400-161261-9 Client Sample ID: AY25256 MW-14S

Date Collected: 10/23/18 11:56 Date Received: 10/29/18 16:45

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.4		2.0	1.4	mg/L			11/08/18 10:49	1
Fluoride	0.070	J	0.10	0.032	mg/L			10/31/18 14:14	1
Sulfate	5.4		5.0	1.4	mg/L			11/08/18 07:59	1

Lab Sample ID: 400-161261-10 Client Sample ID: AY25257 MW-12

Date Collected: 10/23/18 12:53 Date Received: 10/29/18 16:45

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.1		2.0	1.4	mg/L			11/08/18 10:56	1
Fluoride	0.060	J	0.10	0.032	mg/L			10/31/18 14:22	1
Sulfate	4.8	J	5.0	1.4	mg/L			11/08/18 07:59	1

Lab Sample ID: 400-161261-11 Client Sample ID: AY25258 MW-13

Date Collected: 10/23/18 13:52 Date Received: 10/29/18 16:45

General Chemistry

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 2.0 1.4 mg/L 11/08/18 10:49 Chloride 3.5

TestAmerica Pensacola

Matrix: Water

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Client Sample ID: AY25258 MW-13

Date Collected: 10/23/18 13:52 Date Received: 10/29/18 16:45 Lab Sample ID: 400-161261-11

Matrix: Water

General	Chemistry	(Continued)
A I		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.050	J	0.10	0.032	mg/L			10/31/18 14:25	1
Sulfate	6.7		5.0	1.4	mg/L			11/08/18 07:59	1

Client Sample ID: AY25259 MW-1 Lab Sample ID: 400-161261-12

Date Collected: 10/23/18 14:45 Date Received: 10/29/18 16:45

Matrix: Water

General Chemistry

General Chemistry									
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.1		2.0	1.4	mg/L			11/08/18 10:49	1
Fluoride	0.39		0.10	0.032	mg/L			10/31/18 14:29	1
Sulfate	3.0 J	J	5.0	1.4	mg/L			11/08/18 07:59	1

Client Sample ID: AY25260 MW-6 DUP Lab Sample ID: 400-161261-13

Date Collected: 10/22/18 10:56 Date Received: 10/29/18 16:45

Matrix: Water

Matrix: Water

Matrix: Water

[-----

Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.4	2.0	1.4	mg/L			11/07/18 14:43	1
Fluoride	<0.032	0.10	0.032	mg/L			10/31/18 14:31	1
Sulfate	<1.4	5.0	1.4	mg/L			11/08/18 07:52	1

Client Sample ID: AY25261 FB-1

Lab Sample ID: 400-161261-14 Date Collected: 10/22/18 16:40 **Matrix: Water**

Date Received: 10/29/18 16:45

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<1.4		2.0	1.4	mg/L			11/07/18 14:43	1
Fluoride	< 0.032		0.10	0.032	mg/L			10/31/18 14:34	1
Sulfate	<1.4		5.0	1.4	mg/L			11/08/18 07:52	1

Client Sample ID: AY25262 MW-12 DUP Lab Sample ID: 400-161261-15

Date Collected: 10/23/18 12:53

Date Received: 10/29/18 16:45									
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Chloride 2.0 1.4 mg/L 11/08/18 10:49 2.6 **Fluoride** 0.050 J 0.10 0.032 mg/L 10/31/18 14:37 Sulfate 5.0 1.4 mg/L 11/08/18 08:00 5.0

Client Sample ID: AY25371 MW-11 Lab Sample ID: 400-161261-16

Date Collected: 10/24/18 11:28 D

Date Received: 10/29/18 16:4	.5							
Analyto	Popult Qualifier	DI	MDI linit	n	Droparod	Analyzod	Dil Fac	

Analyzed 2.0 Chloride 7.2 1.4 mg/L 11/08/18 12:41 Fluoride 0.10 10/31/18 14:39 <0.032 0.032 mg/L

TestAmerica Pensacola

Client Sample Results

Client: Alabama Power General Test Laboratory

Client Sample ID: AY25371 MW-11

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-16

Date Collected: 10/24/18 11:28 Date Received: 10/29/18 16:45

Matrix: Water

General Chemistry (Continued)

Analyte RL **MDL** Unit Result Qualifier D Prepared Analyzed Dil Fac 5.0 1.4 mg/L 11/08/18 08:57 Sulfate 2.4 J

Lab Sample ID: 400-161261-17 Client Sample ID: AY25372 MW-10

Date Collected: 10/24/18 13:05 Date Received: 10/29/18 16:45

Matrix: Water

General Chemistry Analyte Result Qualifier RL**MDL** Unit Prepared Analyzed Dil Fac 2.0 2.9 1.4 mg/L 11/08/18 12:44 Chloride Fluoride < 0.032 0.10 0.032 mg/L 10/31/18 14:49 Sulfate <1.4 5.0 1.4 mg/L 11/08/18 08:57

Client Sample ID: AY25373 FB-2 Lab Sample ID: 400-161261-18

Date Collected: 10/24/18 11:50

Matrix: Water

Date Received: 10/29/18 16:45

General Chemistry Analyte Result Qualifier RL **MDL** Unit Dil Fac D Prepared Analyzed Chloride 2.0 1.4 mg/L <1.4 11/08/18 12:41 Fluoride < 0.032 0.10 0.032 mg/L 10/31/18 14:56 Sulfate 5.0 11/08/18 08:57 <1.4 1.4 mg/L

Client Sample ID: AY25374 EB-1 Lab Sample ID: 400-161261-19

Date Collected: 10/24/18 13:40 Date Received: 10/29/18 16:45

Matrix: Water

General Chemistry Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride 2.0 <1.4 1.4 mg/L 11/08/18 12:44 Fluoride < 0.032 0.10 0.032 mg/L 10/31/18 14:59 Sulfate <1.4 5.0 1.4 mg/L 11/08/18 08:57

11/8/2018

Definitions/Glossary

Client: Alabama Power General Test Laboratory

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Qualifiers

General Chemistry

Qualifier	Qualifier Description
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the
	absolute difference is less than the RL.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.

Glossary

RER

RPD

TEF

TEQ

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control

TestAmerica Pensacola

11/8/2018

Page 13 of 30

5

4

4

a

O

3

11

12

13

Ш

SDG: Gaston Gypsum 1176

Client Sample ID: AY25248 MW-5

Client: Alabama Power General Test Laboratory

Date Collected: 10/22/18 09:57 Date Received: 10/29/18 16:45

Project/Site: CCR Plant Gaston

Lab Sample ID: 400-161261-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	418722	11/07/18 14:36	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417824	10/31/18 13:09	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		2	418748	11/07/18 16:56	RRC	TAL PEN

Client Sample ID: AY25249 MW-6 Lab Sample ID: 400-161261-2 Date Collected: 10/22/18 10:56

Date Received: 10/29/18 16:45

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	418722	11/07/18 14:36	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417824	10/31/18 13:13	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418748	11/07/18 16:10	RRC	TAL PEN

Lab Sample ID: 400-161261-3 Client Sample ID: AY25250 MW-7

Date Collected: 10/22/18 12:17

Date Received: 10/29/18 16:45

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E			418722	11/07/18 14:36	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417824	10/31/18 13:17	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418748	11/07/18 16:11	RRC	TAL PEN

Client Sample ID: AY25251 MW-8 Lab Sample ID: 400-161261-4 **Matrix: Water**

Date Collected: 10/22/18 13:50 Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E			418722	11/07/18 14:36	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417824	10/31/18 13:20	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418748	11/07/18 16:11	RRC	TAL PEN

Client Sample ID: AY25252 MW-9 Lab Sample ID: 400-161261-5

Date Collected: 10/22/18 15:10 Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E	_	1	418722	11/07/18 14:36	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417824	10/31/18 13:22	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418790	11/08/18 07:46	RRC	TAL PEN

TestAmerica Pensacola

Matrix: Water

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Client Sample ID: AY25253 MW-2

Date Collected: 10/22/18 17:08

Lab Sample ID: 400-161261-6

Matrix: Water

Date Collected: 10/22/18 17:08 Date Received: 10/29/18 16:45

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E			418722	11/07/18 14:36	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417824	10/31/18 13:26	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418790	11/08/18 07:52	RRC	TAL PEN

Client Sample ID: AY25254 MW-15 Lab Sample ID: 400-161261-7

Date Collected: 10/23/18 09:11 Date Received: 10/29/18 16:45

Batch Batch Dilution Batch Prepared **Prep Type** Method Factor Number or Analyzed Analyst Type Run Lab TAL PEN Total/NA Analysis SM 4500 CI- E 418842 11/08/18 10:49 RRC Total/NA Analysis SM 4500 F C 417824 10/31/18 13:29 BAB TAL PEN 1 418790 11/08/18 07:59 RRC TAL PEN Total/NA Analysis SM 4500 SO4 E

Client Sample ID: AY25255 MW-3 Lab Sample ID: 400-161261-8

Date Collected: 10/23/18 10:50

Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E			418842	11/08/18 10:49	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417824	10/31/18 13:32	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418790	11/08/18 07:59	RRC	TAL PEN

Client Sample ID: AY25256 MW-14S Lab Sample ID: 400-161261-9

Date Collected: 10/23/18 11:56

Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	418842	11/08/18 10:49	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417842	10/31/18 14:14	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418790	11/08/18 07:59	RRC	TAL PEN

Client Sample ID: AY25257 MW-12 Lab Sample ID: 400-161261-10

Date Collected: 10/23/18 12:53

Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	418842	11/08/18 10:56	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417842	10/31/18 14:22	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418790	11/08/18 07:59	RRC	TAL PEN

TestAmerica Pensacola

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Client Sample ID: AY25258 MW-13 Lab Sample ID: 400-161261-11

Date Collected: 10/23/18 13:52 Date Received: 10/29/18 16:45 Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis SM 4500 CI- E 418842 11/08/18 10:49 RRC TAL PEN Total/NA Analysis SM 4500 F C 1 417842 10/31/18 14:25 BAB TAL PEN Total/NA 418790 11/08/18 07:59 RRC TAL PEN Analysis SM 4500 SO4 E

Client Sample ID: AY25259 MW-1 Lab Sample ID: 400-161261-12

Date Collected: 10/23/18 14:45 Date Received: 10/29/18 16:45

Batch **Batch** Dilution Batch **Prepared** Method Number or Analyzed Analyst **Prep Type** Type Run **Factor** Lab 418842 11/08/18 10:49 RRC TAL PEN Total/NA SM 4500 CI- E Analysis Total/NA SM 4500 F C 417842 10/31/18 14:29 BAB TAL PEN Analysis 1 Total/NA Analysis SM 4500 SO4 E 1 418790 11/08/18 07:59 RRC TAL PEN

Client Sample ID: AY25260 MW-6 DUP

Lab Sample ID: 400-161261-13

Date Collected: 10/22/18 10:56

Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E			418722	11/07/18 14:43	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417842	10/31/18 14:31	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418790	11/08/18 07:52	RRC	TAL PEN

Client Sample ID: AY25261 FB-1 Lab Sample ID: 400-161261-14

Date Collected: 10/22/18 16:40 Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	418722	11/07/18 14:43	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417842	10/31/18 14:34	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418790	11/08/18 07:52	RRC	TAL PEN

Client Sample ID: AY25262 MW-12 DUP

Date Collected: 10/23/18 12:53

Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	418842	11/08/18 10:49	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417842	10/31/18 14:37	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418790	11/08/18 08:00	RRC	TAL PEN

TestAmerica Pensacola

Lab Sample ID: 400-161261-15

Client Sample ID: AY25371 MW-11

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-16

Date Collected: 10/24/18 11:28 **Matrix: Water** Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	418863	11/08/18 12:41	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417842	10/31/18 14:39	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418806	11/08/18 08:57	RRC	TAL PEN

Lab Sample ID: 400-161261-17 Client Sample ID: AY25372 MW-10

Date Collected: 10/24/18 13:05 **Matrix: Water**

Date Received: 10/29/18 16:45

Batch Batch Dilution Batch **Prepared** Number or Analyzed Analyst Method **Prep Type** Type Run **Factor** Lab 418863 11/08/18 12:44 RRC Total/NA SM 4500 CI- E TAL PEN Analysis Total/NA SM 4500 F C 417842 10/31/18 14:49 BAB TAL PEN Analysis 1 Total/NA Analysis SM 4500 SO4 E 1 418806 11/08/18 08:57 RRC TAL PEN

Client Sample ID: AY25373 FB-2 Lab Sample ID: 400-161261-18

Date Collected: 10/24/18 11:50 **Matrix: Water**

Date Received: 10/29/18 16:45

Batch Batch Dilution Batch Prepared Method Number Prep Type Type Run **Factor** or Analyzed Analyst Lab TAL PEN Total/NA Analysis SM 4500 CI- E 418863 11/08/18 12:41 RRC Total/NA SM 4500 F C 417842 10/31/18 14:56 BAB TAL PEN Analysis 1 Total/NA Analysis SM 4500 SO4 E 418806 11/08/18 08:57 RRC TAL PEN 1

Client Sample ID: AY25374 EB-1 Lab Sample ID: 400-161261-19

Date Collected: 10/24/18 13:40 **Matrix: Water**

Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 4500 CI- E		1	418863	11/08/18 12:44	RRC	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	417842	10/31/18 14:59	BAB	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	418806	11/08/18 08:57	RRC	TAL PEN

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

TestAmerica Pensacola

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

General Chemistry

Analysis Batch: 417824

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-161261-1	AY25248 MW-5	Total/NA	Water	SM 4500 F C	
400-161261-2	AY25249 MW-6	Total/NA	Water	SM 4500 F C	
400-161261-3	AY25250 MW-7	Total/NA	Water	SM 4500 F C	
400-161261-4	AY25251 MW-8	Total/NA	Water	SM 4500 F C	
400-161261-5	AY25252 MW-9	Total/NA	Water	SM 4500 F C	
400-161261-6	AY25253 MW-2	Total/NA	Water	SM 4500 F C	
400-161261-7	AY25254 MW-15	Total/NA	Water	SM 4500 F C	
400-161261-8	AY25255 MW-3	Total/NA	Water	SM 4500 F C	
MB 400-417824/3	Method Blank	Total/NA	Water	SM 4500 F C	
LCS 400-417824/4	Lab Control Sample	Total/NA	Water	SM 4500 F C	
400-160968-B-21 MS	Matrix Spike	Total/NA	Water	SM 4500 F C	
400-160968-B-21 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 F C	
400-160851-A-4 DU	Duplicate	Total/NA	Water	SM 4500 F C	

Analysis Batch: 417842

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-161261-9	AY25256 MW-14S	Total/NA	Water	SM 4500 F C	
400-161261-10	AY25257 MW-12	Total/NA	Water	SM 4500 F C	
400-161261-11	AY25258 MW-13	Total/NA	Water	SM 4500 F C	
400-161261-12	AY25259 MW-1	Total/NA	Water	SM 4500 F C	
400-161261-13	AY25260 MW-6 DUP	Total/NA	Water	SM 4500 F C	
400-161261-14	AY25261 FB-1	Total/NA	Water	SM 4500 F C	
400-161261-15	AY25262 MW-12 DUP	Total/NA	Water	SM 4500 F C	
400-161261-16	AY25371 MW-11	Total/NA	Water	SM 4500 F C	
400-161261-17	AY25372 MW-10	Total/NA	Water	SM 4500 F C	
400-161261-18	AY25373 FB-2	Total/NA	Water	SM 4500 F C	
400-161261-19	AY25374 EB-1	Total/NA	Water	SM 4500 F C	
MB 400-417842/3	Method Blank	Total/NA	Water	SM 4500 F C	
LCS 400-417842/4	Lab Control Sample	Total/NA	Water	SM 4500 F C	
400-161261-9 MS	AY25256 MW-14S	Total/NA	Water	SM 4500 F C	
400-161261-9 MSD	AY25256 MW-14S	Total/NA	Water	SM 4500 F C	
400-161261-17 DU	AY25372 MW-10	Total/NA	Water	SM 4500 F C	

Analysis Batch: 418722

400-161261-1	AY25248 MW-5			Method	Prep Batch
	= - =	Total/NA	Water	SM 4500 CI- E	
400-161261-2	AY25249 MW-6	Total/NA	Water	SM 4500 CI- E	
400-161261-3	AY25250 MW-7	Total/NA	Water	SM 4500 CI- E	
400-161261-4	AY25251 MW-8	Total/NA	Water	SM 4500 CI- E	
400-161261-5	AY25252 MW-9	Total/NA	Water	SM 4500 CI- E	
400-161261-6	AY25253 MW-2	Total/NA	Water	SM 4500 CI- E	
400-161261-13	AY25260 MW-6 DUP	Total/NA	Water	SM 4500 CI- E	
400-161261-14	AY25261 FB-1	Total/NA	Water	SM 4500 CI- E	
MB 400-418722/6	Method Blank	Total/NA	Water	SM 4500 CI- E	
LCS 400-418722/7	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
MRL 400-418722/3	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
400-161261-4 MS	AY25251 MW-8	Total/NA	Water	SM 4500 CI- E	
400-161261-4 MSD	AY25251 MW-8	Total/NA	Water	SM 4500 CI- E	

11/8/2018

Page 18 of 30

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1

General Chemistry (Continued)

Analysis Batch: 418748

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-161261-1	AY25248 MW-5	Total/NA	Water	SM 4500 SO4 E	
400-161261-2	AY25249 MW-6	Total/NA	Water	SM 4500 SO4 E	
400-161261-3	AY25250 MW-7	Total/NA	Water	SM 4500 SO4 E	
400-161261-4	AY25251 MW-8	Total/NA	Water	SM 4500 SO4 E	
MB 400-418748/6	Method Blank	Total/NA	Water	SM 4500 SO4 E	
LCS 400-418748/7	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
MRL 400-418748/3	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
400-161135-B-1 MS	Matrix Spike	Total/NA	Water	SM 4500 SO4 E	
400-161135-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 SO4 E	
400-161190-G-1 MS	Matrix Spike	Total/NA	Water	SM 4500 SO4 E	
400-161190-G-1 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 SO4 E	

Analysis Batch: 418790

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-161261-5	AY25252 MW-9	Total/NA	Water	SM 4500 SO4 E	
400-161261-6	AY25253 MW-2	Total/NA	Water	SM 4500 SO4 E	
400-161261-7	AY25254 MW-15	Total/NA	Water	SM 4500 SO4 E	
400-161261-8	AY25255 MW-3	Total/NA	Water	SM 4500 SO4 E	
400-161261-9	AY25256 MW-14S	Total/NA	Water	SM 4500 SO4 E	
400-161261-10	AY25257 MW-12	Total/NA	Water	SM 4500 SO4 E	
400-161261-11	AY25258 MW-13	Total/NA	Water	SM 4500 SO4 E	
400-161261-12	AY25259 MW-1	Total/NA	Water	SM 4500 SO4 E	
400-161261-13	AY25260 MW-6 DUP	Total/NA	Water	SM 4500 SO4 E	
400-161261-14	AY25261 FB-1	Total/NA	Water	SM 4500 SO4 E	
400-161261-15	AY25262 MW-12 DUP	Total/NA	Water	SM 4500 SO4 E	
MB 400-418790/6	Method Blank	Total/NA	Water	SM 4500 SO4 E	
LCS 400-418790/7	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
MRL 400-418790/3	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
400-161261-5 MS	AY25252 MW-9	Total/NA	Water	SM 4500 SO4 E	
400-161261-5 MSD	AY25252 MW-9	Total/NA	Water	SM 4500 SO4 E	

Analysis Batch: 418806

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-161261-16	AY25371 MW-11	Total/NA	Water	SM 4500 SO4 E	
400-161261-17	AY25372 MW-10	Total/NA	Water	SM 4500 SO4 E	
400-161261-18	AY25373 FB-2	Total/NA	Water	SM 4500 SO4 E	
400-161261-19	AY25374 EB-1	Total/NA	Water	SM 4500 SO4 E	
MB 400-418806/6	Method Blank	Total/NA	Water	SM 4500 SO4 E	
LCS 400-418806/7	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
MRL 400-418806/3	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
400-161260-F-2 MS	Matrix Spike	Total/NA	Water	SM 4500 SO4 E	
400-161260-F-2 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 SO4 E	

Analysis Batch: 418842

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-161261-7	AY25254 MW-15	Total/NA	Water	SM 4500 CI- E	
400-161261-8	AY25255 MW-3	Total/NA	Water	SM 4500 CI- E	
400-161261-9	AY25256 MW-14S	Total/NA	Water	SM 4500 CI- E	
400-161261-10	AY25257 MW-12	Total/NA	Water	SM 4500 CI- E	
400-161261-11	AY25258 MW-13	Total/NA	Water	SM 4500 CI- E	
400-161261-12	AY25259 MW-1	Total/NA	Water	SM 4500 CI- E	

TestAmerica Pensacola

SDG: Gaston Gypsum 1176

QC Association Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1

General Chemistry (Continued)

Analysis Batch: 418842 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-161261-15	AY25262 MW-12 DUP	Total/NA	Water	SM 4500 CI- E	
MB 400-418842/6	Method Blank	Total/NA	Water	SM 4500 CI- E	
LCS 400-418842/7	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
MRL 400-418842/3	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
400-161261-10 MS	AY25257 MW-12	Total/NA	Water	SM 4500 CI- E	
400-161261-10 MSD	AY25257 MW-12	Total/NA	Water	SM 4500 CI- E	

Analysis Batch: 418863

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-161261-16	AY25371 MW-11	Total/NA	Water	SM 4500 CI- E	
400-161261-17	AY25372 MW-10	Total/NA	Water	SM 4500 CI- E	
400-161261-18	AY25373 FB-2	Total/NA	Water	SM 4500 CI- E	
400-161261-19	AY25374 EB-1	Total/NA	Water	SM 4500 CI- E	
MB 400-418863/6	Method Blank	Total/NA	Water	SM 4500 CI- E	
LCS 400-418863/7	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
MRL 400-418863/3	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
400-161261-17 MS	AY25372 MW-10	Total/NA	Water	SM 4500 CI- E	
400-161261-17 MSD	AY25372 MW-10	Total/NA	Water	SM 4500 CI- E	

SDG: Gaston Gypsum 1176

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Method:	SM	4500	CI-	E -	Chloride,	Total
---------	----	------	-----	-----	-----------	-------

Lab Sample ID: MB 400-418722/6 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418722

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 2.0 11/07/18 14:33 Chloride 1.4 mg/L <1.4

Lab Sample ID: LCS 400-418722/7 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418722

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Chloride 30.0 33.0 mg/L 110 90 - 110

Lab Sample ID: MRL 400-418722/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418722

Spike MRL MRL %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Chloride 2.00 2.11 mg/L 105 50 - 150

Lab Sample ID: 400-161261-4 MS Client Sample ID: AY25251 MW-8 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418722

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride <1.4 F1 10.0 12.6 F1 126 73 - 120 mg/L

Lab Sample ID: 400-161261-4 MSD Client Sample ID: AY25251 MW-8 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418722

Spike MSD MSD %Rec. RPD Sample Sample Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits RPD Limit Chloride <1.4 F1 10.0 12.3 F1 123 73 - 120 mg/L

Lab Sample ID: MB 400-418842/6 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418842

MB MB Analyte Result Qualifier RL MDL Unit Prepared D Analyzed Dil Fac Chloride 20 1.4 mg/L 11/08/18 10:46 <14

Lab Sample ID: LCS 400-418842/7 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 418842

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec Chloride 30.0 31.5 mg/L 105 90 - 110

Lab Sample ID: MRL 400-418842/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418842

Spike MRL MRL %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 2.00 1.26 J mg/L 63 50 - 150

TestAmerica Pensacola

Prep Type: Total/NA

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Client Sample ID: AY25257 MW-12

Prep Type: Total/NA

Lab Sample ID: 400-161261-10 MS **Matrix: Water**

Analysis Batch: 418842

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 2.1 10.0 73 - 120 13.5 mg/L 113

Lab Sample ID: 400-161261-10 MSD Client Sample ID: AY25257 MW-12 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418842

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Limits RPD Analyte Unit D %Rec Limit Chloride 2.1 10.0 13.4 mg/L 113 73 - 120 n

Client Sample ID: Method Blank Lab Sample ID: MB 400-418863/6 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418863

MB MB RL **MDL** Unit **Analyte** Result Qualifier Prepared Analyzed Dil Fac Chloride <1.4 2.0 1.4 mg/L 11/08/18 12:41

Lab Sample ID: LCS 400-418863/7 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418863

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 30.0 32.1 mg/L 107 90 - 110

Lab Sample ID: MRL 400-418863/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418863

MRL MRL Spike %Rec. Analyte Added Result Qualifier Limits Unit %Rec Chloride 2.00 1.43 J mg/L 72 50 - 150

Lab Sample ID: 400-161261-17 MS Client Sample ID: AY25372 MW-10 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418863

MS MS Sample Sample Spike %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits 10.0 Chloride 2.9 14.2 mg/L 113 73 - 120

Lab Sample ID: 400-161261-17 MSD Client Sample ID: AY25372 MW-10 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418863

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Analyte Added Result Qualifier Limits RPD Unit D %Rec Limit Chloride 10.0 109 2.9 13.7 mg/L 73 - 120

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: SM 4500 F C - Fluoride

Lab Sample ID: MB 400-417824/3

Matrix: Water

Analysis Batch: 417824

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared 0.10 10/31/18 12:10 Fluoride <0.032 0.032 mg/L

Lab Sample ID: LCS 400-417824/4

Matrix: Water

Analysis Batch: 417824

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Fluoride 4.00 4.26 mg/L 107 90 - 110

Lab Sample ID: 400-160968-B-21 MS

Matrix: Water

Analysis Batch: 417824

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec Fluoride < 0.032 1.00 1.10 mg/L 110 75 - 125

Lab Sample ID: 400-160968-B-21 MSD

Matrix: Water

Analysis Batch: 417824

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Fluoride <0.032 1.00 1.10 mg/L 110 75 - 125

Lab Sample ID: 400-160851-A-4 DU

Matrix: Water

Analysis Batch: 417824

DU DU Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Fluoride 0.130 F5 0.12 mg/L

Lab Sample ID: MB 400-417842/3

Matrix: Water

Analysis Batch: 417842

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Dil Fac D Analyzed Fluoride 0.10 < 0.032 0.032 mg/L 10/31/18 14:00

Lab Sample ID: LCS 400-417842/4

Matrix: Water

Analysis Batch: 417842

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Fluoride 4.00 4.26 mg/L 107 90 - 110

Lab Sample ID: 400-161261-9 MS

Matrix: Water

Analysis Batch: 417842

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Fluoride 0.070 J 1.00 109 75 - 125 1.16 mg/L

TestAmerica Pensacola

Client Sample ID: AY25256 MW-14S

Page 23 of 30

Prep Type: Total/NA RPD

Client Sample ID: Duplicate

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: 400-161261-9 MSD

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Client Sample ID: AY25256 MW-14S **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 417842

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluoride	0.070	J	1.00	1.16		mg/L		109	75 - 125	0	4

Lab Sample ID: 400-161261-17 DU Client Sample ID: AY25372 MW-10 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 417842

Analysis Batch: 417042	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Fluoride	<0.032		<0.032		mg/L			NC	4

Method: SM 4500 SO4 E - Sulfate, Total

Lab Sample ID: MB 400-418748/6 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 418748

MD MD

	1410	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	<1.4		5.0	1.4	mg/L			11/07/18 15:57	1

Lab Sample ID: LCS 400-418748/7 Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 418748

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	15.0	14.5		mg/L	_	97	90 - 110	

Lab Sample ID: MRL 400-418748/3 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 418748

	Spike	MRL MRL			%Rec.	
Analyte	Added	Result Qualifier	Unit D	%Rec	Limits	
Sulfata	5.00	4.61 I	ma/l	02	50 150	

Lab Sample ID: 400-161135-B-1 MS **Client Sample ID: Matrix Spike Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 418748

	Sample Sample	Spike	MS	MS				%Rec.	
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	72	10.0	71.9	4	ma/l			77 - 128	

Lab Sample ID: 400-161135-B-1 MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418748

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	72		10.0	68.4	4	mg/L		-33	77 - 128	5	5

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Method: SM 4500 SO4 E - Sulfate, Total (Continued)

Lab Sample ID: 400-161190-G-1 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418748

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 10.0 Sulfate 16 24.7 mg/L 85 77 - 128

Lab Sample ID: 400-161190-G-1 MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418748

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Limits Analyte Result Qualifier Unit **RPD** Limit %Rec 10.0 Sulfate 16 24.6 mg/L 84 77 - 128

Lab Sample ID: MB 400-418790/6 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418790

MB MB RL **MDL** Unit Analyte Result Qualifier Prepared Analyzed Dil Fac Sulfate <1.4 5.0 1.4 mg/L 11/08/18 07:46

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 400-418790/7 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418790

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Sulfate 15.0 14.3 mg/L 95 90 - 110

Lab Sample ID: MRL 400-418790/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418790

Spike MRI MRI %Rec. Analyte Added Result Qualifier Unit %Rec Limits Sulfate 5.00 84 50 - 150 4.18 J mg/L

Lab Sample ID: 400-161261-5 MS Client Sample ID: AY25252 MW-9 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418790

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits 10.0 Sulfate 5 1 15.8 107 77 - 128 mg/L

Client Sample ID: AY25252 MW-9 Lab Sample ID: 400-161261-5 MSD Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418790

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier RPD **Analyte** Unit %Rec Limits Limit Sulfate 5.1 10.0 16.6 mg/L 116 77 - 128

Lab Sample ID: MB 400-418806/6 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418806

MB MB RL Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac Sulfate 5.0 1.4 mg/L 11/08/18 08:46 <1.4

TestAmerica Pensacola

QC Sample Results

Client: Alabama Power General Test Laboratory Project/Site: CCR Plant Gaston

Lab Sample ID: LCS 400-418806/7

Matrix: Water

Analysis Batch: 418806

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Client Sample ID: Matrix Spike

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

 Analyte
 Added Sulfate
 Result 15.0
 Qualifier mg/L
 Unit mg/L
 D mg/L
 %Rec Limits po mg/L

Lab Sample ID: MRL 400-418806/3

Matrix: Water

Analysis Batch: 418806

Spike MRL MRL

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Rec.

 Analyte
 Added Sulfate
 Result Just 2000
 Qualifier Mg/L
 Unit Mg/L
 D
 %Rec MRC MRec.

 5.00
 4.11
 J
 mg/L
 D
 %Rec Limits MRC MRC

Matrix: Water Prep Type: Total/NA Analysis Batch: 418806 Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier **Analyte** Added Unit %Rec Limits Sulfate 5.3 10.0 14.0 mg/L 87 77 - 128

Lab Sample ID: 400-161260-F-2 MSD

Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 418806

Lab Sample ID: 400-161260-F-2 MS

Spike MSD MSD %Rec. **RPD** Sample Sample **Analyte** Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Sulfate 5.3 10.0 14.0 mg/L 88 77 - 128

11/8/2018

are retained longer than 1 month) 400-161261 COC racking No(s): Analysis Requested Special Instructions/QC Requirements Lab PM:
Whitmire, Cheyenne R
E-Mat:
cheyenne.whitmire@testamericainc.com 9315_Ra226, 9320_Ra228, Ra226Ra228_GFPC × × × × × × × × × × × × × × 3 400 009+ WS × × × × × × × × × × 3 10 009+ WS × × × × × × × × × **Chain of Custody Record** Perform MS/MSD (Yes or No) Water Matrix (www S=solid, 0=waste Water Water Water Water Water Company APC Company Radiological Sample Type (C=comp, G=grab) O O O 0 9 0 0 O O 0 O 9 9 O 9 15:10 09:11 10:50 11:56 12:53 13:52 14:45 10:56 16:40 12:53 17:08 12:17 13:50 09:57 10:56 ate/Time: 10/24/2018 12:00 Unknown AT Requested (days): Sampler. Anthony Goggins Phone: Due Date Requested: Sample Date 10/23/18 10/23/18 10/22/18 10/23/18 10/23/18 10/22/18 10/22/18 10/23/18 10/23/18 10/23/18 10/22/18 10/22/18 10/22/18 10/22/18 10/22/18 Project #: 40007143 SSOW#. Poison B Non-Hazard Flammable Skin Irritant verable Requested: I, II, III, N, Other (specify) Custody Seals Intact: Custody Seal No. Phone (850) 474-1001 Fax (850) 478-2671

2 MW-12 DUP (Duplicate)

FB-1 (Field Blank)

MW-6 DUP (Duplicate)

MW-14S MW-12

MW-13

MW-15

MW-3

MW-2

WW-9

MW-7

Special Instructions/Note:

P - Na204S Q - Na2S03 R - Na2S203 S - H2S04 T - TSP Dodecahy U - Acetone V - MCAA

I- Ice J-DI Water K-EDTA L-EDA

TestAmerica

COC No: 400-56525-24537.1

Page: Page 1 of 2

Mabama Power General Test Laboratory

Client Information

aura Midkiff

744 County Rd 87 GSC #8

omidkif@southernco.com

205-664-6197(Tel)

e, Zip:

Gaston Gypsum 1176

Sample Identification

AY25248 4Y25249 AY25250 AY25251

FestAmerica Pensacola

Pensacola, FL 32514

AY25252 AY25253 AY25255

AY25256

AY25254

AY25257 AY25258 AY25259 AY25260 AY25262

AY25261

nquished by.

pty Kit Relinquished by:

quished by. Laura Midkiff

TestAmerica THE LEADER IN ENVIRONMENTAL TESTIN Special Instructions/Note: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab EB-1 (Equipment Blank) 30C No: 400-56525-24537.1 FB-2 (Field Blank) A-HCL
B-NaOH
C-Zn Acetate
C-Zn Acetate
D-Nitric Acid
E-NaHSO4
F-MeOH
G-Amethlor
H-Ascorbic Acid Page 2 of 2 Total Number of containers **Analysis Requested** ooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements Lab PM:
Whitmire, Cheyenne R
E-Mail:
cheyenne, whitmire@testamericainc.com 9315_Ra226, 9320_Ra228, Ra226Ra228_GFPC × × × × × × × × **Chain of Custody Record** Field Filtered Sample (Yes or No) Matrix (wewater Sesolid, Oewaste/oil Preservation Code: Water Water Water Water Radiological Sample Type (C=comp, G=grab) O O O O Sample 13:05 11:50 13:40 11:28 Date: Unknown Due Date Requested Sample Date 10/24/18 10/24/18 10/24/18 10/24/18 Project #: 40007143 SSOW#: Sampler: Nick Pitts Phone: Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seals Intact: Custody Seal No. Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671 Alabama Power General Test Laboratory **TestAmerica Pensacola** mpty Kit Relinquished by: 744 County Rd 87 GSC #8 linquished by: Laura Midkiff omidkif@southernco.com Client Information Gaston Gypsum 1176 sample Identification 3355 McLemore Drive 205-664-6197(Tel)

AY25371 AY25372 AY25373 AY25374

aura Midkiff

State, Zip: AL, 35040

Calera

inquished by:

Login Sample Receipt Checklist

Client: Alabama Power General Test Laboratory

Job Number: 400-161261-1 SDG Number: Gaston Gypsum 1176

Login Number: 161261 List Source: TestAmerica Pensacola

List Number: 1

Creator: Perez. Trina M

Answer	Comment
N/A	
True	
N/A	
True	
True	
True	
True	0.0°C, 21.7°C, 20.6°C IR-7
True	
N/A	
True	
True	
N/A	
	N/A True N/A True True True True True True True True

2

3

4

5

7

9

10

12

13

11)

Accreditation/Certification Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-1 SDG: Gaston Gypsum 1176

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

ANAB ISO/IEC 17025	Authority	Program	EPA Region	Identification Number	Expiration Date
Arizona State Program 9 AZ0710 01-12-19 Arkansas DEQ State Program 6 88-0689 09-01-19 California State Program 9 2510 06-30-19 Florida NELAP 4 E81010 06-30-19 Georgia State Program 4 E81010 (FL) 06-30-19 Illinois NELAP 5 200041 10-09-19 Iowa State Program 7 367 08-01-20 Kansas NELAP 7 E-10253 10-31-18* Kentucky (UST) State Program 4 53 06-30-19 Kentucky (WW) State Program 4 53 06-30-19 Kentucky (WW) State Program 4 98030 12-31-18 Louisiana NELAP 6 30976 06-30-19 Kentucky (WW) State Program 3 233 09-30-19 Massachusetts State Program 3 233 09-30-19 Massachusetts<	Alabama	State Program	4	40150	06-30-19
Arkansas DEQ State Program 6 88-0689 09-01-19 California State Program 9 2510 06-30-19 Florida NELAP 4 E81010 06-30-19 Georgia State Program 4 E81010 (FL) 06-30-19 Illinois NELAP 5 200041 10-09-19 Iowa State Program 7 367 08-01-20 Kansas NELAP 7 E-10253 10-31-18 * Kentucky (UST) State Program 4 98030 12-31-18 * Kentucky (WW) State Program 4 98030 12-31-18 Louisiana NELAP 6 30976 06-30-19 Louisiana (DW) NELAP 6 LA180023 12-31-18 Maryland State Program 3 23 09-30-19 Massachusetts State Program 1 M-FL094 06-30-19 Massachusetts State Program 5 9912 06-30-19 New Jer	ANAB	ISO/IEC 17025		L2471	02-22-20
California State Program 9 2510 06-30-19 Florida NELAP 4 E81010 06-30-19 Georgia State Program 4 E81010 (FL) 06-30-19 Illinois NELAP 5 200041 10-09-19 Iowa State Program 7 367 08-01-20 Kansas NELAP 7 E-10253 10-31-18 * Kentucky (UST) State Program 4 53 06-30-19 Kentucky (WW) State Program 4 98030 12-31-18 Louisiana (DW) NELAP 6 30976 06-30-19 Maryland State Program 3 233 09-30-19 Massachusetts State Program 1 M-FL094 06-30-19 Michigan State Program 5 9912 06-30-19 New Jersey NELAP 2 FL006 06-30-19 North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma <td>Arizona</td> <td>State Program</td> <td>9</td> <td>AZ0710</td> <td>01-12-19</td>	Arizona	State Program	9	AZ0710	01-12-19
Florida NELAP 4	Arkansas DEQ	State Program	6	88-0689	09-01-19
Georgia State Program 4 E81010 (FL) 06-30-19 Illinois NELAP 5 200041 10-09-19 Iowa State Program 7 367 08-01-20 Kansas NELAP 7 E-10253 10-31-18 * Kentucky (UST) State Program 4 53 06-30-19 Kentucky (WW) State Program 4 98030 12-31-18 Louisiana NELAP 6 30976 06-30-19 Louisiana (DW) NELAP 6 LA180023 12-31-18 Maryland State Program 3 233 09-30-19 Massachusetts State Program 1 M-FL094 06-30-19 Michigan State Program 5 9912 06-30-19 New Jersey NELAP 2 FL006 06-30-19 North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma State Program 6 9810 08-31-19 Pennsylvan	California	State Program	9	2510	06-30-19
Illinois NELAP 5 200041 10-09-19 10 10 10 10 10 10 10	Florida	NELAP	4	E81010	06-30-19
Iowa State Program 7 367 08-01-20 Kansas NELAP 7 E-10253 10-31-18 * Kentucky (UST) State Program 4 53 06-30-19 Kentucky (WW) State Program 4 98030 12-31-18 Louisiana NELAP 6 30976 06-30-19 Louisiana (DW) NELAP 6 LA180023 12-31-18 Maryland State Program 3 233 09-30-19 Massachusetts State Program 1 M-FL094 06-30-19 Michigan State Program 5 9912 06-30-19 New Jersey NELAP 2 FL006 06-30-19 North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma State Program 6 9810 08-31-19 Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LA000307 12-30-18 So	Georgia	State Program	4	E81010 (FL)	06-30-19
Kansas NELAP 7 E-10253 10-31-18 * Kentucky (UST) State Program 4 53 06-30-19 Kentucky (WW) State Program 4 98030 12-31-18 Louisiana NELAP 6 30976 06-30-19 Louisiana (DW) NELAP 6 LA180023 12-31-18 Maryland State Program 3 233 09-30-19 Massachusetts State Program 1 M-FL094 06-30-19 Michigan State Program 5 9912 06-30-19 New Jersey NELAP 2 FL006 06-30-19 North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma State Program 6 9810 08-31-19 Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LA000307 12-30-18 South Carolina State Program 4 96026 06-30-19	Illinois	NELAP	5	200041	10-09-19
Kentucky (UST) State Program 4 53 06-30-19 Kentucky (WW) State Program 4 98030 12-31-18 Louisiana NELAP 6 30976 06-30-19 Louisiana (DW) NELAP 6 LA180023 12-31-18 Maryland State Program 3 233 09-30-19 Massachusetts State Program 1 M-FL094 06-30-19 Michigan State Program 5 9912 06-30-19 New Jersey NELAP 2 FL006 06-30-19 North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma State Program 6 9810 08-31-19 Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LA000307 12-30-18 South Carolina State Program 4 96026 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 <	lowa	State Program	7	367	08-01-20
Kentucky (WW) State Program 4 98030 12-31-18 Louisiana NELAP 6 30976 06-30-19 Louisiana (DW) NELAP 6 LA180023 12-31-18 Maryland State Program 3 233 09-30-19 Massachusetts State Program 1 M-FL094 06-30-19 Michigan State Program 5 9912 06-30-19 New Jersey NELAP 2 FL006 06-30-19 North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma State Program 6 9810 08-31-19 Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LA000307 12-30-18 South Carolina State Program 4 96026 06-30-19 Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 <	Kansas	NELAP	7	E-10253	10-31-18 *
Louisiana NELAP 6 30976 06-30-19 Louisiana (DW) NELAP 6 LA180023 12-31-18 Maryland State Program 3 233 09-30-19 Massachusetts State Program 1 M-FL094 06-30-19 Michigan State Program 5 9912 06-30-19 New Jersey NELAP 2 FL006 06-30-19 North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma State Program 6 9810 08-31-19 Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LAO00307 12-30-18 South Carolina State Program 4 96026 06-30-19 Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 <td< td=""><td>Kentucky (UST)</td><td>State Program</td><td>4</td><td>53</td><td>06-30-19</td></td<>	Kentucky (UST)	State Program	4	53	06-30-19
Louisiana (DW) NELAP 6 LA180023 12-31-18 Maryland State Program 3 233 09-30-19 Massachusetts State Program 1 M-FL094 06-30-19 Michigan State Program 5 9912 06-30-19 New Jersey NELAP 2 FL006 06-30-19 North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma State Program 6 9810 08-31-19 Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LAO00307 12-30-18 South Carolina State Program 4 96026 06-30-19 Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia	Kentucky (WW)	State Program	4	98030	12-31-18
Maryland State Program 3 233 09-30-19 Massachusetts State Program 1 M-FL094 06-30-19 Michigan State Program 5 9912 06-30-19 New Jersey NELAP 2 FL006 06-30-19 North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma State Program 6 9810 08-31-19 Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LAO00307 12-30-18 South Carolina State Program 4 96026 06-30-19 Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	Louisiana	NELAP	6	30976	06-30-19
Massachusetts State Program 1 M-FL094 06-30-19 Michigan State Program 5 9912 06-30-19 New Jersey NELAP 2 FL006 06-30-19 North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma State Program 6 9810 08-31-19 Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LAO00307 12-30-18 South Carolina State Program 4 96026 06-30-19 Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	Louisiana (DW)	NELAP	6	LA180023	12-31-18
Michigan State Program 5 9912 06-30-19 New Jersey NELAP 2 FL006 06-30-19 North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma State Program 6 9810 08-31-19 Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LAO00307 12-30-18 South Carolina State Program 4 96026 06-30-19 Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	Maryland	State Program	3	233	09-30-19
New Jersey NELAP 2 FL006 06-30-19 North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma State Program 6 9810 08-31-19 Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LAO00307 12-30-18 South Carolina State Program 4 96026 06-30-19 Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	Massachusetts	State Program	1	M-FL094	06-30-19
North Carolina (WW/SW) State Program 4 314 12-31-18 Oklahoma State Program 6 9810 08-31-19 Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LAO00307 12-30-18 South Carolina State Program 4 96026 06-30-19 Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	Michigan	State Program	5	9912	06-30-19
Oklahoma State Program 6 9810 08-31-19 Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LAO00307 12-30-18 South Carolina State Program 4 96026 06-30-19 Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	New Jersey	NELAP	2	FL006	06-30-19
Pennsylvania NELAP 3 68-00467 01-31-19 Rhode Island State Program 1 LAO00307 12-30-18 South Carolina State Program 4 96026 06-30-19 Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	North Carolina (WW/SW)	State Program	4	314	12-31-18
Rhode Island State Program 1 LAO00307 12-30-18 South Carolina State Program 4 96026 06-30-19 Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	Oklahoma	State Program	6	9810	08-31-19
South Carolina State Program 4 96026 06-30-19 Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	Pennsylvania	NELAP	3	68-00467	01-31-19
Tennessee State Program 4 TN02907 06-30-19 Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	Rhode Island	State Program	1	LAO00307	12-30-18
Texas NELAP 6 T104704286-18-16 09-30-19 US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	South Carolina	State Program	4	96026	06-30-19
US Fish & Wildlife Federal LE058448-0 07-31-19 USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	Tennessee	State Program	4	TN02907	06-30-19
USDA Federal P330-18-00148 05-17-21 Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	Texas	NELAP	6	T104704286-18-16	09-30-19
Virginia NELAP 3 460166 06-14-19 Washington State Program 10 C915 05-15-19	US Fish & Wildlife	Federal		LE058448-0	07-31-19
Washington State Program 10 C915 05-15-19	USDA	Federal		P330-18-00148	05-17-21
	Virginia	NELAP	3	460166	06-14-19
West Virginia DEP State Program 3 136 06-30-19	Washington	State Program	10	C915	05-15-19
	West Virginia DEP	State Program	3	136	06-30-19

12

13

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-161261-2

TestAmerica Sample Delivery Group: Gaston Gypsum 1176

Client Project/Site: CCR Plant Gaston

For:

Alabama Power General Test Laboratory 744 County Rd 87 GSC #8 Calera, Alabama 35040

Attn: Laura Midkiff

Chayenaxwhitmin

Authorized for release by: 11/27/2018 11:36:52 AM

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	
Sample Summary	
Client Sample Results	
Definitions	25
Chronicle	26
QC Association	31
QC Sample Results	32
Chain of Custody	34
Receipt Checklists	36
Certification Summary	38

Case Narrative

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Job ID: 400-161261-2

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-161261-2

RAD

Method(s) 9320: Radium-228 Prep Batch 160-398713: The method blank was recounted due to an instrument error (the instrument did not write the initial count to the database). Due to the rapid decay rate of yttrium-90, the MDC elevated above the RL (MDC 1.06 pCi/L). All associated samples have an MDC below the RL. The results are reported with this narrative. AY25248 MW-5 (400-161261-1), AY25248 MW-5 (400-161261-1[DU]), AY25249 MW-6 (400-161261-2), AY25250 MW-7 (400-161261-3), AY25251 MW-8 (400-161261-4), AY25252 MW-9 (400-161261-5), AY25253 MW-2 (400-161261-6), AY25254 MW-15 (400-161261-7), AY25255 MW-3 (400-161261-8), AY25256 MW-14S (400-161261-9), AY25257 MW-12 (400-161261-10), AY25258 MW-13 (400-161261-11), AY25259 MW-1 (400-161261-12). AY25260 MW-6 DUP (400-161261-13), AY25261 FB-1 (400-161261-14), AY25262 MW-12 DUP (400-161261-15), AY25371 MW-11 (400-161261-16), AY25372 MW-10 (400-161261-17), AY25373 FB-2 (400-161261-18), AY25374 EB-1 (400-161261-19), (LCS 160-398713/1-A) and (MB 160-398713/22-A)

Method(s) PrecSep 0: Radium 228 Prep Batch 160-398713: The following samples were prepared at a reduced aliquot due to limited sample volume. AY25248 MW-5 (400-161261-1), AY25248 MW-5 (400-161261-1[DU]), AY25249 MW-6 (400-161261-2), AY25250 MW-7 (400-161261-3), AY25251 MW-8 (400-161261-4), AY25252 MW-9 (400-161261-5), AY25253 MW-2 (400-161261-6), AY25254 MW-15 (400-161261-7), AY25255 MW-3 (400-161261-8), AY25256 MW-14S (400-161261-9), AY25257 MW-12 (400-161261-10), AY25258 MW-13 (400-161261-11), AY25259 MW-1 (400-161261-12), AY25260 MW-6 DUP (400-161261-13), AY25261 FB-1 (400-161261-14), AY25262 MW-12 DUP (400-161261-15), AY25371 MW-11 (400-161261-16), AY25372 MW-10 (400-161261-17), AY25373 FB-2 (400-161261-18) and AY25374 EB-1 (400-161261-19)

Method(s) PrecSep-21: Radium 226 Prep Batch 160-398705: The following samples were prepared at a reduced aliquot due to limited sample volume. AY25248 MW-5 (400-161261-1), AY25248 MW-5 (400-161261-1[DU]), AY25249 MW-6 (400-161261-2), AY25250 MW-7 (400-161261-3), AY25251 MW-8 (400-161261-4), AY25252 MW-9 (400-161261-5), AY25253 MW-2 (400-161261-6), AY25254 MW-15 (400-161261-7), AY25255 MW-3 (400-161261-8), AY25256 MW-14S (400-161261-9), AY25257 MW-12 (400-161261-10), AY25258 MW-13 (400-161261-11), AY25259 MW-1 (400-161261-12), AY25260 MW-6 DUP (400-161261-13), AY25261 FB-1 (400-161261-14), AY25262 MW-12 DUP (400-161261-15), AY25371 MW-11 (400-161261-16), AY25372 MW-10 (400-161261-17), AY25373 FB-2 (400-161261-18) and AY25374 EB-1 (400-161261-19)

Method Summary

Client: Alabama Power General Test Laboratory

Method Description

Radium-226 (GFPC)

Radium-228 (GFPC)

Combined Radium-226 and Radium-228

Preparation, Precipitate Separation

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Protocol	Laboratory
SW846	TAL SL
SW846	TAL SL
TAL-STL	TAL SL
None	TAL SL

TAL SL

None

Protocol References:

None = None

Method

Ra226_Ra228

PrecSep_0

PrecSep-21

9315

9320

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Preparation, Precipitate Separation (21-Day In-Growth)

Laboratory References:

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

TestAmerica Pensacola

11/27/2018

-0

3

4

0

10

111

Sample Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID	Client Sample ID	Matrix	Collected Received
400-161261-1	AY25248 MW-5	Water	10/22/18 09:57 10/29/18 16:4
400-161261-2	AY25249 MW-6	Water	10/22/18 10:56 10/29/18 16:4
400-161261-3	AY25250 MW-7	Water	10/22/18 12:17 10/29/18 16:4
400-161261-4	AY25251 MW-8	Water	10/22/18 13:50 10/29/18 16:4
400-161261-5	AY25252 MW-9	Water	10/22/18 15:10 10/29/18 16:4
400-161261-6	AY25253 MW-2	Water	10/22/18 17:08 10/29/18 16:4
400-161261-7	AY25254 MW-15	Water	10/23/18 09:11 10/29/18 16:4
400-161261-8	AY25255 MW-3	Water	10/23/18 10:50 10/29/18 16:4
400-161261-9	AY25256 MW-14S	Water	10/23/18 11:56 10/29/18 16:4
400-161261-10	AY25257 MW-12	Water	10/23/18 12:53 10/29/18 16:4
400-161261-11	AY25258 MW-13	Water	10/23/18 13:52 10/29/18 16:4
400-161261-12	AY25259 MW-1	Water	10/23/18 14:45 10/29/18 16:4
400-161261-13	AY25260 MW-6 DUP	Water	10/22/18 10:56 10/29/18 16:4
400-161261-14	AY25261 FB-1	Water	10/22/18 16:40 10/29/18 16:4
400-161261-15	AY25262 MW-12 DUP	Water	10/23/18 12:53 10/29/18 16:4
400-161261-16	AY25371 MW-11	Water	10/24/18 11:28 10/29/18 16:4
400-161261-17	AY25372 MW-10	Water	10/24/18 13:05 10/29/18 16:4
400-161261-18	AY25373 FB-2	Water	10/24/18 11:50 10/29/18 16:4
400-161261-19	AY25374 EB-1	Water	10/24/18 13:40 10/29/18 16:4

А

_

6

8

9

10

11

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-1

Client Sample ID: AY25248 MW-5 Date Collected: 10/22/18 09:57 **Matrix: Water** Date Received: 10/29/18 16:45

Method: 9315 - F	Radium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.479		0.159	0.164	1.00	0.135	pCi/L	11/01/18 09:24	11/24/18 13:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.9		40 - 110					11/01/18 09:24	11/24/18 13:11	1

										•
	Radium-228 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.682		0.340	0.345	1.00	0.493	pCi/L	11/01/18 09:53	11/19/18 09:55	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.9		40 - 110					11/01/18 09:53	11/19/18 09:55	1
Y Carrier	77.8		40 - 110					11/01/18 09:53	11/19/18 09:55	1

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.16		0.375	0.382	5.00	0.493	pCi/L		11/26/18 15:24	1

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Client Sample ID: AY25249 MW-6

Date Collected: 10/22/18 10:56 Date Received: 10/29/18 16:45 Lab Sample ID: 400-161261-2

Matrix: Water

Method: 9315 - R	adium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.374		0.142	0.146	1.00	0.135	pCi/L	11/01/18 09:24	11/24/18 13:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.5		40 - 110					11/01/18 09:24	11/24/18 13:11	1

Ba Carrier	98.5		40 - 110					11/01/18 09:24	11/24/18 13:11	1
	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.693		0.389	0.394	1.00	0.584	pCi/L	11/01/18 09:53	11/19/18 09:56	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.5		40 - 110					11/01/18 09:53	11/19/18 09:56	1
Y Carrier	70.7		40 - 110					11/01/18 09:53	11/19/18 09:56	1

Method: Ra226_Ra	a228 - Com	nbined Ra	idium-226 a	ınd Radiui	m-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.07		0.414	0.420	5.00	0.584	pCi/L		11/26/18 15:24	1

2

6

8

9

10

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-3

Matrix: Water

CI	ient	Sampl	e ID	: A)	/25250	MW-7
----	------	-------	------	------	---------------	------

Date Collected: 10/22/18 12:17 Date Received: 10/29/18 16:45

Method: 9315 - F	Radium-226 (GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.303		0.124	0.127	1.00	0.112	pCi/L	11/01/18 09:24	11/24/18 13:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					11/01/18 09:24	11/24/18 13:11	1

Method: 9320 - F	·	,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.731		0.353	0.360	1.00	0.516	pCi/L	11/01/18 09:53	11/19/18 09:56	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					11/01/18 09:53	11/19/18 09:56	1
Y Carrier	75.5		40 - 110					11/01/18 09:53	11/19/18 09:56	1

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.03		0.374	0.382	5.00	0.516	pCi/L		11/26/18 15:24	1

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Client Sample ID: AY25251 MW-8

Date Collected: 10/22/18 13:50 Date Received: 10/29/18 16:45

Lab Sample ID: 400-161261-4

Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)	Count Uncert.	Total Uncert.					
Analyte Radium-226	Result 0.327	Qualifier	(2σ+/-) 0.144	(2σ+/-) 0.147	RL 1.00	 Unit pCi/L	Prepared 11/01/18 09:24	Analyzed 11/24/18 12:58	Dil Fac
Carrier Ba Carrier	%Yield 101	Qualifier	Limits 40 - 110				Prepared 11/01/18 09:24	Analyzed 11/24/18 12:58	Dil Fac

Ba Carrier	101		40 - 110					11/01/18 09:24	11/24/18 12:58	1
 Method: 9320 - F	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.				_		
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.421	U	0.286	0.288	1.00	0.439	pCi/L	11/01/18 09:53	11/19/18 09:56	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					11/01/18 09:53	11/19/18 09:56	1
Y Carrier	80.4		40 - 110					11/01/18 09:53	11/19/18 09:56	1

Method: Ra226_Ra	228 - Combine	d Radium-226 a	and Radiur	n-228					
_		Count	Total						
		Uncert.	Uncert.						
Analyte	Result Qualit	fier (2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.748	0.320	0.323	5.00	0.439	pCi/L		11/26/18 15:24	1

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-5

Client Sample ID: AY25252 MW-9 Date Collected: 10/22/18 15:10

Date Received: 10/29/18 16:45

Method: 9315 - F	Radium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.260		0.135	0.137	1.00	0.162	pCi/L	11/01/18 09:24	11/24/18 12:58	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					11/01/18 09:24	11/24/18 12:58	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0504	U	0.220	0.220	1.00	0.414	pCi/L	11/01/18 09:53	11/19/18 09:56	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					11/01/18 09:53	11/19/18 09:56	1
Y Carrier	82.2		40 - 110					11/01/18 09:53	11/19/18 09:56	1

Method: Ra226 Ra2	228 - Con	bined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.210	U	0.258	0.259	5.00	0.414	pCi/L	_	11/26/18 15:24	1

Matrix: Water

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

Client Sample ID: AY25253 MW-2

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-6

Date Collected: 10/22/18 17:08 Date Received: 10/29/18 16:45 Matrix: Water

Method: 9315 - R	Radium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte Radium-226	Result 0.396	Qualifier	(2σ+/-) 0.157	(2σ+/-) 0.161	RL 1.00	MDC 0.153	Unit pCi/L	Prepared 11/01/18 09:24	Analyzed 11/24/18 12:58	Dil Fac
Carrier Ba Carrier	% Yield 102	Qualifier	Limits 40 - 110					Prepared 11/01/18 09:24	Analyzed 11/24/18 12:58	Dil Fac

Method: 9320 -		,	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0448	U	0.235	0.235	1.00	0.435	pCi/L	11/01/18 09:53	11/19/18 09:56	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					11/01/18 09:53	11/19/18 09:56	1
Y Carrier	84.5		40 - 110					11/01/18 09:53	11/19/18 09:56	1

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.351	U	0.283	0.285	5.00	0.435	pCi/L	_	11/26/18 15:24	1

2

А

6

9

11

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-7

Client Sample ID: AY25254 MW-15 Date Collected: 10/23/18 09:11

Date Received: 10/29/18 16:45

Method: 9315 - R	adium-226 ((GFPC)								
	·		Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.542		0.192	0.198	1.00	0.185	pCi/L	11/01/18 09:24	11/24/18 12:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	88.5		40 - 110					11/01/18 09:24	11/24/18 12:59	1

Method: 9320 - I		0110)	Count	Total						
Amaluta	Danult	O	Uncert.	Uncert.	D.	MDC	1114	D	A a la a al	Dil Faa
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.287	Ū	0.340	0.341	1.00	0.562	pCi/L	11/01/18 09:53	11/19/18 09:56	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	88.5		40 - 110					11/01/18 09:53	11/19/18 09:56	1
Y Carrier	83.4		40 - 110					11/01/18 09:53	11/19/18 09:56	1

Method: Ra226_	Ra228 - Com	bined Ra	dium-226 a	nd Radiur	m-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.829		0.390	0.394	5.00	0.562	pCi/L		11/26/18 15:24	1

Matrix: Water

11/27/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-8

Client Sample ID: AY25255 MW-3 Date Collected: 10/23/18 10:50

Date Received: 10/29/18 16:45

Method: 9315 - R	adium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.542		0.169	0.176	1.00	0.130	pCi/L	11/01/18 09:24	11/24/18 12:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac

• • • • • • • • • • • • • • • • • • • •	,	~~~~~							,u., _ c u	
Ba Carrier	105		40 - 110					11/01/18 09:24	11/24/18 12:59	1
Method: 9320 -	Radium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.338	U	0.248	0.250	1.00	0.383	pCi/L	11/01/18 09:53	11/19/18 09:56	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					11/01/18 09:53	11/19/18 09:56	1
Y Carrier	81.9		40 - 110					11/01/18 09:53	11/19/18 09:56	1
<u></u>										

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.879		0.300	0.306	5.00	0.383	pCi/L		11/26/18 15:24	1

2

3

Matrix: Water

5

9

10

12

11/27/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Client Sample ID: AY25256 MW-14S Lab Sample I

Date Collected: 10/23/18 11:56 Date Received: 10/29/18 16:45 Lab Sample ID: 400-161261-9 Matrix: Water

Method: 9315 - R	adium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC		Prepared	Analyzed	Dil Fac
Radium-226	0.280		0.136	0.138	1.00	0.156	pCi/L	11/01/18 09:24	11/24/18 12:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	100		40 - 110					11/01/18 09:24	11/24/18 12:59	1

Method: 9320 -	tudium 220	(3.1.5)	Count	Total						
			Uncert.	Uncert.						
Analyte	Posult	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
										Dillac
Radium-228	-0.0326	U	0.269	0.269	1.00	0.492	pCi/L	11/01/18 09:53	11/19/18 09:56	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	100		40 - 110					11/01/18 09:53	11/19/18 09:56	1
Y Carrier	76.3		40 - 110					11/01/18 09:53	11/19/18 09:56	1

Method: Ra226_Ra	228 - Combined Ra	adium-226 a	nd Radiur	n-228					
_		Count	Total						
		Uncert.	Uncert.						
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.248 U	0.301	0.302	5.00	0.492	pCi/L		11/26/18 15:24	1

+ 228

2

4

6

8

46

11

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Client Sample ID: AY25257 MW-12

Date Collected: 10/23/18 12:53 Date Received: 10/29/18 16:45 Lab Sample ID: 400-161261-10

Matrix: Water

Method: 9315 - Ra	ndium-226 ((GFPC)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.226		0.120	0.122	1.00	0.138	pCi/L	11/01/18 09:24	11/24/18 12:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					11/01/18 09:24	11/24/18 12:59	1

Method: 9320 - Ra	adium-228 (GFPC)								
Aughdo	Decult	Overliff on	Count Uncert.	Total Uncert.	DI	мро	11-4	Danasas	Amahamad	DUE
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.497		0.308	0.312	1.00	0.465	pCi/L	11/01/18 09:53	11/19/18 09:56	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					11/01/18 09:53	11/19/18 09:56	1
Y Carrier	77.0		40 - 110					11/01/18 09:53	11/19/18 09:56	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.723		0.331	0.335	5.00	0.465	pCi/L		11/26/18 15:24	1

2

5

7

9

10

12

11/27/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-11

Client Sample ID: AY25258 MW-13

Date Collected: 10/23/18 13:52

Lab Sample ID

Date Received: 10/29/18 16:45

Method: 9315 - R	adium-226 ((GFPC)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.804		0.198	0.211	1.00	0.119	pCi/L	11/01/18 09:24	11/24/18 12:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					11/01/18 09:24	11/24/18 12:59	1

Method: 9320 - I		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.233	U	0.279	0.280	1.00	0.461	pCi/L	11/01/18 09:53	11/19/18 09:57	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					11/01/18 09:53	11/19/18 09:57	1
Y Carrier	80.0		40 - 110					11/01/18 09:53	11/19/18 09:57	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.04		0.342	0.351	5.00	0.461	pCi/L		11/26/18 15:24	1

2

4

Matrix: Water

6

8

9

11

12

1:

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Client Sample ID: AY25259 MW-1

Date Collected: 10/23/18 14:45 Date Received: 10/29/18 16:45 Lab Sample ID: 400-161261-12

Matrix: Water

Method: 9315 - F	Radium-226 ((GFPC)	0	Tatal						
Analysta	Dogult	Ovalifian	Count Uncert.	Total Uncert.	DI.	MDC	11-:4	Drawarad	Analysed	Dil Fac
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC		Prepared	Analyzed	Dil Fac
Radium-226	0.350		0.152	0.155	1.00	0.172	pCi/L	11/01/18 09:24	11/24/18 12:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					11/01/18 09:24	11/24/18 12:59	

- Da Carrier	103		40 - 110					11/01/10 09.24	11/24/10 12.59	ı
- Method: 9320 - F	Radium-228 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.790		0.312	0.321	1.00	0.422	pCi/L	11/01/18 09:53	11/19/18 09:57	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					11/01/18 09:53	11/19/18 09:57	1
Y Carrier	78.5		40 - 110					11/01/18 09:53	11/19/18 09:57	1
Y Carrier -	78.5		40 - 110					11/01/18 09:53	11/19/18 09:57	

Method: Ra226 Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.14		0.347	0.356	5.00	0.422	pCi/L		11/26/18 15:24	1

2

5

7

10

12

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-13

Client Sample ID: AY25260 MW-6 DUP

Date Collected: 10/22/18 10:56 Date Received: 10/29/18 16:45

Matrix: Water

Method: 9315 - R	adium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	1.01		0.235	0.252	1.00	0.175	pCi/L	11/01/18 09:24	11/24/18 12:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					11/01/18 09:24	11/24/18 12:59	1

Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.616		0.312	0.317	1.00	0.453		11/01/18 09:53		1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					11/01/18 09:53	11/19/18 09:58	1
Y Carrier	79.3		40 - 110					11/01/18 09:53	11/19/18 09:58	1

Method: Ra226 Ra	228 - Con	nbined Ra	dium-226 a	nd Radiun	n- 228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.63		0.391	0.405	5.00	0.453	pCi/L		11/26/18 15:24	1

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-14

Client Sample ID: AY25261 FB-1 Date Collected: 10/22/18 16:40 Date Received: 10/29/18 16:45

Matrix: Water

Method: 9315 - F	Radium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.217		0.112	0.113	1.00	0.126	pCi/L	11/01/18 09:24	11/24/18 15:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					11/01/18 09:24	11/24/18 15:03	1

11/01/18 09:24 11/24/18 15:03

	Radium-228 (GFPC)								
Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.414	U	0.332	0.334	1.00	0.526	pCi/L	11/01/18 09:53	11/19/18 09:58	1
Carrier Ba Carrier	% Yield	Qualifier	Limits 40 - 110					Prepared 11/01/18 09:53	Analyzed 11/19/18 09:58	Dil Fac
Y Carrier	75.5		40 - 110					11/01/18 09:53	11/19/18 09:58	1

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.630		0.350	0.353	5.00	0.526	pCi/L		11/26/18 15:24	1

11/27/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-15

Client Sample ID: AY25262 MW-12 DUP

Date Collected: 10/23/18 12:53 **Matrix: Water** Date Received: 10/29/18 16:45

Method: 9315 - F	Radium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.202		0.108	0.110	1.00	0.125	pCi/L	11/01/18 09:24	11/24/18 15:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					11/01/18 09:24	11/24/18 15:03	1

[_ Method: 9320 - Rad	ium-228 (GFPC)								
				Count Uncert.	Total Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
	Radium-228	0.290	U	0.320	0.321	1.00	0.525	pCi/L	11/01/18 09:53	11/19/18 09:58	1
	Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
	Ba Carrier	103		40 - 110					11/01/18 09:53	11/19/18 09:58	1
	Y Carrier	74.0		40 - 110					11/01/18 09:53	11/19/18 09:58	1

Method: Ra226_Ra2	228 - Com	nbined Ra	dium-226 a	nd Radiun	n- 228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.492	Ū	0.338	0.339	5.00	0.525	pCi/L		11/26/18 15:24	1

+ 228

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-16

Client Sample ID: AY25371 MW-11

Date Collected: 10/24/18 11:28

Date Received: 10/29/18 16:45

Lab Sample

Method: 9315 - R	adium-226 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.328		0.128	0.131	1.00	0.118	pCi/L	11/01/18 09:24	11/24/18 15:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					11/01/18 09:24	11/24/18 15:03	1

_Ba Gairrer	,,,		70 - 770					7 17 0 17 10 00:21	1 1/2 1/10 10:00	•
Method: 9320 - R	adium-228 (GFPC)								
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.571		0.315	0.319	1.00	0.466	pCi/L	11/01/18 09:53	11/19/18 09:58	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					11/01/18 09:53	11/19/18 09:58	1
Y Carrier	77.0		40 - 110					11/01/18 09:53	11/19/18 09:58	1

Method: Ra226 Ra	228 - Combine	d Radium-226 a	and Radiur	m-228					
_		Count	Total						
Analyte	Result Qualit	Uncert. ier (2σ+/-)	Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.898	0.340	0.345	5.00	0.466	pCi/L		11/26/18 15:24	1

1

Matrix: Water

5

-

9

11

12

11/27/2018

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-17

Client Sample ID: AY25372 MW-10

Date Collected: 10/24/18 13:05 Date Received: 10/29/18 16:45

Matrix: Water

Method: 9315 - Ra	ndium-226 (GFPC)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.445		0.151	0.156	1.00	0.133	pCi/L	11/01/18 09:24	11/24/18 15:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					11/01/18 09:24	11/24/18 15:03	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.953		0.429	0.438	1.00	0.634	pCi/L	11/01/18 09:53	11/19/18 10:01	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					11/01/18 09:53	11/19/18 10:01	1
Y Carrier	80.0		40 - 110					11/01/18 09:53	11/19/18 10:01	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.40		0.455	0.465	5.00	0.634	pCi/L		11/26/18 15:24	1

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Client Sample ID: AY25373 FB-2

Date Collected: 10/24/18 11:50 Date Received: 10/29/18 16:45

Lab Sample ID: 400-161261-18

Matrix: Water

Method: 9315 - R	adium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.233		0.113	0.115	1.00	0.120	pCi/L	11/01/18 09:24	11/24/18 15:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					11/01/18 09:24	11/24/18 15:03	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.849		0.379	0.387	1.00	0.550	pCi/L	11/01/18 09:53	11/19/18 10:01	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					11/01/18 09:53	11/19/18 10:01	1
Y Carrier	78.9		40 - 110					11/01/18 09:53	11/19/18 10:01	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.08		0.395	0.404	5.00	0.550	pCi/L		11/26/18 15:24	1

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-19

Client Sample ID: AY25374 EB-1

Date Collected: 10/24/18 13:40

Lab Sample ID

Date Received: 10/29/18 16:45

Method: 9315 - R	Radium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.326		0.127	0.130	1.00	0.111	pCi/L	11/01/18 09:24	11/24/18 15:04	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					11/01/18 09:24	11/24/18 15:04	1

		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.744		0.394	0.400	1.00	0.593	pCi/L	11/01/18 09:53	11/19/18 10:01	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					11/01/18 09:53	11/19/18 10:01	1
Y Carrier	77.0		40 - 110					11/01/18 09:53	11/19/18 10:01	1

Method: Ra226_Ra	a228 - Con	bined Ra	dium-226 a	nd Radiui	m-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.07		0.414	0.421	5.00	0.593	pCi/L		11/26/18 15:24	1

4

Matrix: Water

6

8

10

12

Definitions/Glossary

Client: Alabama Power General Test Laboratory

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quality Control

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Qualifiers

R	la	d
•		-

PQL

QC

RER

RPD TEF

TEQ

RL

Qualifier	Qualifier Description
U	Result is less than the sample detection limit.
G	The Sample MDC is greater than the requested RL.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
i i	Listed under the "D" column to designate that the result is reported on a dry weight basis
R	Percent Recovery
FL	Contains Free Liquid
IF	Contains No Free Liquid
:R	Duplicate Error Ratio (normalized absolute difference)
Fac	Dilution Factor
	Detection Limit (DoD/DOE)
RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
С	Decision Level Concentration (Radiochemistry)
	Estimated Detection Limit (Dioxin)
)	Limit of Detection (DoD/DOE)
Q	Limit of Quantitation (DoD/DOE)
PΑ	Minimum Detectable Activity (Radiochemistry)
C	Minimum Detectable Concentration (Radiochemistry)
DL	Method Detection Limit
-	Minimum Level (Dioxin)
	Not Calculated
)	Not Detected at the reporting limit (or MDL or EDL if shown)

SDG: Gaston Gypsum 1176

Client Sample ID: AY25248 MW-5

Client: Alabama Power General Test Laboratory

Date Collected: 10/22/18 09:57 Date Received: 10/29/18 16:45

Project/Site: CCR Plant Gaston

Lab Sample ID: 400-161261-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402361	11/24/18 13:11	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401643	11/19/18 09:55	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Client Sample ID: AY25249 MW-6 Lab Sample ID: 400-161261-2

Date Collected: 10/22/18 10:56

Date Received: 10/29/18 16:45

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402361	11/24/18 13:11	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401643	11/19/18 09:56	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Client Sample ID: AY25250 MW-7 Lab Sample ID: 400-161261-3

Date Collected: 10/22/18 12:17

Date Received: 10/29/18 16:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402361	11/24/18 13:11	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401643	11/19/18 09:56	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Client Sample ID: AY25251 MW-8 Lab Sample ID: 400-161261-4

Date Collected: 10/22/18 13:50

Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402365	11/24/18 12:58	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401643	11/19/18 09:56	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

TestAmerica Pensacola

Matrix: Water

Matrix: Water

Client Sample ID: AY25252 MW-9

Lab Sample ID: 400-161261-5

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 10/22/18 15:10 Matrix: Water Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402365	11/24/18 12:58	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401643	11/19/18 09:56	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Client Sample ID: AY25253 MW-2 Lab Sample ID: 400-161261-6

Date Collected: 10/22/18 17:08 Date Received: 10/29/18 16:45

Batch Batch Dilution Batch Prepared Prep Type Method Number or Analyzed Type Run Factor Analyst Lab Total/NA PrecSep-21 398705 11/01/18 09:24 JLC TAL SL Prep Total/NA Analysis 9315 1 402365 11/24/18 12:58 CDR TAL SL TAL SL Total/NA Prep PrecSep_0 398713 11/01/18 09:53 JLC Total/NA Analysis 9320 1 401643 11/19/18 09:56 CDR TAL SL TAL SL Total/NA Analysis Ra226_Ra228 1 402686 11/26/18 15:24 RTM

Client Sample ID: AY25254 MW-15 Lab Sample ID: 400-161261-7

Date Collected: 10/23/18 09:11 Date Received: 10/29/18 16:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402365	11/24/18 12:59	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401643	11/19/18 09:56	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Client Sample ID: AY25255 MW-3 Lab Sample ID: 400-161261-8

Date Collected: 10/23/18 10:50 Date Received: 10/29/18 16:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402365	11/24/18 12:59	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401643	11/19/18 09:56	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

TestAmerica Pensacola

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-9

Client Sample ID: AY25256 MW-14S Date Collected: 10/23/18 11:56 **Matrix: Water** Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402365	11/24/18 12:59	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401643	11/19/18 09:56	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Lab Sample ID: 400-161261-10 Client Sample ID: AY25257 MW-12

Date Collected: 10/23/18 12:53 **Matrix: Water**

Date Received: 10/29/18 16:45

Batch Batch Dilution Batch **Prepared** Prep Type Method Type Run Factor Number or Analyzed Analyst Lab Total/NA PrecSep-21 398705 11/01/18 09:24 JLC TAL SL Prep Total/NA Analysis 9315 1 402365 11/24/18 12:59 CDR TAL SL TAL SL Total/NA Prep PrecSep_0 398713 11/01/18 09:53 JLC Total/NA Analysis 9320 1 401643 11/19/18 09:56 CDR TAL SL TAL SL Total/NA Analysis Ra226_Ra228 1 402686 11/26/18 15:24 RTM

Client Sample ID: AY25258 MW-13 Lab Sample ID: 400-161261-11

Date Collected: 10/23/18 13:52 **Matrix: Water**

Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402365	11/24/18 12:59	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401596	11/19/18 09:57	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Client Sample ID: AY25259 MW-1 Lab Sample ID: 400-161261-12

Date Collected: 10/23/18 14:45 Date Received: 10/29/18 16:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402365	11/24/18 12:59	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401596	11/19/18 09:57	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

TestAmerica Pensacola

Matrix: Water

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Client Sample ID: AY25260 MW-6 DUP

Date Collected: 10/22/18 10:56 Date Received: 10/29/18 16:45 Lab Sample ID: 400-161261-13

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402365	11/24/18 12:59	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401596	11/19/18 09:58	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Client Sample ID: AY25261 FB-1 Lab Samp

Date Collected: 10/22/18 16:40

Date Received: 10/29/18 16:45

Lab Sample ID: 400-161261-14

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Method Туре Run Factor Number or Analyzed Analyst Lab Total/NA PrecSep-21 398705 11/01/18 09:24 JLC TAL SL Prep Total/NA Analysis 9315 1 402364 11/24/18 15:03 CDR TAL SL TAL SL Total/NA Prep PrecSep_0 398713 11/01/18 09:53 JLC Total/NA Analysis 9320 1 401596 11/19/18 09:58 CDR TAL SL Total/NA Analysis Ra226_Ra228 1 402686 11/26/18 15:24 RTM TAL SL

Client Sample ID: AY25262 MW-12 DUP

Date Collected: 10/23/18 12:53

Date Received: 10/29/18 16:45

Lab Sample ID: 400-161261-15

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402364	11/24/18 15:03	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401596	11/19/18 09:58	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Client Sample ID: AY25371 MW-11

Date Collected: 10/24/18 11:28

Date Received: 10/29/18 16:45

_ab	Samp	le	ID:	400- 1	612	261-1	6
				8.4		. 14/-4-	

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402364	11/24/18 15:03	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401596	11/19/18 09:58	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Lab Chronicle

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Lab Sample ID: 400-161261-17

Client Sample ID: AY25372 MW-10 Date Collected: 10/24/18 13:05 **Matrix: Water**

Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402364	11/24/18 15:03	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401654	11/19/18 10:01	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Client Sample ID: AY25373 FB-2 Lab Sample ID: 400-161261-18

Date Collected: 10/24/18 11:50 **Matrix: Water**

Date Received: 10/29/18 16:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402364	11/24/18 15:03	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401654	11/19/18 10:01	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Client Sample ID: AY25374 EB-1 Lab Sample ID: 400-161261-19

Date Collected: 10/24/18 13:40 **Matrix: Water**

Date Received: 10/29/18 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			398705	11/01/18 09:24	JLC	TAL SL
Total/NA	Analysis	9315		1	402364	11/24/18 15:04	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398713	11/01/18 09:53	JLC	TAL SL
Total/NA	Analysis	9320		1	401654	11/19/18 10:01	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:24	RTM	TAL SL

Laboratory References:

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Page 30 of 39

TestAmerica Pensacola

11/27/2018

QC Association Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Rad

Prep Batch: 398705

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-161261-1	AY25248 MW-5	Total/NA	Water	PrecSep-21	
400-161261-2	AY25249 MW-6	Total/NA	Water	PrecSep-21	
400-161261-3	AY25250 MW-7	Total/NA	Water	PrecSep-21	
400-161261-4	AY25251 MW-8	Total/NA	Water	PrecSep-21	
400-161261-5	AY25252 MW-9	Total/NA	Water	PrecSep-21	
400-161261-6	AY25253 MW-2	Total/NA	Water	PrecSep-21	
400-161261-7	AY25254 MW-15	Total/NA	Water	PrecSep-21	
400-161261-8	AY25255 MW-3	Total/NA	Water	PrecSep-21	
400-161261-9	AY25256 MW-14S	Total/NA	Water	PrecSep-21	
400-161261-10	AY25257 MW-12	Total/NA	Water	PrecSep-21	
400-161261-11	AY25258 MW-13	Total/NA	Water	PrecSep-21	
400-161261-12	AY25259 MW-1	Total/NA	Water	PrecSep-21	
400-161261-13	AY25260 MW-6 DUP	Total/NA	Water	PrecSep-21	
400-161261-14	AY25261 FB-1	Total/NA	Water	PrecSep-21	
400-161261-15	AY25262 MW-12 DUP	Total/NA	Water	PrecSep-21	
400-161261-16	AY25371 MW-11	Total/NA	Water	PrecSep-21	
400-161261-17	AY25372 MW-10	Total/NA	Water	PrecSep-21	
400-161261-18	AY25373 FB-2	Total/NA	Water	PrecSep-21	
400-161261-19	AY25374 EB-1	Total/NA	Water	PrecSep-21	
MB 160-398705/22-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-398705/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-161261-1 DU	AY25248 MW-5	Total/NA	Water	PrecSep-21	

Prep Batch: 398713

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-161261-1	AY25248 MW-5	Total/NA	Water	PrecSep_0	
400-161261-2	AY25249 MW-6	Total/NA	Water	PrecSep_0	
400-161261-3	AY25250 MW-7	Total/NA	Water	PrecSep_0	
400-161261-4	AY25251 MW-8	Total/NA	Water	PrecSep_0	
400-161261-5	AY25252 MW-9	Total/NA	Water	PrecSep_0	
400-161261-6	AY25253 MW-2	Total/NA	Water	PrecSep_0	
100-161261-7	AY25254 MW-15	Total/NA	Water	PrecSep_0	
100-161261-8	AY25255 MW-3	Total/NA	Water	PrecSep_0	
100-161261-9	AY25256 MW-14S	Total/NA	Water	PrecSep_0	
00-161261-10	AY25257 MW-12	Total/NA	Water	PrecSep_0	
100-161261-11	AY25258 MW-13	Total/NA	Water	PrecSep_0	
100-161261-12	AY25259 MW-1	Total/NA	Water	PrecSep_0	
00-161261-13	AY25260 MW-6 DUP	Total/NA	Water	PrecSep_0	
100-161261-14	AY25261 FB-1	Total/NA	Water	PrecSep_0	
00-161261-15	AY25262 MW-12 DUP	Total/NA	Water	PrecSep_0	
100-161261-16	AY25371 MW-11	Total/NA	Water	PrecSep_0	
100-161261-17	AY25372 MW-10	Total/NA	Water	PrecSep_0	
100-161261-18	AY25373 FB-2	Total/NA	Water	PrecSep_0	
100-161261-19	AY25374 EB-1	Total/NA	Water	PrecSep_0	
MB 160-398713/22-A	Method Blank	Total/NA	Water	PrecSep_0	
CS 160-398713/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-161261-1 DU	AY25248 MW-5	Total/NA	Water	PrecSep_0	

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

10

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-398705/22-A

Matrix: Water

Analysis Batch: 402364

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 398705

	MB	MB	Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Un	nit Prepared	Analyzed	Dil Fac
Radium-226	0.3398		0.128	0.132	1.00	0.115 pC	Ci/L 11/01/18 09:24	11/24/18 15:04	1

Total

Count

MB MB

%Yield Qualifier Carrier Limits Ba Carrier 105 40 - 110

11/01/18 09:24 11/24/18 15:04

Prepared

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 398705**

Dil Fac

Analyzed

Lab Sample ID: LCS 160-398705/1-A **Matrix: Water** Analysis Batch: 402361

Total Spike LCS LCS %Rec. Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL**MDC** Unit %Rec Limits Radium-226 15.1 14.94 1.56 1.00 0.122 pCi/L 99 68 - 137

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 100 40 - 110

Lab Sample ID: 400-161261-1 DU

Matrix: Water

Analysis Batch: 402361

Client Sample ID: AY25248 MW-5

Prep Type: Total/NA Prep Batch: 398705

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-226 0.479 0.4490 0.157 1.00 0.138 pCi/L 0.09

DU DU Carrier %Yield Qualifier Limits Ba Carrier 103 40 - 110

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-398713/22-A **Matrix: Water**

Analysis Batch: 401582

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 398713** Total Count

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Dil Fac Analyzed Radium-228 0.4010 U G 0.631 0.632 1.00 1.06 pCi/L 11/01/18 09:53 11/19/18 14:41

MB MB Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac 40 - 110 11/01/18 09:53 11/19/18 14:41 Ba Carrier 105 Y Carrier 77.0 40 - 110 11/01/18 09:53 11/19/18 14:41

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-398713/1-A **Matrix: Water**

Analysis Batch: 401643

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 398713

Total Spike LCS LCS Uncert. Added **Analyte** Result Qual $(2\sigma + / -)$ RL **MDC** Unit

Radium-228 12.3 11.99 1.39 1.00

%Rec. %Rec Limits 0.488 pCi/L 98 56 - 140

LCS LCS Carrier %Yield Qualifier I imits Ba Carrier 100 40 - 110 Y Carrier 81.1 40 - 110

Lab Sample ID: 400-161261-1 DU

Matrix: Water

Analysis Batch: 401643

Client Sample ID: AY25248 MW-5

Prep Type: Total/NA

10

Prep Batch: 398713

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-228 0.682 0.3005 U 0.278 1.00 0.444 pCi/L 0.61

DU DU Carrier %Yield Qualifier Limits Ba Carrier 103 40 - 110 Y Carrier 80.4 40 - 110

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Lab Sample ID: 400-161261-1 DU

Matrix: Water

Analysis Batch: 402686

Client Sample ID: AY25248 MW-5

Prep Type: Total/NA

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL MDC Unit Limit RER Combined 1.16 0.7495 0.319 5.00 0.444 pCi/L 0.59

Radium 226 + 228

TestAmerica Pensacola

Chain of Custody Record

TestAmerica

TestAmerica Pensacola3355 McLemore Drive
Pensacola, FL 32514
Phone (850) 474-1001 Fax (850) 478-2671

Authorition Cooperate Comparison Com	Frione (650) 474-1001 Fax (650) 478-2671	Sampler			Lab PM	1	١	T	400	400-161261 COC		racking No(s):		COC No:		
Committee Comm	Client Information	Anthony Goggins			Whitm	ire, Che	yenne	R						400-56525-7	24537.1	
Companies Comp	Client Contact. Laura Midkiff	Phone:			E-Mail: cheye	ine.whi	tmire	Diesta	meric	ainc.com				Page: Page 1 of 2		
Control Cont	Company. Alahama Power General Test I aboratory								An	lysis Reque	sted			Job #.		
The properties Control	Address: 744 Community 244 Com	Due Date Requeste	d:				-	L				F	100	Preservation	3	
	City	TAT Requested (da			T	100								A-HCL B-NaOH		exane
Control Cont	Catera State, Zip:		Z Z	euti		100	_		Dd					D - Nitric Acid		0 - Asna02 P - Na204S
Comparison Com	AL, 35040	*00			I		_		10_E					F - MeOH		a2S203
Sample Date	Priorie: 205-664-6197(Tel)	<u>.</u>					_		822a9					G - Amchlor H - Ascorbic A	D	2SO4 SP Dodecahydrate
Sumple Date	Email: bmidkif@southernco.com	# OM					-	_	19228				819	1-Ice J-DI Water		ICAA
Sample Date Sample Date Sample Sample Sample Sample Date Sample Sample Date Sample Sample Sample Sample Date Sample Sam	Project Name: CCR	Project #: 40007143					-		228, R				ntain		Z-0	oh 4-5 ther (specify)
Sample Date	Site: Gaston Gypsum 1176	SSOW#:							20_Ra				oo to			
1002018 1002019 1002	Converts to latential and par	Sample Date	Sample	Sample Type (C=comp,		MS/M moha			315_Ra226, 93				otal Number		1	
1072/18 09:57 G Water 1072/18 10:56 G Water 1072/18 10:56 G Water 1072/18 10:50 G Water 1072/18 10:20 G Water 1072	Sample Identification	Sample Date	X	Preser		Ī	-	+=	6 0				LX			dions/note.
10022/18 10.56 G Water 10022/18 12.17 G Water 10022/18 13.50 G Water 10022/18 15.10 G Water 10022/18 15.10 G Water 10022/18 15.10 G Water 10022/18 10.50 G Water	AY25248	10/22/18	75:60	9	Water		-	-	-				4	_		
1072/18 12:17 G Water 1072/18 13:50 G Water 1072/18 15:10 G Water 1072/18 15:10 G Water 1072/18 15:10 G Water 1072/18 10:50 G Water 1072	AY25249	10/22/18	10:56	9	Water		-	-	-				2			
10/22/18 15:50 G Water 10/22/18 15:10 G Water 10/22/18 15:10 G Water 10/22/18 17:08 G Water 10/23/18 10:50 G Water 10/23/18 11:55 G Water 10/23/18 12:53 G Water 10/23/18 13:52 G Water 10/23/18 13:52 G Water 10/23/18 10:56 G Water 10/23/18 10/23	AY25250	10/22/18	12:17	9	Water			-	-				2			
10/22/18 15:10 G Water 10/22/18 17:08 G Water 10/23/18 17:08 G Water 10/23/18 10:50 G Water 10/23/18	AY25251	10/22/18	13:50	9	Water		-	-	_				2			
10723/18 17:08 G Water 10723/18 10:50 G Water	AY25252	10/22/18	15:10	9	Water		-						2			
10/23/18 09:11 G Water 10/23/18 11:56 G Water 10/23/18 11:56 G Water 10/23/18 11:56 G Water 10/23/18 12:53 G Water 10/23/18 13:52 G Water 10/22/18 10:56 G Water	AY25253	10/22/18	17:08	o	Water		-		_							
10/23/18 10:50 G Water 10/23/18 11:56 G Water 10/23/18 11:56 G Water 10/23/18 12:53 G Water 10/23/18 12:53 G Water 10/22/18 10:56 G Water	AY25254	10/23/18	09:11	9	Water		_	_	-				CA			
10/23/18 11:55 G Water 10/23/18 12:53 G Water 10/23/18 12:53 G Water 10/23/18 13:52 G Water 10/23/18 13:52 G Water 10/22/18 10:56 G Water 10/22/18 16:40 G Water	AY25255	10/23/18	10:50	9	Water		-	-	_							
10/23/18 12:53 G Water 10/23/18 13:52 G Water 10/23/18 13:52 G Water 10/23/18 13:52 G Water 10/23/18 14:45 G Water 10/22/18 10:56 G Water 10/22/18 16:40 G Water 10/22/18 12:53 G Water	AY25256	10/23/18	11:56	9	Water		-	-	-							
10/23/18 13:52 G Water 10/23/18 14:45 G Water 10/23/18 14:45 G Water 10/22/18 10:56 G Water	AY25257	10/23/18	12:53	9	Water			_	_							
10/22/18 14.45 G Water 10/22/18 10.56 G Water 10/22/18 16.40 G Water 10/22/18 16.40 G Water 10/22/18 16.40 G Water 10/22/18 12.53 G Water 10/23/18 12.53 G Water	AY25258	10/23/18	13:52	9	Water		_	_	_							
10/22/18 10:56 G Water 10/22/18 16:40 G Water 10/22/18 16:40 G Water 10/22/18 12:53 G Water 10/22/18 G Water 10/22/1	AY25259	10/23/18	14:45	9	Water		-	_	_							
10/22/18 16:40 G Water 10/23/18 12:53 G Water 10/23/18 G Water 10/23/1	AY25260	10/22/18	10:56	9	Water			-							(Duplicate	
12:53 G Water 12:54 12:55 G Water 12:54 12:55 G Water 12:55 G Wate	AY25261	10/22/18	16:40	9	Water									_	Blank)	
ant Deison B Unknown Radiological Date: Date: Trace	AY25262	10/23/18	12:53	9	Water				\vdash					_	JP (Duplical	(e)
ant Doison B Unknown Radiological Date: D								+								
Date: Company Date: Tre DateTime: 10242018 12:00 DateTime: Company DateTime: Company						Sa	nple [- odsic	sal ()	fee may be a:	ssessed	if samp	les are ret	ained longer	r than 1 m	onth)
Date: Time: Time: Time: Time: Method of Shipment	ant			Kadiologica	1	Sp	ecial Ir	turn I	o Cile	C Requiremen	sposal E	y Lab	A	chive For		Months
Date/Time, 10/24/2016 12:00 Company Received of Date/Time Date/Time Date/Time Company Received by Coustody Seal No.: Conjugative Conju	Empty Kit Relinquished by:		Date:			Time:						od of Shipr	ient			
Date/Time: Company Received by Date/Time: Company Received by Date/Time: Date	Reinquished by: Laura Midkiff	Date/Time: 10/24	2018 12:00		Company		Receiv	3/		1		Date	1291	11 81	27/20	Company
Date/Time: Company Received by: Date/Time: D	Relinquished by:	Date/Time:			Company		Receiv	A pa		1		Oate	-	1		Company
Custody Seal No.:	Relinquished by:	Date/Time:			Company		Receiv	ed by:				Date	1		0	Company
							Cooler	Temp	erature(or and Other Re	marks:	17	2/2	00	100	110
	D 145 L 110							1	1	1	1			1	110	1

Chain of Custody Record

1 es.America Ferisacola 3355 McLemore Drive Persacola, Fl. 32514 Phone (850) 474-1001 Fax (850) 478-2671		Shain	of Cus	Chain of Custody Record	cord	_								THE LEAD	IESTAMENICO THE LEADER IN ENVIRONMENTAL TESTING	FITCO TESTING
	Sampler: Nick Pitts			Lab PN Whitn	nire, Ch	eyenne	A.				Carrier Tracking No(s)	No(s):		COC No:	COC No: 400-56525-24537.1	
	Phone:			E-Mail: cheye	anne.wt	itmire(@testa	americ	E-Mail: cheyenne.whitmire@testamericainc.com	-				Page: Page 2 of 2	f2	
er General Test Laboratory								An	Analysis Requested	Seque	sted			Job #:		
Address: 744 County Rd 87 GSC #8	Due Date Requested									-				Preserva A-HCL		xane
	TAT Requested (days):	s): Routine	tine							_		_		B - NaOH C - Zn Ace		ne NaO2
						_		ОЕРС	_	-				D - Nifric Acid E - NaHSO4		P - Na204S Q - Na2SO3
97(Tel)	PO#.				(on	_	_	_822a						G - Amchi H - Ascort		SO4 SO4 P Dodecahydrate
Email: bmidkif@southemco.com	WO#							#226R			_			I-lce J-DIWat		etone
Project Name. CCR	Project #. 40007143						_	228, R						ntain L-EDA		n 4-5 ler (specify)
	SSOW#:							20_Ra				_		of co		
Commels Industification	o de l'arme		Sample Type (C=comp,		ield Filtered erform MS/M	M 4500 CLE	2W 4200 204 E	315_Ra226, 93						Total Number	Cnerial Instructions Mote	ione Mote.
Sample Identification	Sample Date		Preser	Preservation Code:		-	-	6 0							Jecial Illatine	TOTIS/NOTE.
AY25371	10/24/18	11:28	O	Water	\vdash	V	×	-						2 MW-11		
AY25372	10/24/18	13:05	o	Water		×	×	×						2 MW-10		
AY25373	10/24/18	11:50	9	Water		×	×	×						2 FB-2 (Fi	FB-2 (Field Blank)	
AY25374	10/24/18	13:40	9	Water		×	×	×						2 EB-1 (E	EB-1 (Equipment Blank)	
							-									
							H									
							Н									
							+	-								
					\exists		-	-				4	-			
					+		+	+	+		1	7	-			
					\pm	1	+	+	1	1	1	+	+			
					+	I	+	+	1	1	#	-	+			
					\vdash	\Box	+	1	\Box		H	H	H			
					\pm		+	+			+	-	+			
ant D	Poison B Unknown		☐ Radiological		S C	Re	Dispo	o Clie	Sample Disposal (A fee may be ass Return To Client Disp	y be as	assessed if san Disposal By Lab	if sample	as are r	etained lon Archive For	ger than 1 m	onth) Months
Deliverable Kequested: I, II, III, IV, Other (specify)					<u> </u>	Decial II	nstruc	TIOUS/	nc kedn	irement						
Empty Kit Relinquished by: Relinquished by Laura Midkiff	Date/Time: 10/25/2018 12:00	Date:		Company	I ime:	_ =	Received by	1	1	1	Metho	Method of Shipment	11	+	11 3 Mar Con	Company
Reinquished by	Date/Time:			APC		Recei	Received by:	1				Date	Date/Fimbo	2	165 Company	The Man
Relinquished by:	Date/Time:		l	Company		Recei	Received by.	1	(1		DateTime	Ime.	211	2017	Company
Custody Saale Infact Custody Saal No.					1	along	Temp	er der de	Cooler Temperaturales Or and Other Demarks	other De	. adam	4	1			
Δ Yes Δ No							1	9	2 10	One of	leins.					

Login Sample Receipt Checklist

Client: Alabama Power General Test Laboratory

Job Number: 400-161261-2 SDG Number: Gaston Gypsum 1176

List Source: TestAmerica Pensacola

Login Number: 161261

List Number: 1

Creator: Perez, Trina M

Creator: Perez, Trina M		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.0°C, 21.7°C, 20.6°C IR-7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

J

9

4 4

12

13

Client: Alabama Power General Test Laboratory

Job Number: 400-161261-2 SDG Number: Gaston Gypsum 1176

List Source: TestAmerica St. Louis
List Number: 2
List Creation: 10/31/18 01:07 PM

Creator: Hellm, Michael

Creator. Heilin, Michael		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	18.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-19
ANAB	ISO/IEC 17025		L2471	02-22-20
Arizona	State Program	9	AZ0710	01-12-19
Arkansas DEQ	State Program	6	88-0689	09-01-19
California	State Program	9	2510	06-30-19
Florida	NELAP	4	E81010	06-30-19
Georgia	State Program	4	E81010 (FL)	06-30-19
Illinois	NELAP	5	200041	10-09-19
lowa	State Program	7	367	08-01-20
Kansas	NELAP	7	E-10253	10-31-18 *
Kentucky (UST)	State Program	4	53	06-30-19
Kentucky (WW)	State Program	4	98030	12-31-18
Louisiana	NELAP	6	30976	06-30-19
Louisiana (DW)	NELAP	6	LA180023	12-31-18
Maryland	State Program	3	233	09-30-19
Massachusetts	State Program	1	M-FL094	06-30-19
Michigan	State Program	5	9912	06-30-19
New Jersey	NELAP	2	FL006	06-30-19
North Carolina (WW/SW)	State Program	4	314	12-31-18
Oklahoma	State Program	6	9810	08-31-19
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-18
South Carolina	State Program	4	96026	06-30-19
Tennessee	State Program	4	TN02907	06-30-19
Texas	NELAP	6	T104704286-18-15	09-30-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-18-00148	05-17-21
Washington	State Program	10	C915	05-15-19
West Virginia DEP	State Program	3	136	06-30-19

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	MO00054	06-30-19
ANAB	DoD ELAP		L2305	04-06-19
Arizona	State Program	9	AZ0813	12-08-18 *
California	State Program	9	2886	06-30-19
Connecticut	State Program	1	PH-0241	03-31-19
Florida	NELAP	4	E87689	06-30-19
Illinois	NELAP	5	200023	11-30-18 *
lowa	State Program	7	373	12-01-18 *
Kansas	NELAP	7	E-10236	10-31-18 *
Kentucky (DW)	State Program	4	90125	12-31-18
Louisiana	NELAP	6	04080	06-30-19
Louisiana (DW)	NELAP	6	LA180017	12-31-18 *
Maryland	State Program	3	310	09-30-19
Michigan	State Program	5	9005	06-30-18 *
Missouri	State Program	7	780	06-30-19
Nevada	State Program	9	MO000542018-1	07-31-19

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Pensacola

2

5

9

10

12

13

Accreditation/Certification Summary

Client: Alabama Power General Test Laboratory

Project/Site: CCR Plant Gaston

TestAmerica Job ID: 400-161261-2 SDG: Gaston Gypsum 1176

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New Jersey	NELAP	2	MO002	06-30-19
New York	NELAP	2	11616	03-31-19
North Dakota	State Program	8	R207	06-30-19
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-19
Pennsylvania	NELAP	3	68-00540	02-28-19
South Carolina	State Program	4	85002001	06-30-19
Texas	NELAP	6	T104704193-18-12	07-31-19
US Fish & Wildlife	Federal		058448	07-31-19
USDA	Federal		P330-17-0028	02-02-20
Utah	NELAP	8	MO000542018-10	07-31-19
Virginia	NELAP	3	460230	06-14-19
Washington	State Program	10	C592	08-30-19
West Virginia DEP	State Program	3	381	08-31-19

6

8

9

10

46

13

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-1	10/23/2018 14:16	332.8	uS/cm	Conductivity
GN-GSA-MW-1	10/23/2018 14:16	33.9	ft	Depth to Water Detail
GN-GSA-MW-1	10/23/2018 14:16	0.35	mg/L	DO
GN-GSA-MW-1	10/23/2018 14:16	-158.6	mv	Oxidation Reduction Potention
GN-GSA-MW-1	10/23/2018 14:16	7.61	рН	рН
GN-GSA-MW-1	10/23/2018 14:16	20.67	С	Temperature
GN-GSA-MW-1	10/23/2018 14:16	2.32	NTU	Turbidity
GN-GSA-MW-1	10/23/2018 14:21	330.7	uS/cm	Conductivity
GN-GSA-MW-1	10/23/2018 14:21	34.19	ft	Depth to Water Detail
GN-GSA-MW-1	10/23/2018 14:21	0.15	mg/L	DO
GN-GSA-MW-1	10/23/2018 14:21	-173.4	mv	Oxidation Reduction Potention
GN-GSA-MW-1	10/23/2018 14:21	7.6	pН	рН
GN-GSA-MW-1	10/23/2018 14:21	20.32	С	Temperature
GN-GSA-MW-1	10/23/2018 14:21	1.39	NTU	Turbidity
GN-GSA-MW-1	10/23/2018 14:26	330.8	uS/cm	Conductivity
GN-GSA-MW-1	10/23/2018 14:26	34.37	ft	Depth to Water Detail
GN-GSA-MW-1	10/23/2018 14:26	0.12	mg/L	DO
GN-GSA-MW-1	10/23/2018 14:26	-177.9	mv	Oxidation Reduction Potention
GN-GSA-MW-1	10/23/2018 14:26	7.62	pН	рН
GN-GSA-MW-1	10/23/2018 14:26	20.25	С	Temperature
GN-GSA-MW-1	10/23/2018 14:26	0.94	NTU	Turbidity
GN-GSA-MW-1	10/23/2018 14:31	333.7	uS/cm	Conductivity
GN-GSA-MW-1	10/23/2018 14:31	34.55	ft	Depth to Water Detail
GN-GSA-MW-1	10/23/2018 14:31	0.1	mg/L	DO
GN-GSA-MW-1	10/23/2018 14:31	-175.4	mv	Oxidation Reduction Potention
GN-GSA-MW-1	10/23/2018 14:31	7.64	рН	рН
GN-GSA-MW-1	10/23/2018 14:31	20.22	С	Temperature
GN-GSA-MW-1	10/23/2018 14:31	1.08	NTU	Turbidity
GN-GSA-MW-1	10/23/2018 14:36	336.4	uS/cm	Conductivity
GN-GSA-MW-1	10/23/2018 14:36	34.68	ft	Depth to Water Detail
GN-GSA-MW-1	10/23/2018 14:36		mg/L	DO
GN-GSA-MW-1	10/23/2018 14:36	-170.8	mv	Oxidation Reduction Potention
GN-GSA-MW-1	10/23/2018 14:36	7.65	pН	рН
GN-GSA-MW-1	10/23/2018 14:36	20.17	С	Temperature
GN-GSA-MW-1	10/23/2018 14:36	1.45	NTU	Turbidity
GN-GSA-MW-1	10/23/2018 14:42	338.3	uS/cm	Conductivity
GN-GSA-MW-1	10/23/2018 14:42	34.77	ft	Depth to Water Detail
GN-GSA-MW-1	10/23/2018 14:42	0.09	mg/L	DO
GN-GSA-MW-1	10/23/2018 14:42	-166	mv	Oxidation Reduction Potention
GN-GSA-MW-1	10/23/2018 14:42	7.65	рН	рН
GN-GSA-MW-1	10/23/2018 14:42	20.08	С	Temperature
GN-GSA-MW-1	10/23/2018 14:42	1.28	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-2	10/22/2018 16:37	564.4	uS/cm	Conductivity
GN-GSA-MW-2	10/22/2018 16:37	24.62	ft	Depth to Water Detail
GN-GSA-MW-2	10/22/2018 16:37	1.2	mg/L	DO
GN-GSA-MW-2	10/22/2018 16:37	-107.5	mv	Oxidation Reduction Potention
GN-GSA-MW-2	10/22/2018 16:37	7.07	рН	рН
GN-GSA-MW-2	10/22/2018 16:37	21.2	С	Temperature
GN-GSA-MW-2	10/22/2018 16:37	1.44	NTU	Turbidity
GN-GSA-MW-2	10/22/2018 16:42	559.6	uS/cm	Conductivity
GN-GSA-MW-2	10/22/2018 16:42	24.84	ft	Depth to Water Detail
GN-GSA-MW-2	10/22/2018 16:42	1.71	mg/L	DO
GN-GSA-MW-2	10/22/2018 16:42	-72	mv	Oxidation Reduction Potention
GN-GSA-MW-2	10/22/2018 16:42	7.06	рН	рН
GN-GSA-MW-2	10/22/2018 16:42	20.9	С	Temperature
GN-GSA-MW-2	10/22/2018 16:42	1.2	NTU	Turbidity
GN-GSA-MW-2	10/22/2018 16:47	555.2	uS/cm	Conductivity
GN-GSA-MW-2	10/22/2018 16:47	24.89	ft	Depth to Water Detail
GN-GSA-MW-2	10/22/2018 16:47	1.94	mg/L	DO
GN-GSA-MW-2	10/22/2018 16:47		mv	Oxidation Reduction Potention
GN-GSA-MW-2	10/22/2018 16:47	7.06	рН	рН
GN-GSA-MW-2	10/22/2018 16:47	20.73	С	Temperature
GN-GSA-MW-2	10/22/2018 16:47	1.11	NTU	Turbidity
GN-GSA-MW-2	10/22/2018 16:52	556.7	uS/cm	Conductivity
GN-GSA-MW-2	10/22/2018 16:52	25.12	ft	Depth to Water Detail
GN-GSA-MW-2	10/22/2018 16:52	1.93	mg/L	DO
GN-GSA-MW-2	10/22/2018 16:52	-27.4	mv	Oxidation Reduction Potention
GN-GSA-MW-2	10/22/2018 16:52	7.06	рН	рН
GN-GSA-MW-2	10/22/2018 16:52	20.54	С	Temperature
GN-GSA-MW-2	10/22/2018 16:52	1.19	NTU	Turbidity
GN-GSA-MW-2	10/22/2018 16:57	559.2	uS/cm	Conductivity
GN-GSA-MW-2	10/22/2018 16:57	25.23	ft	Depth to Water Detail
GN-GSA-MW-2	10/22/2018 16:57	1.96	mg/L	DO
GN-GSA-MW-2	10/22/2018 16:57	-17.4	mv	Oxidation Reduction Potention
GN-GSA-MW-2	10/22/2018 16:57	7.06	рН	рН
GN-GSA-MW-2	10/22/2018 16:57	20.42	С	Temperature
GN-GSA-MW-2	10/22/2018 16:57	1.14	NTU	Turbidity
GN-GSA-MW-2	10/22/2018 17:03	558.7	uS/cm	Conductivity
GN-GSA-MW-2	10/22/2018 17:03	25.28	ft	Depth to Water Detail
GN-GSA-MW-2	10/22/2018 17:03	1.98	mg/L	DO
GN-GSA-MW-2	10/22/2018 17:03	-9.3	mv	Oxidation Reduction Potention
GN-GSA-MW-2	10/22/2018 17:03	7.06	рН	рН
GN-GSA-MW-2	10/22/2018 17:03	20.19	С	Temperature
GN-GSA-MW-2	10/22/2018 17:03	0.95	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-3	10/23/2018 10:02	388.7	uS/cm	Conductivity
GN-GSA-MW-3	10/23/2018 10:02	26.47	ft	Depth to Water Detail
GN-GSA-MW-3	10/23/2018 10:02	1.56	mg/L	DO
GN-GSA-MW-3	10/23/2018 10:02	72.2	mv	Oxidation Reduction Potention
GN-GSA-MW-3	10/23/2018 10:02	6.54	рН	рН
GN-GSA-MW-3	10/23/2018 10:02	20.13	С	Temperature
GN-GSA-MW-3	10/23/2018 10:02	0.82	NTU	Turbidity
GN-GSA-MW-3	10/23/2018 10:07	372.1	uS/cm	Conductivity
GN-GSA-MW-3	10/23/2018 10:07	27.1	ft	Depth to Water Detail
GN-GSA-MW-3	10/23/2018 10:07	0.97	mg/L	DO
GN-GSA-MW-3	10/23/2018 10:07	73.7	mv	Oxidation Reduction Potention
GN-GSA-MW-3	10/23/2018 10:07	6.57	рН	рН
GN-GSA-MW-3	10/23/2018 10:07	19.86	С	Temperature
GN-GSA-MW-3	10/23/2018 10:07	1.12	NTU	Turbidity
GN-GSA-MW-3	10/23/2018 10:12	369.6	uS/cm	Conductivity
GN-GSA-MW-3	10/23/2018 10:12	27.41	ft	Depth to Water Detail
GN-GSA-MW-3	10/23/2018 10:12	0.89	mg/L	DO
GN-GSA-MW-3	10/23/2018 10:12	72.8	mv	Oxidation Reduction Potention
GN-GSA-MW-3	10/23/2018 10:12	6.58	рН	рН
GN-GSA-MW-3	10/23/2018 10:12	19.72	С	Temperature
GN-GSA-MW-3	10/23/2018 10:12	1	NTU	Turbidity
GN-GSA-MW-3	10/23/2018 10:17	364.8	uS/cm	Conductivity
GN-GSA-MW-3	10/23/2018 10:17	27.73	ft	Depth to Water Detail
GN-GSA-MW-3	10/23/2018 10:17	0.85	mg/L	DO
GN-GSA-MW-3	10/23/2018 10:17	72.5	mv	Oxidation Reduction Potention
GN-GSA-MW-3	10/23/2018 10:17	6.59	рН	рН
GN-GSA-MW-3	10/23/2018 10:17	19.61	С	Temperature
GN-GSA-MW-3	10/23/2018 10:17	1.25	NTU	Turbidity
GN-GSA-MW-3	10/23/2018 10:22	360.3	uS/cm	Conductivity
GN-GSA-MW-3	10/23/2018 10:22	27.96	ft	Depth to Water Detail
GN-GSA-MW-3	10/23/2018 10:22	0.85	mg/L	DO
GN-GSA-MW-3	10/23/2018 10:22	72.4	mv	Oxidation Reduction Potention
GN-GSA-MW-3	10/23/2018 10:22	6.59	рН	рН
GN-GSA-MW-3	10/23/2018 10:22	19.72	С	Temperature
GN-GSA-MW-3	10/23/2018 10:22	1.23	NTU	Turbidity
GN-GSA-MW-3	10/23/2018 10:27	355.6	uS/cm	Conductivity
GN-GSA-MW-3	10/23/2018 10:27	28.22	ft	Depth to Water Detail
GN-GSA-MW-3	10/23/2018 10:27	0.9	mg/L	DO
GN-GSA-MW-3	10/23/2018 10:27	72.4	mv	Oxidation Reduction Potention
GN-GSA-MW-3	10/23/2018 10:27	6.59	рН	рН
GN-GSA-MW-3	10/23/2018 10:27	19.88	C	Temperature
GN-GSA-MW-3	10/23/2018 10:27	1.45	NTU	Turbidity
GN-GSA-MW-3	10/23/2018 10:32	353.8	uS/cm	Conductivity
GN-GSA-MW-3	10/23/2018 10:32	28.3	ft	Depth to Water Detail

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-3	10/23/2018 10:32	0.92	mg/L	DO
GN-GSA-MW-3	10/23/2018 10:32	72.5	mv	Oxidation Reduction Potention
GN-GSA-MW-3	10/23/2018 10:32	6.58	рН	рН
GN-GSA-MW-3	10/23/2018 10:32	19.94	С	Temperature
GN-GSA-MW-3	10/23/2018 10:32	1.42	NTU	Turbidity
GN-GSA-MW-3	10/23/2018 10:37	355.5	uS/cm	Conductivity
GN-GSA-MW-3	10/23/2018 10:37	28.51	ft	Depth to Water Detail
GN-GSA-MW-3	10/23/2018 10:37	0.91	mg/L	DO
GN-GSA-MW-3	10/23/2018 10:37	72.3	mv	Oxidation Reduction Potention
GN-GSA-MW-3	10/23/2018 10:37	6.58	рН	рН
GN-GSA-MW-3	10/23/2018 10:37	20.17	С	Temperature
GN-GSA-MW-3	10/23/2018 10:37	2.01	NTU	Turbidity
GN-GSA-MW-3	10/23/2018 10:42	357.4	uS/cm	Conductivity
GN-GSA-MW-3	10/23/2018 10:42	28.59	ft	Depth to Water Detail
GN-GSA-MW-3	10/23/2018 10:42	0.91	mg/L	DO
GN-GSA-MW-3	10/23/2018 10:42	71.8	mv	Oxidation Reduction Potention
GN-GSA-MW-3	10/23/2018 10:42	6.59	рН	рН
GN-GSA-MW-3	10/23/2018 10:42	20.15	С	Temperature
GN-GSA-MW-3	10/23/2018 10:42	1.86	NTU	Turbidity
GN-GSA-MW-3	10/23/2018 10:48	359.9	uS/cm	Conductivity
GN-GSA-MW-3	10/23/2018 10:48	28.69	ft	Depth to Water Detail
GN-GSA-MW-3	10/23/2018 10:48	0.89	mg/L	DO
GN-GSA-MW-3	10/23/2018 10:48	71.3	mv	Oxidation Reduction Potention
GN-GSA-MW-3	10/23/2018 10:48	6.59	рН	рН
GN-GSA-MW-3	10/23/2018 10:48	20.3	С	Temperature
GN-GSA-MW-3	10/23/2018 10:48	1.46	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-5	10/22/2018 9:30	670.7	uS/cm	Conductivity
GN-GSA-MW-5	10/22/2018 9:30	33.55	ft	Depth to Water Detail
GN-GSA-MW-5	10/22/2018 9:30	0.75	mg/L	DO
GN-GSA-MW-5	10/22/2018 9:30	-94.1	mv	Oxidation Reduction Potention
GN-GSA-MW-5	10/22/2018 9:30	6.53	рН	рН
GN-GSA-MW-5	10/22/2018 9:30	19.01	С	Temperature
GN-GSA-MW-5	10/22/2018 9:30	3.45	NTU	Turbidity
GN-GSA-MW-5	10/22/2018 9:35	0	uS/cm	Conductivity
GN-GSA-MW-5	10/22/2018 9:35	33.55	ft	Depth to Water Detail
GN-GSA-MW-5	10/22/2018 9:35	9.04	mg/L	DO
GN-GSA-MW-5	10/22/2018 9:35	4	mv	Oxidation Reduction Potention
GN-GSA-MW-5	10/22/2018 9:35	6.51	рН	рН
GN-GSA-MW-5	10/22/2018 9:35	19.94	С	Temperature
GN-GSA-MW-5	10/22/2018 9:35	1.81	NTU	Turbidity
GN-GSA-MW-5	10/22/2018 9:40	598.1	uS/cm	Conductivity
GN-GSA-MW-5	10/22/2018 9:40	33.55	ft	Depth to Water Detail
GN-GSA-MW-5	10/22/2018 9:40	0.28	mg/L	DO
GN-GSA-MW-5	10/22/2018 9:40	-62.6	mv	Oxidation Reduction Potention
GN-GSA-MW-5	10/22/2018 9:40	6.51	рН	рН
GN-GSA-MW-5	10/22/2018 9:40	18.95	С	Temperature
GN-GSA-MW-5	10/22/2018 9:40	1.31	NTU	Turbidity
GN-GSA-MW-5	10/22/2018 9:45	577.7	uS/cm	Conductivity
GN-GSA-MW-5	10/22/2018 9:45	33.55	ft	Depth to Water Detail
GN-GSA-MW-5	10/22/2018 9:45	0.26	mg/L	DO
GN-GSA-MW-5	10/22/2018 9:45	-59.4	mv	Oxidation Reduction Potention
GN-GSA-MW-5	10/22/2018 9:45	6.5	рН	рН
GN-GSA-MW-5	10/22/2018 9:45	18.92	С	Temperature
GN-GSA-MW-5	10/22/2018 9:45	0.82	NTU	Turbidity
GN-GSA-MW-5	10/22/2018 9:50	560	uS/cm	Conductivity
GN-GSA-MW-5	10/22/2018 9:50	33.55	ft	Depth to Water Detail
GN-GSA-MW-5	10/22/2018 9:50		mg/L	DO
GN-GSA-MW-5	10/22/2018 9:50	-54.3	mv	Oxidation Reduction Potention
GN-GSA-MW-5	10/22/2018 9:50	6.49	рН	рН
GN-GSA-MW-5	10/22/2018 9:50	18.89	С	Temperature
GN-GSA-MW-5	10/22/2018 9:50	0.84	NTU	Turbidity
GN-GSA-MW-5	10/22/2018 9:55	555.6	uS/cm	Conductivity
GN-GSA-MW-5	10/22/2018 9:55	33.55	ft	Depth to Water Detail
GN-GSA-MW-5	10/22/2018 9:55	0.25	mg/L	DO
GN-GSA-MW-5	10/22/2018 9:55	-53.4	mv	Oxidation Reduction Potention
GN-GSA-MW-5	10/22/2018 9:55	6.48	рН	рН
GN-GSA-MW-5	10/22/2018 9:55	18.92	С	Temperature
GN-GSA-MW-5	10/22/2018 9:55	1.16	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-6	10/22/2018 10:34	28.2	uS/cm	Conductivity
GN-GSA-MW-6	10/22/2018 10:34	32.36	ft	Depth to Water Detail
GN-GSA-MW-6	10/22/2018 10:34	1.01	mg/L	DO
GN-GSA-MW-6	10/22/2018 10:34	269.1	mv	Oxidation Reduction Potention
GN-GSA-MW-6	10/22/2018 10:34	4.78	рН	рН
GN-GSA-MW-6	10/22/2018 10:34	20.25	С	Temperature
GN-GSA-MW-6	10/22/2018 10:34	6.76	NTU	Turbidity
GN-GSA-MW-6	10/22/2018 10:39	28.5	uS/cm	Conductivity
GN-GSA-MW-6	10/22/2018 10:39	32.36	ft	Depth to Water Detail
GN-GSA-MW-6	10/22/2018 10:39	0.41	mg/L	DO
GN-GSA-MW-6	10/22/2018 10:39	245.1	mv	Oxidation Reduction Potention
GN-GSA-MW-6	10/22/2018 10:39	4.73	рН	рН
GN-GSA-MW-6	10/22/2018 10:39	20.35	С	Temperature
GN-GSA-MW-6	10/22/2018 10:39	4.42	NTU	Turbidity
GN-GSA-MW-6	10/22/2018 10:44	28.4	uS/cm	Conductivity
GN-GSA-MW-6	10/22/2018 10:44	32.36	ft	Depth to Water Detail
GN-GSA-MW-6	10/22/2018 10:44	0.27	mg/L	DO
GN-GSA-MW-6	10/22/2018 10:44	228.4	mv	Oxidation Reduction Potention
GN-GSA-MW-6	10/22/2018 10:44	4.69	рН	рН
GN-GSA-MW-6	10/22/2018 10:44	20.32	С	Temperature
GN-GSA-MW-6	10/22/2018 10:44	1.31	NTU	Turbidity
GN-GSA-MW-6	10/22/2018 10:49	28.3	uS/cm	Conductivity
GN-GSA-MW-6	10/22/2018 10:49	32.36	ft	Depth to Water Detail
GN-GSA-MW-6	10/22/2018 10:49	0.24	mg/L	DO
GN-GSA-MW-6	10/22/2018 10:49	215	mv	Oxidation Reduction Potention
GN-GSA-MW-6	10/22/2018 10:49	4.68	рН	рН
GN-GSA-MW-6	10/22/2018 10:49	20.42	С	Temperature
GN-GSA-MW-6	10/22/2018 10:49	1.13	NTU	Turbidity
GN-GSA-MW-6	10/22/2018 10:54		uS/cm	Conductivity
GN-GSA-MW-6	10/22/2018 10:54	32.36	ft	Depth to Water Detail
GN-GSA-MW-6	10/22/2018 10:54	0.22	mg/L	DO
GN-GSA-MW-6	10/22/2018 10:54	206.1	mv	Oxidation Reduction Potention
GN-GSA-MW-6	10/22/2018 10:54	4.68	рН	рН
GN-GSA-MW-6	10/22/2018 10:54	20.43	С	Temperature
GN-GSA-MW-6	10/22/2018 10:54	1.17	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-7	10/22/2018 11:39	469.7	uS/cm	Conductivity
GN-GSA-MW-7	10/22/2018 11:39	30.15	ft	Depth to Water Detail
GN-GSA-MW-7	10/22/2018 11:39	0.73	mg/L	DO
GN-GSA-MW-7	10/22/2018 11:39	23.9		Oxidation Reduction Potention
GN-GSA-MW-7	10/22/2018 11:39	6.61	рН	рН
GN-GSA-MW-7	10/22/2018 11:39	21.68	C	Temperature
GN-GSA-MW-7	10/22/2018 11:39	1.46	NTU	Turbidity
GN-GSA-MW-7	10/22/2018 11:44	469.9	uS/cm	Conductivity
GN-GSA-MW-7	10/22/2018 11:44	30.4	ft	Depth to Water Detail
GN-GSA-MW-7	10/22/2018 11:44	0.55	mg/L	DO
GN-GSA-MW-7	10/22/2018 11:44	32.2	mv	Oxidation Reduction Potention
GN-GSA-MW-7	10/22/2018 11:44	6.68	pН	рН
GN-GSA-MW-7	10/22/2018 11:44	21.46	С	Temperature
GN-GSA-MW-7	10/22/2018 11:44	1.45	NTU	Turbidity
GN-GSA-MW-7	10/22/2018 11:49	464.6	uS/cm	Conductivity
GN-GSA-MW-7	10/22/2018 11:49	30.52	ft	Depth to Water Detail
GN-GSA-MW-7	10/22/2018 11:49	0.51	mg/L	DO
GN-GSA-MW-7	10/22/2018 11:49	34.7	mv	Oxidation Reduction Potention
GN-GSA-MW-7	10/22/2018 11:49	6.7	pН	рН
GN-GSA-MW-7	10/22/2018 11:49	21.38	С	Temperature
GN-GSA-MW-7	10/22/2018 11:49	1.67	NTU	Turbidity
GN-GSA-MW-7	10/22/2018 11:54	454.4	uS/cm	Conductivity
GN-GSA-MW-7	10/22/2018 11:54	30.58	ft	Depth to Water Detail
GN-GSA-MW-7	10/22/2018 11:54	0.67	mg/L	DO
GN-GSA-MW-7	10/22/2018 11:54	39.3	mv	Oxidation Reduction Potention
GN-GSA-MW-7	10/22/2018 11:54	6.71	рН	рН
GN-GSA-MW-7	10/22/2018 11:54	21.76	С	Temperature
GN-GSA-MW-7	10/22/2018 11:54	1.25	NTU	Turbidity
GN-GSA-MW-7	10/22/2018 11:59	442.1	uS/cm	Conductivity
GN-GSA-MW-7	10/22/2018 11:59	30.64	ft	Depth to Water Detail
GN-GSA-MW-7	10/22/2018 11:59	1.04	mg/L	DO
GN-GSA-MW-7	10/22/2018 11:59	44.7	mv	Oxidation Reduction Potention
GN-GSA-MW-7	10/22/2018 11:59	6.72	рН	рН
GN-GSA-MW-7	10/22/2018 11:59	21.68	С	Temperature
GN-GSA-MW-7	10/22/2018 11:59	1.37	NTU	Turbidity
GN-GSA-MW-7	10/22/2018 12:04	437.3	uS/cm	Conductivity
GN-GSA-MW-7	10/22/2018 12:04	30.7	ft	Depth to Water Detail
GN-GSA-MW-7	10/22/2018 12:04	1.27	mg/L	DO
GN-GSA-MW-7	10/22/2018 12:04	46.2	mv	Oxidation Reduction Potention
GN-GSA-MW-7	10/22/2018 12:04	6.72	•	рН
GN-GSA-MW-7	10/22/2018 12:04	21.82	C	Temperature
GN-GSA-MW-7	10/22/2018 12:04	1.27	NTU	Turbidity
GN-GSA-MW-7	10/22/2018 12:09	435.3	uS/cm	Conductivity
GN-GSA-MW-7	10/22/2018 12:09	30.72	ft	Depth to Water Detail

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-7	10/22/2018 12:09	1.33	mg/L	DO
GN-GSA-MW-7	10/22/2018 12:09	46.9	mv	Oxidation Reduction Potention
GN-GSA-MW-7	10/22/2018 12:09	6.72	рН	рН
GN-GSA-MW-7	10/22/2018 12:09	21.86	С	Temperature
GN-GSA-MW-7	10/22/2018 12:09	1.3	NTU	Turbidity
GN-GSA-MW-7	10/22/2018 12:15	432	uS/cm	Conductivity
GN-GSA-MW-7	10/22/2018 12:15	30.73	ft	Depth to Water Detail
GN-GSA-MW-7	10/22/2018 12:15	1.28	mg/L	DO
GN-GSA-MW-7	10/22/2018 12:15	47.8	mv	Oxidation Reduction Potention
GN-GSA-MW-7	10/22/2018 12:15	6.71	рН	рН
GN-GSA-MW-7	10/22/2018 12:15	21.91	С	Temperature
GN-GSA-MW-7	10/22/2018 12:15	1.33	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-8	10/22/2018 13:32	350.2	uS/cm	Conductivity
GN-GSA-MW-8	10/22/2018 13:32	24.2	ft	Depth to Water Detail
GN-GSA-MW-8	10/22/2018 13:32	0.23	mg/L	DO
GN-GSA-MW-8	10/22/2018 13:32	-88	mv	Oxidation Reduction Potention
GN-GSA-MW-8	10/22/2018 13:32	7.25	pН	pH
GN-GSA-MW-8	10/22/2018 13:32	21.02	С	Temperature
GN-GSA-MW-8	10/22/2018 13:32	1.47	NTU	Turbidity
GN-GSA-MW-8	10/22/2018 13:37	350.3	uS/cm	Conductivity
GN-GSA-MW-8	10/22/2018 13:37	24.33	ft	Depth to Water Detail
GN-GSA-MW-8	10/22/2018 13:37	0.22	mg/L	DO
GN-GSA-MW-8	10/22/2018 13:37	-89.7	mv	Oxidation Reduction Potention
GN-GSA-MW-8	10/22/2018 13:37	7.29	рН	рН
GN-GSA-MW-8	10/22/2018 13:37	21.02	С	Temperature
GN-GSA-MW-8	10/22/2018 13:37	1.35	NTU	Turbidity
GN-GSA-MW-8	10/22/2018 13:42	349.6	uS/cm	Conductivity
GN-GSA-MW-8	10/22/2018 13:42	24.35	ft	Depth to Water Detail
GN-GSA-MW-8	10/22/2018 13:42	0.21	mg/L	DO
GN-GSA-MW-8	10/22/2018 13:42	-101.6	mv	Oxidation Reduction Potention
GN-GSA-MW-8	10/22/2018 13:42	7.31	рН	рН
GN-GSA-MW-8	10/22/2018 13:42	20.84	С	Temperature
GN-GSA-MW-8	10/22/2018 13:42	1.27	NTU	Turbidity
GN-GSA-MW-8	10/22/2018 13:47	350.4	uS/cm	Conductivity
GN-GSA-MW-8	10/22/2018 13:47	24.46	ft	Depth to Water Detail
GN-GSA-MW-8	10/22/2018 13:47	0.22	mg/L	DO
GN-GSA-MW-8	10/22/2018 13:47	-119.4	mv	Oxidation Reduction Potention
GN-GSA-MW-8	10/22/2018 13:47	7.33	рН	рН
GN-GSA-MW-8	10/22/2018 13:47	20.75	С	Temperature
GN-GSA-MW-8	10/22/2018 13:47	1.4	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-9	10/22/2018 14:36	211.7	uS/cm	Conductivity
GN-GSA-MW-9	10/22/2018 14:36	24.75	ft	Depth to Water Detail
GN-GSA-MW-9	10/22/2018 14:36	0.26	mg/L	DO
GN-GSA-MW-9	10/22/2018 14:36	41.1	mv	Oxidation Reduction Potention
GN-GSA-MW-9	10/22/2018 14:36	6.41	рН	рН
GN-GSA-MW-9	10/22/2018 14:36	21.28	С	Temperature
GN-GSA-MW-9	10/22/2018 14:36	4.35	NTU	Turbidity
GN-GSA-MW-9	10/22/2018 14:41	255.8	uS/cm	Conductivity
GN-GSA-MW-9	10/22/2018 14:41	24.65	ft	Depth to Water Detail
GN-GSA-MW-9	10/22/2018 14:41	0.25	mg/L	DO
GN-GSA-MW-9	10/22/2018 14:41	-3.2	mv	Oxidation Reduction Potention
GN-GSA-MW-9	10/22/2018 14:41	6.52	рН	рН
GN-GSA-MW-9	10/22/2018 14:41	21.19	С	Temperature
GN-GSA-MW-9	10/22/2018 14:41	4.88	NTU	Turbidity
GN-GSA-MW-9	10/22/2018 14:46	279.2	uS/cm	Conductivity
GN-GSA-MW-9	10/22/2018 14:46	24.58	ft	Depth to Water Detail
GN-GSA-MW-9	10/22/2018 14:46	0.24	mg/L	DO
GN-GSA-MW-9	10/22/2018 14:46	-19	mv	Oxidation Reduction Potention
GN-GSA-MW-9	10/22/2018 14:46	6.62	рН	рН
GN-GSA-MW-9	10/22/2018 14:46	21.16	С	Temperature
GN-GSA-MW-9	10/22/2018 14:46	2.94	NTU	Turbidity
GN-GSA-MW-9	10/22/2018 14:52	296	uS/cm	Conductivity
GN-GSA-MW-9	10/22/2018 14:52	24.55	ft	Depth to Water Detail
GN-GSA-MW-9	10/22/2018 14:52	0.24	mg/L	DO
GN-GSA-MW-9	10/22/2018 14:52	-28	mv	Oxidation Reduction Potention
GN-GSA-MW-9	10/22/2018 14:52	6.7	рН	рН
GN-GSA-MW-9	10/22/2018 14:52	21.28	С	Temperature
GN-GSA-MW-9	10/22/2018 14:52	2.22	NTU	Turbidity
GN-GSA-MW-9	10/22/2018 14:57	308.1	uS/cm	Conductivity
GN-GSA-MW-9	10/22/2018 14:57	24.5	ft	Depth to Water Detail
GN-GSA-MW-9	10/22/2018 14:57	0.23	mg/L	DO
GN-GSA-MW-9	10/22/2018 14:57	-33.7	mv	Oxidation Reduction Potention
GN-GSA-MW-9	10/22/2018 14:57	6.77	рН	рН
GN-GSA-MW-9	10/22/2018 14:57	21.27	С	Temperature
GN-GSA-MW-9	10/22/2018 14:57	1.92	NTU	Turbidity
GN-GSA-MW-9	10/22/2018 15:02	316.7	uS/cm	Conductivity
GN-GSA-MW-9	10/22/2018 15:02	24.61	ft	Depth to Water Detail
GN-GSA-MW-9	10/22/2018 15:02	0.23	mg/L	DO
GN-GSA-MW-9	10/22/2018 15:02	-36.6	mv	Oxidation Reduction Potention
GN-GSA-MW-9	10/22/2018 15:02	6.82	рН	рН
GN-GSA-MW-9	10/22/2018 15:02	21.15	C	Temperature
GN-GSA-MW-9	10/22/2018 15:02	2.12	NTU	Turbidity
GN-GSA-MW-9	10/22/2018 15:07	320.4	uS/cm	Conductivity
GN-GSA-MW-9	10/22/2018 15:07	24.61	ft	Depth to Water Detail

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-9	10/22/2018 15:07	0.23	mg/L	DO
GN-GSA-MW-9	10/22/2018 15:07	-38.2	mv	Oxidation Reduction Potention
GN-GSA-MW-9	10/22/2018 15:07	6.86	рН	рН
GN-GSA-MW-9	10/22/2018 15:07	21.24	С	Temperature
GN-GSA-MW-9	10/22/2018 15:07	1.97	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-10	10/24/2018 12:38	435.3	uS/cm	Conductivity
GN-GSA-MW-10	10/24/2018 12:38	24.62	ft	Depth to Water Detail
GN-GSA-MW-10	10/24/2018 12:38	0.13	mg/L	DO
GN-GSA-MW-10	10/24/2018 12:38	197.2	mv	Oxidation Reduction Potention
GN-GSA-MW-10	10/24/2018 12:38	7.11	рН	рН
GN-GSA-MW-10	10/24/2018 12:38	21.76	С	Temperature
GN-GSA-MW-10	10/24/2018 12:38	0.49	NTU	Turbidity
GN-GSA-MW-10	10/24/2018 12:43	434.7	uS/cm	Conductivity
GN-GSA-MW-10	10/24/2018 12:43	24.64	ft	Depth to Water Detail
GN-GSA-MW-10	10/24/2018 12:43	0.11	mg/L	DO
GN-GSA-MW-10	10/24/2018 12:43	301.8	mv	Oxidation Reduction Potention
GN-GSA-MW-10	10/24/2018 12:43	7.11	рН	рН
GN-GSA-MW-10	10/24/2018 12:43	21.81	С	Temperature
GN-GSA-MW-10	10/24/2018 12:43	0.52	NTU	Turbidity
GN-GSA-MW-10	10/24/2018 12:53	432.6	uS/cm	Conductivity
GN-GSA-MW-10	10/24/2018 12:53	24.65	ft	Depth to Water Detail
GN-GSA-MW-10	10/24/2018 12:53	0.1	mg/L	DO
GN-GSA-MW-10	10/24/2018 12:53	477.8	mv	Oxidation Reduction Potention
GN-GSA-MW-10	10/24/2018 12:53	7.12	рН	рН
GN-GSA-MW-10	10/24/2018 12:53	21.79	С	Temperature
GN-GSA-MW-10	10/24/2018 12:53	0.49	NTU	Turbidity
GN-GSA-MW-10	10/24/2018 12:58	431.9	uS/cm	Conductivity
GN-GSA-MW-10	10/24/2018 12:58	24.65	ft	Depth to Water Detail
GN-GSA-MW-10	10/24/2018 12:58	0.1	mg/L	DO
GN-GSA-MW-10	10/24/2018 12:58	516.5	mv	Oxidation Reduction Potention
GN-GSA-MW-10	10/24/2018 12:58	7.13	pН	рН
GN-GSA-MW-10	10/24/2018 12:58	21.83	С	Temperature
GN-GSA-MW-10	10/24/2018 12:58	0.7	NTU	Turbidity
GN-GSA-MW-10	10/24/2018 13:03	431.4	uS/cm	Conductivity
GN-GSA-MW-10	10/24/2018 13:03	24.65	ft	Depth to Water Detail
GN-GSA-MW-10	10/24/2018 13:03	0.1	mg/L	DO
GN-GSA-MW-10	10/24/2018 13:03	543.1		Oxidation Reduction Potention
GN-GSA-MW-10	10/24/2018 13:03	7.14	рН	рН
GN-GSA-MW-10	10/24/2018 13:03	21.87	С	Temperature
GN-GSA-MW-10	10/24/2018 13:03	0.54	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-11	10/24/2018 10:51	180.2	uS/cm	Conductivity
GN-GSA-MW-11	10/24/2018 10:51	23.72	ft	Depth to Water Detail
GN-GSA-MW-11	10/24/2018 10:51	0.59	mg/L	DO
GN-GSA-MW-11	10/24/2018 10:51	85.5		Oxidation Reduction Potention
GN-GSA-MW-11	10/24/2018 10:51	6.63	рН	pH
GN-GSA-MW-11	10/24/2018 10:51	21.67	C	Temperature
GN-GSA-MW-11	10/24/2018 10:51	2.4	NTU	Turbidity
GN-GSA-MW-11	10/24/2018 10:56	211.7	uS/cm	Conductivity
GN-GSA-MW-11	10/24/2018 10:56	23.72	ft	Depth to Water Detail
GN-GSA-MW-11	10/24/2018 10:56	0.37	mg/L	DO
GN-GSA-MW-11	10/24/2018 10:56	44.6	mv	Oxidation Reduction Potention
GN-GSA-MW-11	10/24/2018 10:56	6.32	pН	рН
GN-GSA-MW-11	10/24/2018 10:56	21.76	С	Temperature
GN-GSA-MW-11	10/24/2018 10:56	2.26	NTU	Turbidity
GN-GSA-MW-11	10/24/2018 11:01	189.2	uS/cm	Conductivity
GN-GSA-MW-11	10/24/2018 11:01	23.72	ft	Depth to Water Detail
GN-GSA-MW-11	10/24/2018 11:01	0.26	mg/L	DO
GN-GSA-MW-11	10/24/2018 11:01	39.6	mv	Oxidation Reduction Potention
GN-GSA-MW-11	10/24/2018 11:01	6.3	pН	рН
GN-GSA-MW-11	10/24/2018 11:01	21.82	С	Temperature
GN-GSA-MW-11	10/24/2018 11:01	1.06	NTU	Turbidity
GN-GSA-MW-11	10/24/2018 11:06	155.7	uS/cm	Conductivity
GN-GSA-MW-11	10/24/2018 11:06	23.72	ft	Depth to Water Detail
GN-GSA-MW-11	10/24/2018 11:06	0.21	mg/L	DO
GN-GSA-MW-11	10/24/2018 11:06	49.1	mv	Oxidation Reduction Potention
GN-GSA-MW-11	10/24/2018 11:06	6.22	рН	рН
GN-GSA-MW-11	10/24/2018 11:06	21.82	С	Temperature
GN-GSA-MW-11	10/24/2018 11:06	0.95	NTU	Turbidity
GN-GSA-MW-11	10/24/2018 11:11	145.6	uS/cm	Conductivity
GN-GSA-MW-11	10/24/2018 11:11	23.72	ft	Depth to Water Detail
GN-GSA-MW-11	10/24/2018 11:11	0.16	mg/L	DO
GN-GSA-MW-11	10/24/2018 11:11	53.8	mv	Oxidation Reduction Potention
GN-GSA-MW-11	10/24/2018 11:11	6.17	рН	рН
GN-GSA-MW-11	10/24/2018 11:11	21.82	С	Temperature
GN-GSA-MW-11	10/24/2018 11:11	0.8	NTU	Turbidity
GN-GSA-MW-11	10/24/2018 11:16	132.3	uS/cm	Conductivity
GN-GSA-MW-11	10/24/2018 11:16	23.72	ft	Depth to Water Detail
GN-GSA-MW-11	10/24/2018 11:16	0.16	mg/L	DO
GN-GSA-MW-11	10/24/2018 11:16	58.4	mv	Oxidation Reduction Potention
GN-GSA-MW-11	10/24/2018 11:16	6.14		рН
GN-GSA-MW-11	10/24/2018 11:16	21.84	C	Temperature
GN-GSA-MW-11	10/24/2018 11:16	0.51	NTU	Turbidity
GN-GSA-MW-11	10/24/2018 11:21	132.8	uS/cm	Conductivity
GN-GSA-MW-11	10/24/2018 11:21	23.72	ft	Depth to Water Detail

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-11	10/24/2018 11:21	0.15	mg/L	DO
GN-GSA-MW-11	10/24/2018 11:21	60.2	mv	Oxidation Reduction Potention
GN-GSA-MW-11	10/24/2018 11:21	6.1	рН	рН
GN-GSA-MW-11	10/24/2018 11:21	21.87	С	Temperature
GN-GSA-MW-11	10/24/2018 11:21	0.82	NTU	Turbidity
GN-GSA-MW-11	10/24/2018 11:26	126.6	uS/cm	Conductivity
GN-GSA-MW-11	10/24/2018 11:26	23.72	ft	Depth to Water Detail
GN-GSA-MW-11	10/24/2018 11:26	0.13	mg/L	DO
GN-GSA-MW-11	10/24/2018 11:26	63.3	mv	Oxidation Reduction Potention
GN-GSA-MW-11	10/24/2018 11:26	6.09	рН	рН
GN-GSA-MW-11	10/24/2018 11:26	21.87	С	Temperature
GN-GSA-MW-11	10/24/2018 11:26	0.57	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-12	10/23/2018 12:35	370.7	uS/cm	Conductivity
GN-GSA-MW-12	10/23/2018 12:35	22.3	ft	Depth to Water Detail
GN-GSA-MW-12	10/23/2018 12:35	0.2	mg/L	DO
GN-GSA-MW-12	10/23/2018 12:35	-104.5	mv	Oxidation Reduction Potention
GN-GSA-MW-12	10/23/2018 12:35	7.24	рН	pH
GN-GSA-MW-12	10/23/2018 12:35	21.33	С	Temperature
GN-GSA-MW-12	10/23/2018 12:35	4.01	NTU	Turbidity
GN-GSA-MW-12	10/23/2018 12:40	361.7	uS/cm	Conductivity
GN-GSA-MW-12	10/23/2018 12:40	22.3	ft	Depth to Water Detail
GN-GSA-MW-12	10/23/2018 12:40	0.25	mg/L	DO
GN-GSA-MW-12	10/23/2018 12:40	-89.5	mv	Oxidation Reduction Potention
GN-GSA-MW-12	10/23/2018 12:40	7.24	рН	рН
GN-GSA-MW-12	10/23/2018 12:40	21.39	С	Temperature
GN-GSA-MW-12	10/23/2018 12:40	2.21	NTU	Turbidity
GN-GSA-MW-12	10/23/2018 12:45	355.9	uS/cm	Conductivity
GN-GSA-MW-12	10/23/2018 12:45	22.3	ft	Depth to Water Detail
GN-GSA-MW-12	10/23/2018 12:45	0.25	mg/L	DO
GN-GSA-MW-12	10/23/2018 12:45	-80.8	mv	Oxidation Reduction Potention
GN-GSA-MW-12	10/23/2018 12:45	7.23	рН	рН
GN-GSA-MW-12	10/23/2018 12:45	21.44	С	Temperature
GN-GSA-MW-12	10/23/2018 12:45	1.42	NTU	Turbidity
GN-GSA-MW-12	10/23/2018 12:51	350.2	uS/cm	Conductivity
GN-GSA-MW-12	10/23/2018 12:51	22.3	ft	Depth to Water Detail
GN-GSA-MW-12	10/23/2018 12:51	0.23	mg/L	DO
GN-GSA-MW-12	10/23/2018 12:51	-74.1	mv	Oxidation Reduction Potention
GN-GSA-MW-12	10/23/2018 12:51	7.22	рН	рН
GN-GSA-MW-12	10/23/2018 12:51	21.44	С	Temperature
GN-GSA-MW-12	10/23/2018 12:51	1.28	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-13	10/23/2018 13:35	474.7	uS/cm	Conductivity
GN-GSA-MW-13	10/23/2018 13:35	28	ft	Depth to Water Detail
GN-GSA-MW-13	10/23/2018 13:35	0.36	mg/L	DO
GN-GSA-MW-13	10/23/2018 13:35	52.3	mv	Oxidation Reduction Potention
GN-GSA-MW-13	10/23/2018 13:35	7.13	рН	рН
GN-GSA-MW-13	10/23/2018 13:35	20.57	С	Temperature
GN-GSA-MW-13	10/23/2018 13:35	1.43	NTU	Turbidity
GN-GSA-MW-13	10/23/2018 13:40	474	uS/cm	Conductivity
GN-GSA-MW-13	10/23/2018 13:40	28	ft	Depth to Water Detail
GN-GSA-MW-13	10/23/2018 13:40	0.32	mg/L	DO
GN-GSA-MW-13	10/23/2018 13:40	52.3	mv	Oxidation Reduction Potention
GN-GSA-MW-13	10/23/2018 13:40	7.1	рН	рН
GN-GSA-MW-13	10/23/2018 13:40	20.39	С	Temperature
GN-GSA-MW-13	10/23/2018 13:40	1.06	NTU	Turbidity
GN-GSA-MW-13	10/23/2018 13:45	472.8	uS/cm	Conductivity
GN-GSA-MW-13	10/23/2018 13:45	28	ft	Depth to Water Detail
GN-GSA-MW-13	10/23/2018 13:45	0.31	mg/L	DO
GN-GSA-MW-13	10/23/2018 13:45	52.4	mv	Oxidation Reduction Potention
GN-GSA-MW-13	10/23/2018 13:45	7.09	рН	рН
GN-GSA-MW-13	10/23/2018 13:45	20.31	С	Temperature
GN-GSA-MW-13	10/23/2018 13:45	2.27	NTU	Turbidity
GN-GSA-MW-13	10/23/2018 13:50	471	uS/cm	Conductivity
GN-GSA-MW-13	10/23/2018 13:50	28	ft	Depth to Water Detail
GN-GSA-MW-13	10/23/2018 13:50	0.32	mg/L	DO
GN-GSA-MW-13	10/23/2018 13:50	52.5	mv	Oxidation Reduction Potention
GN-GSA-MW-13	10/23/2018 13:50	7.09	рН	рН
GN-GSA-MW-13	10/23/2018 13:50	20.31	С	Temperature
GN-GSA-MW-13	10/23/2018 13:50	2.04	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-14S	10/23/2018 11:34	310.3	uS/cm	Conductivity
GN-GSA-MW-14S	10/23/2018 11:34	26.35	ft	Depth to Water Detail
GN-GSA-MW-14S	10/23/2018 11:34	0.33	mg/L	DO
GN-GSA-MW-14S	10/23/2018 11:34	58	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	10/23/2018 11:34	7.22	рН	рН
GN-GSA-MW-14S	10/23/2018 11:34	20.19	С	Temperature
GN-GSA-MW-14S	10/23/2018 11:34	2.05	NTU	Turbidity
GN-GSA-MW-14S	10/23/2018 11:39	313.6	uS/cm	Conductivity
GN-GSA-MW-14S	10/23/2018 11:39	26.35	ft	Depth to Water Detail
GN-GSA-MW-14S	10/23/2018 11:39	0.22	mg/L	DO
GN-GSA-MW-14S	10/23/2018 11:39	52.8	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	10/23/2018 11:39	7.27	рН	рН
GN-GSA-MW-14S	10/23/2018 11:39	20.15	С	Temperature
GN-GSA-MW-14S	10/23/2018 11:39	3.51	NTU	Turbidity
GN-GSA-MW-14S	10/23/2018 11:44	335	uS/cm	Conductivity
GN-GSA-MW-14S	10/23/2018 11:44	26.35	ft	Depth to Water Detail
GN-GSA-MW-14S	10/23/2018 11:44	0.19	mg/L	DO
GN-GSA-MW-14S	10/23/2018 11:44	-33.6	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	10/23/2018 11:44	7.33	рН	рН
GN-GSA-MW-14S	10/23/2018 11:44	20.1	С	Temperature
GN-GSA-MW-14S	10/23/2018 11:44	2.76	NTU	Turbidity
GN-GSA-MW-14S	10/23/2018 11:49	340.2	uS/cm	Conductivity
GN-GSA-MW-14S	10/23/2018 11:49	26.35	ft	Depth to Water Detail
GN-GSA-MW-14S	10/23/2018 11:49	0.18	mg/L	DO
GN-GSA-MW-14S	10/23/2018 11:49	-66.8	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	10/23/2018 11:49	7.37	pН	рН
GN-GSA-MW-14S	10/23/2018 11:49	20.17	С	Temperature
GN-GSA-MW-14S	10/23/2018 11:49	2.17	NTU	Turbidity
GN-GSA-MW-14S	10/23/2018 11:54	342.7	uS/cm	Conductivity
GN-GSA-MW-14S	10/23/2018 11:54	26.35	ft	Depth to Water Detail
GN-GSA-MW-14S	10/23/2018 11:54	0.18	mg/L	DO
GN-GSA-MW-14S	10/23/2018 11:54	-76.1	mv	Oxidation Reduction Potention
GN-GSA-MW-14S	10/23/2018 11:54	7.4	рН	рН
GN-GSA-MW-14S	10/23/2018 11:54	20.05	С	Temperature
GN-GSA-MW-14S	10/23/2018 11:54	2.77	NTU	Turbidity

Well ID	Reading Time	Value	Unit	Description
GN-GSA-MW-15	10/23/2018 8:45	51.4	uS/cm	Conductivity
GN-GSA-MW-15	10/23/2018 8:45	27.12	ft	Depth to Water Detail
GN-GSA-MW-15	10/23/2018 8:45	1.07	mg/L	DO
GN-GSA-MW-15	10/23/2018 8:45	113.6	mv	Oxidation Reduction Potention
GN-GSA-MW-15	10/23/2018 8:45	5.87	pН	рН
GN-GSA-MW-15	10/23/2018 8:45	18.9	С	Temperature
GN-GSA-MW-15	10/23/2018 8:45	2.08	NTU	Turbidity
GN-GSA-MW-15	10/23/2018 8:50	47.2	uS/cm	Conductivity
GN-GSA-MW-15	10/23/2018 8:50	27.25	ft	Depth to Water Detail
GN-GSA-MW-15	10/23/2018 8:50	0.85	mg/L	DO
GN-GSA-MW-15	10/23/2018 8:50	113.1	mv	Oxidation Reduction Potention
GN-GSA-MW-15	10/23/2018 8:50	5.83	pН	рН
GN-GSA-MW-15	10/23/2018 8:50	18.97	С	Temperature
GN-GSA-MW-15	10/23/2018 8:50	5.11	NTU	Turbidity
GN-GSA-MW-15	10/23/2018 8:55	45.3	uS/cm	Conductivity
GN-GSA-MW-15	10/23/2018 8:55	27.45	ft	Depth to Water Detail
GN-GSA-MW-15	10/23/2018 8:55	0.81	mg/L	DO
GN-GSA-MW-15	10/23/2018 8:55	112.7	mv	Oxidation Reduction Potention
GN-GSA-MW-15	10/23/2018 8:55	5.84	pН	рН
GN-GSA-MW-15	10/23/2018 8:55	19.02	С	Temperature
GN-GSA-MW-15	10/23/2018 8:55	1.67	NTU	Turbidity
GN-GSA-MW-15	10/23/2018 9:00	45	uS/cm	Conductivity
GN-GSA-MW-15	10/23/2018 9:00	27.62	ft	Depth to Water Detail
GN-GSA-MW-15	10/23/2018 9:00	0.79	mg/L	DO
GN-GSA-MW-15	10/23/2018 9:00	112	mv	Oxidation Reduction Potention
GN-GSA-MW-15	10/23/2018 9:00	5.84	рН	рН
GN-GSA-MW-15	10/23/2018 9:00	19.1	С	Temperature
GN-GSA-MW-15	10/23/2018 9:00	1.34	NTU	Turbidity
GN-GSA-MW-15	10/23/2018 9:05	44.6	uS/cm	Conductivity
GN-GSA-MW-15	10/23/2018 9:05	27.72	ft	Depth to Water Detail
GN-GSA-MW-15	10/23/2018 9:05	0.76	mg/L	DO
GN-GSA-MW-15	10/23/2018 9:05	111.5	mv	Oxidation Reduction Potention
GN-GSA-MW-15	10/23/2018 9:05	5.84	рН	рН
GN-GSA-MW-15	10/23/2018 9:05	19.06	С	Temperature
GN-GSA-MW-15	10/23/2018 9:05	1.35	NTU	Turbidity
GN-GSA-MW-15	10/23/2018 9:10	44.4	uS/cm	Conductivity
GN-GSA-MW-15	10/23/2018 9:10	27.82	ft	Depth to Water Detail
GN-GSA-MW-15	10/23/2018 9:10	0.73	mg/L	DO
GN-GSA-MW-15	10/23/2018 9:10	111	mv	Oxidation Reduction Potention
GN-GSA-MW-15	10/23/2018 9:10	5.84	рН	рН
GN-GSA-MW-15	10/23/2018 9:10	19.15	С	Temperature
GN-GSA-MW-15	10/23/2018 9:10	1.37	NTU	Turbidity

Field Case Narrative

E. C. Gaston Gypsum Storage Area

2018 Compliance Sample Event 2 & General Chemistry

All samples were collected using methods defined in Alabama Power's Water Field Group Low-Flow Groundwater Sampling Procedure and the associated site-specific Sampling and Analysis Plan (SAP).

Field quality control procedures were performed as follows:

- Blanks and Sample Duplicates were collected as described in the SAP.
 - o Field Blank 1 (FB-1) had results greater than the reporting limit (RL) for Bicarbonate Alkalinity.
- Calibration verifications for all required field parameters were performed daily, before and after sample collection.

Analytical Report

Sample Group: WMWGASG_1177

Project/Site: Gaston Gypsum

Wilsonville, AL 35186

For: Southern Company Services

3535 Colonnade Parkway Birmingham, AL 35243

Attention: Dustin Brooks & Greg Dyer

Released By: Laura Midkiff

lbmidkif@southernco.com

(205) 664-6197

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-5

Laboratory ID Number: AY25263

Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
	Analyst Test Date	Reference	VIO Spec DI	IVIDL	NL .	Q Nesulis	Ullits
Metals, Cyanide, Total Phenols							
 Magnesium, Total 	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	12.4	mg/L
* Iron, Dissolved	RDA 11/6/2018	EPA 200.7	2.03	0.01	0.05	4.53	mg/L
* Iron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.05	4.47	mg/L
* Potassium, Total	ABB 10/29/2018	EPA 200.8	5.075	0.215	2.5	J 0.454	mg/L
* Mangenese, Dissolved	ABB 10/26/2018	EPA 200.8	5.075	0.001	0.005	1.83	mg/L
* Mangenese, Total	ABB 10/29/2018	EPA 200.8	5.075	0.001	0.005	1.98	mg/L
* Sodium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	30.2	mg/L
General Characteristics							
pH for Alkalinity	EMG 11/5/2018	SM 4500H+ B	1		4.00	6.64	SU
Alkalinity, Total as CaCO3	EMG 11/5/2018	SM 2320 B	1		0.10	204	mg/L
Carbonate Alkalinity, as CaCO3	EMG 11/5/2018	SM 4500CO2 D	1			0.08	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG 11/5/2018	SM 4500CO2 D	1			204	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-5

Laboratory ID Number: AY25263

			MB					LCS		Rec		Prec
Sample A	Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y25272 F	Potassium, Total	mg/L 0.00815	0.0946	10.0	10.9	10.8	10.2	8.5 to 11.5	106	70 to 130	0.537	20
Y25263 A	Alkalinity, Total as CaCO3	mg/L				208	49.2	45.0 to 55.0			1.86	10
Y25272 S	Sodium, Total	mg/L -0.00418	0.22	5.00	9.33	9.32	5.23	4.25 to 5.75	106	70 to 130	0.0705	20
Y25263 p	oH for Alkalinity	SU					6.98	6.95 to 7.05				
Y25272 I	ron, Total	mg/L -0.000767	0.022	0.2	0.311	0.311	0.202	0.17 to 0.23	99.3	70 to 130	0.0109	20
Y25272 I	ron, Dissolved	mg/L 0.00866	0.022	0.2	0.298	0.297	0.201	0.17 to 0.23	103	70 to 130	0.339	20
4Y25272 N	Magnesium, Total	mg/L -0.0123	0.22	5.00	11.1	11.1	4.99	4.25 to 5.75	97.9	70 to 130	0.110	20
Y25272 N	Mangenese, Dissolved	mg/L 0.0000212	0.005	0.10	0.263	0.259		0.085 to 0.115	105	70 to 130	1.59	20
Y25272 N	Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.273	0.275	0.100	0.085 to 0.115	106	70 to 130	0.686	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-6

Laboratory ID Number: AY25264

Laboratory ID Nulliber. A12320	4							
Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols								
* Magnesium, Total	RDA 11/9/2018	B EPA 200.7	2.03	0.1	0.5	J	0.317	mg/L
* Iron, Dissolved	RDA 11/6/2018	B EPA 200.7	2.03	0.01	0.05	J	0.0251	mg/L
* Iron, Total	RDA 11/9/2018	B EPA 200.7	2.03	0.01	0.05	J	0.0249	mg/L
* Potassium, Total	ABB 10/29/201	8 EPA 200.8	5.075	0.215	2.5	J	0.218	mg/L
* Mangenese, Dissolved	ABB 10/26/201	8 EPA 200.8	5.075	0.001	0.005		0.0120	mg/L
* Mangenese, Total	ABB 10/29/201	8 EPA 200.8	5.075	0.001	0.005		0.0103	mg/L
* Sodium, Total	RDA 11/9/2018	B EPA 200.7	2.03	0.1	0.5		2.56	mg/L
General Characteristics								
pH for Alkalinity	EMG 11/5/2018	8 SM 4500H+ B	1		4.00		4.89	SU
Alkalinity, Total as CaCO3	EMG 11/5/2018	3 SM 2320 B	1		0.10		1.46	mg/L
Carbonate Alkalinity, as CaCO3	EMG 11/5/2018	3 SM 4500CO2 D	1				0.00	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG 11/5/2018	3 SM 4500CO2 D	1				1.46	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 22-Oct-18 Sample Date:

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-6

Laboratory ID Number: AY25264

		MB			1	,	LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
AY25272 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.9	10.8	10.2	8.5 to 11.5	106	70 to 130	0.537	20
AY25263 Alkalinity, Total as CaCO	3 mg/L				208	49.2	45.0 to 55.0			1.86	10
AY25272 Mangenese, Dissolved	mg/L 0.0000212	0.005	0.10	0.263	0.259		0.085 to 0.115	105	70 to 130	1.59	20
AY25272 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.273	0.275	0.100	0.085 to 0.115	106	70 to 130	0.686	20
AY25272 Sodium, Total	mg/L -0.00418	0.22	5.00	9.33	9.32	5.23	4.25 to 5.75	106	70 to 130	0.0705	20
AY25272 Iron, Dissolved	mg/L 0.00866	0.022	0.2	0.298	0.297	0.201	0.17 to 0.23	103	70 to 130	0.339	20
AY25272 Magnesium, Total	mg/L -0.0123	0.22	5.00	11.1	11.1	4.99	4.25 to 5.75	97.9	70 to 130	0.110	20
AY25263 pH for Alkalinity	SU					6.98	6.95 to 7.05				
AY25272 Iron, Total	mg/L -0.000767	0.022	0.2	0.311	0.311	0.202	0.17 to 0.23	99.3	70 to 130	0.0109	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-7

Laboratory ID Number: AY25265

Name	Analyst Test Dat	e Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols				·			
Magnesium, Total	RDA 11/9/201	8 EPA 200.7	2.03	0.1	0.5	10.2	mg/L
Iron, Dissolved	RDA 11/6/201	8 EPA 200.7	2.03	0.01	0.05	0.0553	mg/L
Iron, Total	RDA 11/9/201	8 EPA 200.7	2.03	0.01	0.05	0.0645	mg/L
Potassium, Total	ABB 10/29/20	18 EPA 200.8	5.075	0.215	2.5	J 0.730	mg/L
Mangenese, Dissolved	ABB 10/26/20	18 EPA 200.8	5.075	0.001	0.005	0.814	mg/L
Mangenese, Total	ABB 10/29/20	18 EPA 200.8	5.075	0.001	0.005	0.923	mg/L
Sodium, Total	RDA 11/9/201	8 EPA 200.7	2.03	0.1	0.5	6.93	mg/L
General Characteristics							
pH for Alkalinity	EMG 11/5/201	8 SM 4500H+ B	1		4.00	6.86	SU
Alkalinity, Total as CaCO3	EMG 11/5/201	8 SM 2320 B	1		0.10	210	mg/L
Carbonate Alkalinity, as CaCO3	EMG 11/5/201	8 SM 4500CO2 D	1			0.14	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG 11/5/201	8 SM 4500CO2 D	1			210	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG 22-Oct-18 Sample Date:

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-7

Laboratory ID Number: AY25265

		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y25263 Alkalinity, Total as CaCO3	mg/L				208	49.2	45.0 to 55.0			1.86	10
Y25272 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.9	10.8	10.2	8.5 to 11.5	106	70 to 130	0.537	20
Y25272 Sodium, Total	mg/L -0.00418	0.22	5.00	9.33	9.32	5.23	4.25 to 5.75	106	70 to 130	0.0705	20
Y25263 pH for Alkalinity	SU					6.98	6.95 to 7.05				
Y25272 Iron, Total	mg/L -0.000767	0.022	0.2	0.311	0.311	0.202	0.17 to 0.23	99.3	70 to 130	0.0109	20
Y25272 Iron, Dissolved	mg/L 0.00866	0.022	0.2	0.298	0.297	0.201	0.17 to 0.23	103	70 to 130	0.339	20
Y25272 Magnesium, Total	mg/L -0.0123	0.22	5.00	11.1	11.1	4.99	4.25 to 5.75	97.9	70 to 130	0.110	20
Y25272 Mangenese, Dissolved	mg/L 0.0000212	0.005	0.10	0.263	0.259		0.085 to 0.115	105	70 to 130	1.59	20
Y25272 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.273	0.275	0.100	0.085 to 0.115	106	70 to 130	0.686	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-8

Laboratory ID Number: AY25266

Laboratory 15 Hamber: A12320							
Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Magnesium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	11.1	mg/L
* Iron, Dissolved	RDA 11/6/2018	EPA 200.7	2.03	0.01	0.05	0.508	mg/L
* Iron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.05	0.532	mg/L
* Potassium, Total	ABB 10/29/2018	B EPA 200.8	5.075	0.215	2.5	J 1.38	mg/L
* Mangenese, Dissolved	ABB 10/26/2018	B EPA 200.8	5.075	0.001	0.005	0.186	mg/L
* Mangenese, Total	ABB 10/29/2018	3 EPA 200.8	5.075	0.001	0.005	0.202	mg/L
* Sodium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	1.55	mg/L
General Characteristics							
pH for Alkalinity	EMG 11/5/2018	SM 4500H+ B	1		4.00	7.64	SU
Alkalinity, Total as CaCO3	EMG 11/5/2018	SM 2320 B	1		0.10	183	mg/L
Carbonate Alkalinity, as CaCO3	EMG 11/5/2018	SM 4500CO2 D	1			0.75	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG 11/5/2018	SM 4500CO2 D	1			182	mg/L
Distance / intaminty, as success	EWIO 11/0/2010	OW 4000002 B	•			102	;

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-8

Laboratory ID Number: AY25266

		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y25272 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.9	10.8	10.2	8.5 to 11.5	106	70 to 130	0.537	20
Y25263 Alkalinity, Total as CaCO3	mg/L				208	49.2	45.0 to 55.0			1.86	10
Y25272 Sodium, Total	mg/L -0.00418	0.22	5.00	9.33	9.32	5.23	4.25 to 5.75	106	70 to 130	0.0705	20
Y25272 Iron, Dissolved	mg/L 0.00866	0.022	0.2	0.298	0.297	0.201	0.17 to 0.23	103	70 to 130	0.339	20
Y25272 Magnesium, Total	mg/L -0.0123	0.22	5.00	11.1	11.1	4.99	4.25 to 5.75	97.9	70 to 130	0.110	20
Y25272 Mangenese, Dissolved	mg/L 0.0000212	0.005	0.10	0.263	0.259		0.085 to 0.115	105	70 to 130	1.59	20
Y25272 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.273	0.275	0.100	0.085 to 0.115	106	70 to 130	0.686	20
Y25263 pH for Alkalinity	SU					6.98	6.95 to 7.05				
Y25272 Iron, Total	mg/L -0.000767	0.022	0.2	0.311	0.311	0.202	0.17 to 0.23	99.3	70 to 130	0.0109	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-9

Laboratory ID Number: AY25267

Name	Analyst	Test Date	Reference	Vio Spec DF	MDL	RL	O	Results	Units
	7			0,000 D1					
Metals, Cyanide, Total Phenols									_
* Magnesium, Total	RDA	11/9/2018	EPA 200.7	2.03	0.1	0.5		7.34	mg/L
* Iron, Dissolved	RDA	11/6/2018	EPA 200.7	2.03	0.01	0.05		0.252	mg/L
* Iron, Total	RDA	11/9/2018	EPA 200.7	2.03	0.01	0.05		0.321	mg/L
* Potassium, Total	ABB	10/29/2018	EPA 200.8	5.075	0.215	2.5	J	0.795	mg/L
* Mangenese, Dissolved	ABB	10/26/2018	EPA 200.8	5.075	0.001	0.005		0.0647	mg/L
 Mangenese, Total 	ABB	10/29/2018	EPA 200.8	5.075	0.001	0.005		0.0642	mg/L
* Sodium, Total	RDA	11/9/2018	EPA 200.7	2.03	0.1	0.5		3.68	mg/L
General Characteristics									
pH for Alkalinity	EMG	11/5/2018	SM 4500H+ B	1		4.00		7.26	SU
Alkalinity, Total as CaCO3	EMG	11/5/2018	SM 2320 B	1		0.10		170	mg/L
Carbonate Alkalinity, as CaCO3	EMG	11/5/2018	SM 4500CO2 D	1				0.29	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG	11/5/2018	SM 4500CO2 D	1				170	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-9

Laboratory ID Number: AY25267

		MB					LCS		Rec		Prec
ample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
25272 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.9	10.8	10.2	8.5 to 11.5	106	70 to 130	0.537	20
25263 Alkalinity, Total as CaCO3	mg/L				208	49.2	45.0 to 55.0			1.86	10
25272 Sodium, Total	mg/L -0.00418	0.22	5.00	9.33	9.32	5.23	4.25 to 5.75	106	70 to 130	0.0705	20
25263 pH for Alkalinity	SU					6.98	6.95 to 7.05				
25272 Iron, Total	mg/L -0.000767	0.022	0.2	0.311	0.311	0.202	0.17 to 0.23	99.3	70 to 130	0.0109	20
25272 Iron, Dissolved	mg/L 0.00866	0.022	0.2	0.298	0.297	0.201	0.17 to 0.23	103	70 to 130	0.339	20
25272 Magnesium, Total	mg/L -0.0123	0.22	5.00	11.1	11.1	4.99	4.25 to 5.75	97.9	70 to 130	0.110	20
25272 Mangenese, Dissolved	mg/L 0.0000212	0.005	0.10	0.263	0.259		0.085 to 0.115	105	70 to 130	1.59	20
25272 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.273	0.275	0.100	0.085 to 0.115	106	70 to 130	0.686	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-2

Laboratory ID Number: AY25268

Eaboratory ID Number: A12320								
Name	Analyst Test Da	te Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols								
* Magnesium, Total	RDA 11/9/20	18 EPA 200.7	2.03	0.1	0.5		21.8	mg/L
* Iron, Dissolved	RDA 11/6/20	18 EPA 200.7	2.03	0.01	0.05	J	0.0360	mg/L
* Iron, Total	RDA 11/9/20	18 EPA 200.7	2.03	0.01	0.05	J	0.0452	mg/L
* Potassium, Total	ABB 10/29/2	018 EPA 200.8	5.075	0.215	2.5	J	0.518	mg/L
* Mangenese, Dissolved	ABB 10/26/2	018 EPA 200.8	5.075	0.001	0.005	J	0.00301	mg/L
* Mangenese, Total	ABB 10/29/2	018 EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Sodium, Total	RDA 11/9/20	18 EPA 200.7	2.03	0.1	0.5		2.68	mg/L
General Characteristics								
pH for Alkalinity	EMG 11/5/20	18 SM 4500H+ B	1		4.00		7.28	SU
Alkalinity, Total as CaCO3	EMG 11/5/20	18 SM 2320 B	1		0.10		297	mg/L
Carbonate Alkalinity, as CaCO3	EMG 11/5/20	18 SM 4500CO2 D	1				0.53	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG 11/5/20	18 SM 4500CO2 D	1				296	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-2

Laboratory ID Number: AY25268

		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y25272 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.9	10.8	10.2	8.5 to 11.5	106	70 to 130	0.537	20
Y25263 Alkalinity, Total as CaCO3	mg/L				208	49.2	45.0 to 55.0			1.86	10
Y25272 Sodium, Total	mg/L -0.00418	0.22	5.00	9.33	9.32	5.23	4.25 to 5.75	106	70 to 130	0.0705	20
Y25263 pH for Alkalinity	SU					6.98	6.95 to 7.05				
Y25272 Iron, Total	mg/L -0.000767	0.022	0.2	0.311	0.311	0.202	0.17 to 0.23	99.3	70 to 130	0.0109	20
Y25272 Mangenese, Dissolved	mg/L 0.0000212	0.005	0.10	0.263	0.259		0.085 to 0.115	105	70 to 130	1.59	20
Y25272 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.273	0.275	0.100	0.085 to 0.115	106	70 to 130	0.686	20
Y25272 Iron, Dissolved	mg/L 0.00866	0.022	0.2	0.298	0.297	0.201	0.17 to 0.23	103	70 to 130	0.339	20
Y25272 Magnesium, Total	mg/L -0.0123	0.22	5.00	11.1	11.1	4.99	4.25 to 5.75	97.9	70 to 130	0.110	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-15

Laboratory ID Number: AY25269

Name	Analyst 7	Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols									,
Magnesium, Total	RDA 1	11/9/2018	EPA 200.7	2.03	0.1	0.5	J	0.402	mg/L
Iron, Dissolved	RDA 1	11/6/2018	EPA 200.7	2.03	0.01	0.05		0.0504	mg/L
Iron, Total	RDA 1	11/9/2018	EPA 200.7	2.03	0.01	0.05	J	0.0338	mg/L
Potassium, Total	ABB 1	10/29/2018	EPA 200.8	5.075	0.215	2.5	J	0.327	mg/L
Mangenese, Dissolved	ABB 1	10/26/2018	EPA 200.8	5.075	0.001	0.005		0.107	mg/L
Mangenese, Total	ABB 1	10/29/2018	EPA 200.8	5.075	0.001	0.005		0.111	mg/L
Sodium, Total	RDA 1	11/9/2018	EPA 200.7	2.03	0.1	0.5		1.55	mg/L
General Characteristics									
pH for Alkalinity	EMG 1	11/5/2018	SM 4500H+ B	1		4.00		5.91	SU
Alkalinity, Total as CaCO3	EMG 1	11/5/2018	SM 2320 B	1		0.10		13.6	mg/L
Carbonate Alkalinity, as CaCO3	EMG 1	11/5/2018	SM 4500CO2 D	1				0.00	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG 1	11/5/2018	SM 4500CO2 D	1				13.6	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-15

Laboratory ID Number: AY25269

		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y25272 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.9	10.8	10.2	8.5 to 11.5	106	70 to 130	0.537	20
Y25263 Alkalinity, Total as CaCO3	mg/L				208	49.2	45.0 to 55.0			1.86	10
Y25272 Sodium, Total	mg/L -0.00418	0.22	5.00	9.33	9.32	5.23	4.25 to 5.75	106	70 to 130	0.0705	20
Y25263 pH for Alkalinity	SU					6.98	6.95 to 7.05				
Y25272 Iron, Total	mg/L -0.000767	0.022	0.2	0.311	0.311	0.202	0.17 to 0.23	99.3	70 to 130	0.0109	20
Y25272 Mangenese, Dissolved	mg/L 0.0000212	0.005	0.10	0.263	0.259		0.085 to 0.115	105	70 to 130	1.59	20
Y25272 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.273	0.275	0.100	0.085 to 0.115	106	70 to 130	0.686	20
Y25272 Iron, Dissolved	mg/L 0.00866	0.022	0.2	0.298	0.297	0.201	0.17 to 0.23	103	70 to 130	0.339	20
Y25272 Magnesium, Total	mg/L -0.0123	0.22	5.00	11.1	11.1	4.99	4.25 to 5.75	97.9	70 to 130	0.110	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-3

Laboratory ID Number: AY25270

Laboratory ID Nulliber. A12327	U								
Name	Analyst	Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols									
* Magnesium, Total	RDA	11/9/2018	EPA 200.7	2.03	0.1	0.5		2.86	mg/L
* Iron, Dissolved	RDA	11/6/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
* Iron, Total	RDA	11/9/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
* Potassium, Total	ABB	10/29/2018	EPA 200.8	5.075	0.215	2.5		10.7	mg/L
* Mangenese, Dissolved	ABB	10/26/2018	EPA 200.8	5.075	0.001	0.005		0.0141	mg/L
* Mangenese, Total	ABB	10/29/2018	EPA 200.8	5.075	0.001	0.005		0.0156	mg/L
* Sodium, Total	RDA	11/9/2018	EPA 200.7	2.03	0.1	0.5		7.75	mg/L
General Characteristics									
pH for Alkalinity	EMG	11/5/2018	SM 4500H+ B	1		4.00		6.81	SU
Alkalinity, Total as CaCO3	EMG	11/5/2018	SM 2320 B	1		0.10		193	mg/L
Carbonate Alkalinity, as CaCO3	EMG	11/5/2018	SM 4500CO2 D	1				0.12	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG	11/5/2018	SM 4500CO2 D	1				193	mg/L

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-3

Laboratory ID Number: AY25270

		MB					LCS		Rec		Prec
ample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
/25272 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.9	10.8	10.2	8.5 to 11.5	106	70 to 130	0.537	20
/25263 Alkalinity, Total as CaCO3	mg/L				208	49.2	45.0 to 55.0			1.86	10
/25272 Iron, Dissolved	mg/L 0.00866	0.022	0.2	0.298	0.297	0.201	0.17 to 0.23	103	70 to 130	0.339	20
/25272 Magnesium, Total	mg/L -0.0123	0.22	5.00	11.1	11.1	4.99	4.25 to 5.75	97.9	70 to 130	0.110	20
/25272 Sodium, Total	mg/L -0.00418	0.22	5.00	9.33	9.32	5.23	4.25 to 5.75	106	70 to 130	0.0705	20
25272 Mangenese, Dissolved	mg/L 0.0000212	0.005	0.10	0.263	0.259		0.085 to 0.115	105	70 to 130	1.59	20
/25272 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.273	0.275	0.100	0.085 to 0.115	106	70 to 130	0.686	20
/25263 pH for Alkalinity	SU					6.98	6.95 to 7.05				
/25272 Iron, Total	mg/L -0.000767	0.022	0.2	0.311	0.311	0.202	0.17 to 0.23	99.3	70 to 130	0.0109	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

* Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report

Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-14S

Laboratory ID Number: AY25271

Name	Analyst	Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols								
* Magnesium, Total	RDA	11/9/2018	EPA 200.7	2.03	0.1	0.5	9.51	mg/L
* Iron, Dissolved	RDA	11/6/2018	EPA 200.7	2.03	0.01	0.05	0.0656	mg/L
* Iron, Total	RDA	11/9/2018	EPA 200.7	2.03	0.01	0.05	0.0741	mg/L
* Potassium, Total	ABB	10/29/2018	EPA 200.8	5.075	0.215	2.5	J 0.917	mg/L
* Mangenese, Dissolved	ABB	10/26/2018	EPA 200.8	5.075	0.001	0.005	0.152	mg/L
* Mangenese, Total	ABB	10/29/2018	EPA 200.8	5.075	0.001	0.005	0.156	mg/L
* Sodium, Total	RDA	11/9/2018	EPA 200.7	2.03	0.1	0.5	22.3	mg/L
General Characteristics								
pH for Alkalinity	EMG	11/6/2018	SM 4500H+ B	1		4.00	7.72	SU
Alkalinity, Total as CaCO3	EMG	11/6/2018	SM 2320 B	1		0.10	191	mg/L
Carbonate Alkalinity, as CaCO3	EMG	11/6/2018	SM 4500CO2 D	1			0.94	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG	11/6/2018	SM 4500CO2 D	1			190	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-14S

Laboratory ID Number: AY25271

Edboratory ID Humber. A123211											
		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y25272 Iron, Total	mg/L -0.000767	0.022	0.2	0.311	0.311	0.202	0.17 to 0.23	99.3	70 to 130	0.0109	20
Y25272 Sodium, Total	mg/L -0.00418	0.22	5.00	9.33	9.32	5.23	4.25 to 5.75	106	70 to 130	0.0705	20
Y25272 Iron, Dissolved	mg/L 0.00866	0.022	0.2	0.298	0.297	0.201	0.17 to 0.23	103	70 to 130	0.339	20
Y25272 Magnesium, Total	mg/L -0.0123	0.22	5.00	11.1	11.1	4.99	4.25 to 5.75	97.9	70 to 130	0.110	20
Y25272 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.9	10.8	10.2	8.5 to 11.5	106	70 to 130	0.537	20
Y25376 pH for Alkalinity	SU					6.96	6.95 to 7.05				
Y25272 Mangenese, Dissolved	mg/L 0.0000212	0.005	0.10	0.263	0.259		0.085 to 0.115	105	70 to 130	1.59	20
Y25272 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.273	0.275	0.100	0.085 to 0.115	106	70 to 130	0.686	20
AY25376 Alkalinity, Total as CaCO3	mg/L				239	49.2	45.0 to 55.0			1.27	10

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-12

Laboratory ID Number: AY25272

Edbordtory ID Hamber. A12021							
Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Magnesium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	6.20	mg/L
* Iron, Dissolved	RDA 11/6/2018	EPA 200.7	2.03	0.01	0.05	0.0921	mg/L
* Iron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.05	0.113	mg/L
* Potassium, Total	ABB 10/29/2018	3 EPA 200.8	5.075	0.215	2.5	J 0.290	mg/L
* Mangenese, Dissolved	ABB 10/26/2018	3 EPA 200.8	5.075	0.001	0.005	0.159	mg/L
* Mangenese, Total	ABB 10/29/2018	3 EPA 200.8	5.075	0.001	0.005	0.167	mg/L
* Sodium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	4.03	mg/L
General Characteristics							
pH for Alkalinity	EMG 11/6/2018	SM 4500H+ B	1		4.00	7.46	SU
Alkalinity, Total as CaCO3	EMG 11/6/2018	SM 2320 B	1		0.10	185	mg/L
Carbonate Alkalinity, as CaCO3	EMG 11/6/2018	SM 4500CO2 D	1			0.50	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG 11/6/2018	SM 4500CO2 D	1			184	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-12

Laboratory ID Number: AY25272

	MB					LCS		Rec		Prec
Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
mg/L -0.000767	0.022	0.2	0.311	0.311	0.202	0.17 to 0.23	99.3	70 to 130	0.0109	20
mg/L -0.00418	0.22	5.00	9.33	9.32	5.23	4.25 to 5.75	106	70 to 130	0.0705	20
mg/L 0.00866	0.022	0.2	0.298	0.297	0.201	0.17 to 0.23	103	70 to 130	0.339	20
mg/L -0.0123	0.22	5.00	11.1	11.1	4.99	4.25 to 5.75	97.9	70 to 130	0.110	20
mg/L 0.0000212	0.005	0.10	0.263	0.259		0.085 to 0.115	105	70 to 130	1.59	20
mg/L -0.000271	0.0022	0.10	0.273	0.275	0.100	0.085 to 0.115	106	70 to 130	0.686	20
mg/L				239	49.2	45.0 to 55.0			1.27	10
mg/L 0.00815	0.0946	10.0	10.9	10.8	10.2	8.5 to 11.5	106	70 to 130	0.537	20
SU					6.96	6.95 to 7.05				
	mg/L -0.000767 mg/L -0.00418 mg/L 0.00866 mg/L -0.0123 mg/L 0.0000212 mg/L -0.000271 mg/L mg/L 0.00815	Units MB Limit mg/L -0.000767 0.022 mg/L -0.00418 0.22 mg/L 0.00866 0.022 mg/L -0.0123 0.22 mg/L 0.0000212 0.005 mg/L -0.000271 0.0022 mg/L 0.00815 0.0946	Units MB Limit Spike mg/L -0.000767 0.022 0.2 mg/L -0.00418 0.22 5.00 mg/L 0.00866 0.022 0.2 mg/L -0.0123 0.22 5.00 mg/L 0.0000212 0.005 0.10 mg/L -0.000271 0.0022 0.10 mg/L 0.00815 0.0946 10.0	Units MB Limit Spike MS mg/L -0.000767 0.022 0.2 0.311 mg/L -0.00418 0.22 5.00 9.33 mg/L 0.00866 0.022 0.2 0.298 mg/L -0.0123 0.22 5.00 11.1 mg/L 0.0000212 0.005 0.10 0.263 mg/L -0.000271 0.0022 0.10 0.273 mg/L 0.00815 0.0946 10.0 10.9	Units MB Limit Spike MS MSD mg/L -0.000767 0.022 0.2 0.311 0.311 mg/L -0.00418 0.22 5.00 9.33 9.32 mg/L 0.00866 0.022 0.2 0.298 0.297 mg/L -0.0123 0.22 5.00 11.1 11.1 mg/L 0.0000212 0.005 0.10 0.263 0.259 mg/L -0.000271 0.0022 0.10 0.273 0.275 mg/L 0.00815 0.0946 10.0 10.9 10.8	Units MB Limit Spike MS MSD LCS mg/L -0.000767 0.022 0.2 0.311 0.311 0.202 mg/L -0.00418 0.22 5.00 9.33 9.32 5.23 mg/L 0.00866 0.022 0.2 0.298 0.297 0.201 mg/L -0.0123 0.22 5.00 11.1 11.1 4.99 mg/L 0.0000212 0.005 0.10 0.263 0.259 mg/L -0.000271 0.0022 0.10 0.273 0.275 0.100 mg/L 0.00815 0.0946 10.0 10.9 10.8 10.2	Units MB Limit Spike MS MSD LCS Limit mg/L -0.000767 0.022 0.2 0.311 0.311 0.202 0.17 to 0.23 mg/L -0.00418 0.22 5.00 9.33 9.32 5.23 4.25 to 5.75 mg/L 0.00866 0.022 0.2 0.298 0.297 0.201 0.17 to 0.23 mg/L -0.0123 0.22 5.00 11.1 11.1 4.99 4.25 to 5.75 mg/L 0.0000212 0.005 0.10 0.263 0.259 0.085 to 0.115 mg/L -0.000271 0.0022 0.10 0.273 0.275 0.100 0.085 to 0.115 mg/L 0.00815 0.0946 10.0 10.9 10.8 10.2 8.5 to 11.5	Units MB Limit Spike MS MSD LCS Limit Rec mg/L -0.000767 0.022 0.2 0.311 0.311 0.202 0.17 to 0.23 99.3 mg/L -0.00418 0.22 5.00 9.33 9.32 5.23 4.25 to 5.75 106 mg/L 0.00866 0.022 0.2 0.298 0.297 0.201 0.17 to 0.23 103 mg/L -0.0123 0.22 5.00 11.1 11.1 4.99 4.25 to 5.75 97.9 mg/L 0.0000212 0.005 0.10 0.263 0.259 0.085 to 0.115 105 mg/L -0.000271 0.0022 0.10 0.273 0.275 0.100 0.085 to 0.115 106 mg/L 0.00815 0.0946 10.0 10.9 10.8 10.2 8.5 to 11.5 106	Units MB Limit Spike MS MSD LCS Limit Rec Limit mg/L -0.000767 0.022 0.2 0.311 0.311 0.202 0.17 to 0.23 99.3 70 to 130 mg/L -0.00418 0.22 5.00 9.33 9.32 5.23 4.25 to 5.75 106 70 to 130 mg/L 0.00866 0.022 0.2 0.298 0.297 0.201 0.17 to 0.23 103 70 to 130 mg/L -0.0123 0.22 5.00 11.1 11.1 4.99 4.25 to 5.75 97.9 70 to 130 mg/L 0.0000212 0.005 0.10 0.263 0.259 0.085 to 0.115 105 70 to 130 mg/L -0.000271 0.0022 0.10 0.273 0.275 0.100 0.085 to 0.115 106 70 to 130 mg/L 0.00815 0.0946 10.0 10.9 10.8 10.2 8.5 to 11.5 106 70 to 130	Units MB Limit Spike MS MSD LCS Limit Rec Limit Prec mg/L -0.000767 0.022 0.2 0.311 0.311 0.202 0.17 to 0.23 99.3 70 to 130 0.0109 mg/L -0.00418 0.22 5.00 9.33 9.32 5.23 4.25 to 5.75 106 70 to 130 0.0705 mg/L 0.00866 0.022 0.2 0.298 0.297 0.201 0.17 to 0.23 103 70 to 130 0.339 mg/L -0.0123 0.22 5.00 11.1 11.1 4.99 4.25 to 5.75 97.9 70 to 130 0.110 mg/L 0.0000212 0.005 0.10 0.263 0.259 0.085 to 0.115 105 70 to 130 0.686 mg/L -0.000271 0.0022 0.10 0.273 0.275 0.100 0.085 to 0.115 106 70 to 130 0.686 mg/L 0.00815 0.0946 10.0 10.9 10.8 10.2 8.5 to 11.5 106 70 to 130 0.537

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-13

Laboratory ID Number: AY25273

A 1 1 T 1 D 1	D (\" 0 DE	1451			D 11	11.7
Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5		9.74	mg/L
RDA 11/6/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
RDA 11/9/2018	EPA 200.7	2.03	0.01	0.05	J	0.0167	mg/L
ABB 10/29/201	8 EPA 200.8	5.075	0.215	2.5	J	1.11	mg/L
ABB 10/26/201	8 EPA 200.8	5.075	0.001	0.005	J	0.00151	mg/L
ABB 10/29/201	8 EPA 200.8	5.075	0.001	0.005		0.0560	mg/L
RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5		3.88	mg/L
EMG 11/6/2018	SM 4500H+ B	1		4.00		7.28	SU
EMG 11/6/2018	SM 2320 B	1		0.10		260	mg/L
EMG 11/6/2018	SM 4500CO2 D	1				0.47	mg/L
EMG 11/6/2018	SM 4500CO2 D	1				260	mg/L
	RDA 11/6/2018 RDA 11/9/2018 ABB 10/29/2018 ABB 10/29/2018 RDA 11/9/2018 EMG 11/6/2018 EMG 11/6/2018	RDA 11/9/2018 EPA 200.7 RDA 11/6/2018 EPA 200.7 RDA 11/9/2018 EPA 200.7 ABB 10/29/2018 EPA 200.8 ABB 10/26/2018 EPA 200.8 ABB 10/29/2018 EPA 200.8 RDA 11/9/2018 EPA 200.7 EMG 11/6/2018 SM 4500H+ B EMG 11/6/2018 SM 2320 B EMG 11/6/2018 SM 4500CO2 D	RDA 11/9/2018 EPA 200.7 2.03 RDA 11/6/2018 EPA 200.7 2.03 RDA 11/9/2018 EPA 200.7 2.03 ABB 10/29/2018 EPA 200.8 5.075 ABB 10/26/2018 EPA 200.8 5.075 ABB 10/29/2018 EPA 200.8 5.075 RDA 11/9/2018 EPA 200.7 2.03 EMG 11/6/2018 SM 4500H+ B 1 EMG 11/6/2018 SM 2320 B 1 EMG 11/6/2018 SM 4500CO2 D 1	RDA 11/9/2018 EPA 200.7 2.03 0.1 RDA 11/6/2018 EPA 200.7 2.03 0.01 RDA 11/9/2018 EPA 200.7 2.03 0.01 ABB 10/29/2018 EPA 200.8 5.075 0.215 ABB 10/26/2018 EPA 200.8 5.075 0.001 ABB 10/29/2018 EPA 200.8 5.075 0.001 RDA 11/9/2018 EPA 200.7 2.03 0.1 EMG 11/6/2018 SM 4500H+ B 1 EMG 11/6/2018 SM 2320 B 1 EMG 11/6/2018 SM 4500CO2 D 1	RDA 11/9/2018 EPA 200.7 2.03 0.1 0.5 RDA 11/6/2018 EPA 200.7 2.03 0.01 0.05 RDA 11/9/2018 EPA 200.7 2.03 0.01 0.05 ABB 10/29/2018 EPA 200.8 5.075 0.215 2.5 ABB 10/26/2018 EPA 200.8 5.075 0.001 0.005 ABB 10/29/2018 EPA 200.8 5.075 0.001 0.005 RDA 11/9/2018 EPA 200.8 5.075 0.001 0.005 RDA 11/9/2018 EPA 200.7 2.03 0.1 0.5 EMG 11/6/2018 SM 4500H+ B 1 4.00 EMG 11/6/2018 SM 2320 B 1 0.10	RDA 11/9/2018 EPA 200.7 2.03 0.1 0.5 RDA 11/6/2018 EPA 200.7 2.03 0.01 0.05 U RDA 11/9/2018 EPA 200.7 2.03 0.01 0.05 J ABB 10/29/2018 EPA 200.8 5.075 0.215 2.5 J ABB 10/26/2018 EPA 200.8 5.075 0.001 0.005 J ABB 10/29/2018 EPA 200.8 5.075 0.001 0.005 J ABB 10/29/2018 EPA 200.8 5.075 0.001 0.005 RDA 11/9/2018 EPA 200.7 2.03 0.1 0.5 EMG 11/6/2018 SM 4500H+ B 1 4.00 EMG 11/6/2018 SM 2320 B 1 0.10 EMG 11/6/2018 SM 4500CO2 D 1	RDA 11/9/2018 EPA 200.7 2.03 0.1 0.5 9.74 RDA 11/6/2018 EPA 200.7 2.03 0.01 0.05 U Not Detected RDA 11/9/2018 EPA 200.7 2.03 0.01 0.05 J 0.0167 ABB 10/29/2018 EPA 200.8 5.075 0.215 2.5 J 1.11 ABB 10/26/2018 EPA 200.8 5.075 0.001 0.005 J 0.00151 ABB 10/29/2018 EPA 200.8 5.075 0.001 0.005 J 0.00151 ABB 10/29/2018 EPA 200.8 5.075 0.001 0.005 0.0560 RDA 11/9/2018 EPA 200.7 2.03 0.1 0.5 3.88 EMG 11/6/2018 SM 4500H+ B 1 4.00 7.28 EMG 11/6/2018 SM 2320 B 1 0.10 260 EMG 11/6/2018 SM 4500CO2 D 1

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-13

Laboratory ID Number: AY25273

		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y25376 pH for Alkalinity	SU					6.96	6.95 to 7.05				
Y25378 Iron, Dissolved	mg/L -0.000781	0.022	0.2	0.197	0.203	0.199	0.17 to 0.23	98.7	70 to 130	2.60	20
Y25277 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.285	0.279	0.100	0.085 to 0.115	102	70 to 130	2.25	20
Y25277 Mangenese, Dissolved	mg/L 0.00000653	0.005	0.10	0.247	0.258		0.085 to 0.115	85.9	70 to 130	4.26	20
Y25378 Iron, Total	mg/L -0.000677	0.022	0.2	0.197	0.197	0.200	0.17 to 0.23	98.3	70 to 130	0.0030	520
Y25378 Sodium, Total	mg/L -0.00185	0.22	5.00	4.98	5.00	5.04	4.25 to 5.75	99.6	70 to 130	0.477	20
Y25277 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.7	11.1	10.2	8.5 to 11.5	104	70 to 130	3.70	20
Y25376 Alkalinity, Total as CaCO3	mg/L				239	49.2	45.0 to 55.0			1.27	10
Y25378 Magnesium, Total	mg/L -0.0127	0.22	5.00	4.86	4.85	4.82	4.25 to 5.75	97.2	70 to 130	0.163	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-1

Laboratory ID Number: AY25274

Eaboratory ID Number: A12321							-
Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Magnesium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	19.1	mg/L
* Iron, Dissolved	RDA 11/6/2018	EPA 200.7	2.03	0.01	0.05	0.240	mg/L
* Iron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.05	0.238	mg/L
* Potassium, Total	ABB 10/29/201	8 EPA 200.8	5.075	0.215	2.5	J 1.23	mg/L
* Mangenese, Dissolved	ABB 10/26/201	8 EPA 200.8	5.075	0.001	0.005	0.00722	mg/L
* Mangenese, Total	ABB 10/29/201	8 EPA 200.8	5.075	0.001	0.005	0.00557	mg/L
* Sodium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	9.31	mg/L
General Characteristics							
pH for Alkalinity	EMG 11/6/2018	SM 4500H+ B	1		4.00	7.85	SU
Alkalinity, Total as CaCO3	EMG 11/6/2018	SM 2320 B	1		0.10	194	mg/L
Carbonate Alkalinity, as CaCO3	EMG 11/6/2018	SM 4500CO2 D	1			1.28	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG 11/6/2018	SM 4500CO2 D	1			193	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-1

Laboratory ID Number: AY25274

		MB					LCS		Rec		Pred
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y25376 pH for Alkalinity	SU					6.96	6.95 to 7.05				
Y25378 Iron, Dissolved	mg/L -0.000781	0.022	0.2	0.197	0.203	0.199	0.17 to 0.23	98.7	70 to 130	2.60	20
Y25277 Mangenese, Dissolved	mg/L 0.00000653	0.005	0.10	0.247	0.258		0.085 to 0.115	85.9	70 to 130	4.26	20
Y25378 Magnesium, Total	mg/L -0.0127	0.22	5.00	4.86	4.85	4.82	4.25 to 5.75	97.2	70 to 130	0.163	20
Y25378 Iron, Total	mg/L -0.000677	0.022	0.2	0.197	0.197	0.200	0.17 to 0.23	98.3	70 to 130	0.0030	520
Y25378 Sodium, Total	mg/L -0.00185	0.22	5.00	4.98	5.00	5.04	4.25 to 5.75	99.6	70 to 130	0.477	20
Y25277 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.285	0.279	0.100	0.085 to 0.115	102	70 to 130	2.25	20
Y25277 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.7	11.1	10.2	8.5 to 11.5	104	70 to 130	3.70	20
Y25376 Alkalinity, Total as CaCO3	mg/L				239	49.2	45.0 to 55.0			1.27	10

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-6 DUP

Laboratory ID Number: AY25275

Name	Analyst T	Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols									
Magnesium, Total	RDA 1	1/9/2018	EPA 200.7	2.03	0.1	0.5	J	0.309	mg/L
Iron, Dissolved	RDA 1	1/6/2018	EPA 200.7	2.03	0.01	0.05	J	0.0255	mg/L
Iron, Total	RDA 1	1/9/2018	EPA 200.7	2.03	0.01	0.05	J	0.0251	mg/L
Potassium, Total	ABB 1	0/29/2018	EPA 200.8	5.075	0.215	2.5	U	Not Detected	mg/L
Mangenese, Dissolved	ABB 1	0/26/2018	EPA 200.8	5.075	0.001	0.005		0.0109	mg/L
Mangenese, Total	ABB 1	0/29/2018	EPA 200.8	5.075	0.001	0.005		0.00935	mg/L
Sodium, Total	RDA 1	1/9/2018	EPA 200.7	2.03	0.1	0.5		2.54	mg/L
General Characteristics									
pH for Alkalinity	EMG 1	1/5/2018	SM 4500H+ B	1		4.00		4.93	SU
Alkalinity, Total as CaCO3	EMG 1	1/5/2018	SM 2320 B	1		0.10		1.66	mg/L
Carbonate Alkalinity, as CaCO3	EMG 1	1/5/2018	SM 4500CO2 D	1				0.00	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG 1	1/5/2018	SM 4500CO2 D	1				1.66	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-6 DUP

Laboratory ID Number: AY25275

			MB			1	1	LCS		Rec		Prec
Sample Anal	lysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y25378 Mag	nesium, Total	mg/L -0.0127	0.22	5.00	4.86	4.85	4.82	4.25 to 5.75	97.2	70 to 130	0.163	20
Y25277 Pota	assium, Total	mg/L 0.00815	0.0946	10.0	10.7	11.1	10.2	8.5 to 11.5	104	70 to 130	3.70	20
4Y25277 Man	igenese, Total	mg/L -0.000271	0.0022	0.10	0.285	0.279	0.100	0.085 to 0.115	102	70 to 130	2.25	20
Y25263 Alka	linity, Total as CaCO3	mg/L				208	49.2	45.0 to 55.0			1.86	10
Y25378 Iron,	, Dissolved	mg/L -0.000781	0.022	0.2	0.197	0.203	0.199	0.17 to 0.23	98.7	70 to 130	2.60	20
4Y25277 Man	igenese, Dissolved	mg/L 0.00000653	0.005	0.10	0.247	0.258		0.085 to 0.115	85.9	70 to 130	4.26	20
Y25263 pH f	or Alkalinity	SU					6.98	6.95 to 7.05				
AY25378 Iron,	, Total	mg/L -0.000677	0.022	0.2	0.197	0.197	0.200	0.17 to 0.23	98.3	70 to 130	0.0030	520
AY25378 Sodi	ium, Total	mg/L -0.00185	0.22	5.00	4.98	5.00	5.04	4.25 to 5.75	99.6	70 to 130	0.477	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB

Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY25276

Name	Analyst	Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols		,			'				
Magnesium, Total	RDA	11/9/2018	EPA 200.7	2.03	0.1	0.5	U	Not Detected	mg/L
Iron, Dissolved	RDA	11/6/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
Iron, Total	RDA	11/9/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
Potassium, Total	ABB	10/29/2018	EPA 200.8	5.075	0.215	2.5	U	Not Detected	mg/L
Mangenese, Dissolved	ABB	10/26/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Mangenese, Total	ABB	10/29/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Sodium, Total	RDA	11/9/2018	EPA 200.7	2.03	0.1	0.5	U	Not Detected	mg/L
General Characteristics									
pH for Alkalinity	EMG	11/5/2018	SM 4500H+ B	1		4.00		5.22	SU
Alkalinity, Total as CaCO3	EMG	11/5/2018	SM 2320 B	1		0.10	U	Not Detected	mg/L
Carbonate Alkalinity, as CaCO3	EMG	11/5/2018	SM 4500CO2 D	1				0	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG	11/5/2018	SM 4500CO2 D	1				0	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 22-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY25276

Laboratory ID Number. A123270									
		MB					LCS	Rec	Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit Pre	c Limit
AY25277 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.7	11.1	10.2	8.5 to 11.5	104 70 to 130 3.7	0 20
Y25277 Mangenese, Dissolved	mg/L 0.00000653	0.005	0.10	0.247	0.258		0.085 to 0.115	85.9 70 to 130 4.2	6 20
Y25378 Magnesium, Total	mg/L -0.0127	0.22	5.00	4.86	4.85	4.82	4.25 to 5.75	97.2 70 to 130 0.1	63 20
Y25277 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.285	0.279	0.100	0.085 to 0.115	102 70 to 130 2.2	5 20
Y25263 Alkalinity, Total as CaCO3	mg/L				208	49.2	45.0 to 55.0	1.8	6 10
Y25378 Iron, Dissolved	mg/L -0.000781	0.022	0.2	0.197	0.203	0.199	0.17 to 0.23	98.7 70 to 130 2.6	0 20
Y25263 pH for Alkalinity	SU					6.98	6.95 to 7.05		
Y25378 Iron, Total	mg/L -0.000677	0.022	0.2	0.197	0.197	0.200	0.17 to 0.23	98.3 70 to 130 0.0	030520
AY25378 Sodium, Total	mg/L -0.00185	0.22	5.00	4.98	5.00	5.04	4.25 to 5.75	99.6 70 to 130 0.4	77 20
	mg/L -0.000677		_			0.200	0.17 to 0.23		

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-12 DUP

Laboratory ID Number: AY25277

Laboratory ID Humber: A12321	<i>I</i>						
Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols	,						
* Magnesium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	6.34	mg/L
* Iron, Dissolved	RDA 11/6/2018	EPA 200.7	2.03	0.01	0.05	0.0955	mg/L
* Iron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.05	0.152	mg/L
* Potassium, Total	ABB 10/29/201	8 EPA 200.8	5.075	0.215	2.5	J 0.286	mg/L
* Mangenese, Dissolved	ABB 10/26/201	8 EPA 200.8	5.075	0.001	0.005	0.161	mg/L
* Mangenese, Total	ABB 10/29/201	8 EPA 200.8	5.075	0.001	0.005	0.183	mg/L
* Sodium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	4.25	mg/L
General Characteristics							
pH for Alkalinity	EMG 11/6/2018	SM 4500H+ B	1		4.00	7.46	SU
Alkalinity, Total as CaCO3	EMG 11/6/2018	SM 2320 B	1		0.10	189	mg/L
Carbonate Alkalinity, as CaCO3	EMG 11/6/2018	SM 4500CO2 D	1			0.51	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG 11/6/2018	SM 4500CO2 D	1			188	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 23-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-12 DUP

Laboratory ID Number: AY25277

		MB					LCS	Rec	Pre
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec Limit	Prec Lin
AY25378 Magnesium, Total	mg/L -0.0127	0.22	5.00	4.86	4.85	4.82	4.25 to 5.75	97.2 70 to 130	0.163 20
AY25378 Iron, Dissolved	mg/L -0.000781	0.022	0.2	0.197	0.203	0.199	0.17 to 0.23	98.7 70 to 130	2.60 20
AY25277 Mangenese, Dissolved	mg/L 0.00000653	0.005	0.10	0.247	0.258		0.085 to 0.115	85.9 70 to 130	4.26 20
AY25376 pH for Alkalinity	SU					6.96	6.95 to 7.05		
AY25277 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.285	0.279	0.100	0.085 to 0.115	102 70 to 130	2.25 20
AY25277 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.7	11.1	10.2	8.5 to 11.5	104 70 to 130	3.70 20
AY25376 Alkalinity, Total as CaCO3	mg/L				239	49.2	45.0 to 55.0		1.27 10
AY25378 Iron, Total	mg/L -0.000677	0.022	0.2	0.197	0.197	0.200	0.17 to 0.23	98.3 70 to 130	0.0030520
AY25378 Sodium, Total	mg/L -0.00185	0.22	5.00	4.98	5.00	5.04	4.25 to 5.75	99.6 70 to 130	0.477 20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-11

Laboratory ID Number: AY25375

Euboratory ID Italiber: A12007	<u> </u>						
Name	Analyst Test Date	Reference	Vio Spec DF	MDL	RL	Q Results	Units
Metals, Cyanide, Total Phenols							
* Magnesium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	1.20	mg/L
* Iron, Dissolved	RDA 11/6/2018	EPA 200.7	2.03	0.01	0.05	0.215	mg/L
* Iron, Total	RDA 11/9/2018	EPA 200.7	2.03	0.01	0.05	0.221	mg/L
* Potassium, Total	ABB 10/29/201	8 EPA 200.8	5.075	0.215	2.5	J 0.228	mg/L
* Mangenese, Dissolved	ABB 11/5/2018	EPA 200.8	5.075	0.001	0.005	0.541	mg/L
* Mangenese, Total	ABB 10/29/201	8 EPA 200.8	5.075	0.001	0.005	0.579	mg/L
* Sodium, Total	RDA 11/9/2018	EPA 200.7	2.03	0.1	0.5	17.3	mg/L
General Characteristics							
pH for Alkalinity	EMG 11/6/2018	SM 4500H+ B	1		4.00	6.26	SU
Alkalinity, Total as CaCO3	EMG 11/6/2018	SM 2320 B	1		0.10	50.0	mg/L
Carbonate Alkalinity, as CaCO3	EMG 11/6/2018	SM 4500CO2 D	1			0.01	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG 11/6/2018	SM 4500CO2 D	1			50.0	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-11

Laboratory ID Number: AY25375

		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y25376 pH for Alkalinity	SU					6.96	6.95 to 7.05				
Y25378 Iron, Dissolved	mg/L -0.000781	0.022	0.2	0.197	0.203	0.199	0.17 to 0.23	98.7	70 to 130	2.60	20
Y25378 Magnesium, Total	mg/L -0.0127	0.22	5.00	4.86	4.85	4.82	4.25 to 5.75	97.2	70 to 130	0.163	20
Y25378 Iron, Total	mg/L -0.000677	0.022	0.2	0.197	0.197	0.200	0.17 to 0.23	98.3	70 to 130	0.0030	520
Y25378 Sodium, Total	mg/L -0.00185	0.22	5.00	4.98	5.00	5.04	4.25 to 5.75	99.6	70 to 130	0.477	20
Y25277 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.7	11.1	10.2	8.5 to 11.5	104	70 to 130	3.70	20
Y25376 Alkalinity, Total as CaCO3	mg/L				239	49.2	45.0 to 55.0			1.27	10
Y25277 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.285	0.279	0.100	0.085 to 0.115	102	70 to 130	2.25	20
Y25378 Mangenese, Dissolved	mg/L -0.00000782	0.005	0.10	0.101	0.105		0.085 to 0.115	101	70 to 130	3.76	20

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-10

Laboratory ID Number: AY25376

Laboratory ID Number: A12007	<u> </u>								
Name	Analyst Tes	st Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols				,					
* Magnesium, Total	RDA 11/9	9/2018	EPA 200.7	2.03	0.1	0.5		1.79	mg/L
* Iron, Dissolved	RDA 11/6	6/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
* Iron, Total	RDA 11/9	9/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
* Potassium, Total	ABB 10/2	29/2018	EPA 200.8	5.075	0.215	2.5	J	0.221	mg/L
* Mangenese, Dissolved	ABB 11/5	5/2018	EPA 200.8	5.075	0.001	0.005		0.0265	mg/L
* Mangenese, Total	ABB 10/2	29/2018	EPA 200.8	5.075	0.001	0.005		0.0251	mg/L
* Sodium, Total	RDA 11/9	9/2018	EPA 200.7	2.03	0.1	0.5		2.04	mg/L
General Characteristics									
pH for Alkalinity	EMG 11/6	6/2018	SM 4500H+ B	1		4.00		7.31	SU
Alkalinity, Total as CaCO3	EMG 11/6	6/2018	SM 2320 B	1		0.10		243	mg/L
Carbonate Alkalinity, as CaCO3	EMG 11/6	6/2018	SM 4500CO2 D	1				0.47	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG 11/6	6/2018	SM 4500CO2 D	1				243	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASG Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum - MW-10

Laboratory ID Number: AY25376

		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y25378 Iron, Dissolved	mg/L -0.000781	0.022	0.2	0.197	0.203	0.199	0.17 to 0.23	98.7	70 to 130	2.60	20
Y25376 pH for Alkalinity	SU					6.96	6.95 to 7.05				
Y25378 Magnesium, Total	mg/L -0.0127	0.22	5.00	4.86	4.85	4.82	4.25 to 5.75	97.2	70 to 130	0.163	20
Y25277 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.285	0.279	0.100	0.085 to 0.115	102	70 to 130	2.25	20
Y25378 Mangenese, Dissolved	mg/L -0.00000782	0.005	0.10	0.101	0.105		0.085 to 0.115	101	70 to 130	3.76	20
Y25378 Iron, Total	mg/L -0.000677	0.022	0.2	0.197	0.197	0.200	0.17 to 0.23	98.3	70 to 130	0.0030	520
Y25378 Sodium, Total	mg/L -0.00185	0.22	5.00	4.98	5.00	5.04	4.25 to 5.75	99.6	70 to 130	0.477	20
Y25277 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.7	11.1	10.2	8.5 to 11.5	104	70 to 130	3.70	20
Y25376 Alkalinity, Total as CaCO3	mg/L				239	49.2	45.0 to 55.0			1.27	10

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY25377

Name	Analyst	Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols		,			'				
Magnesium, Total	RDA	11/9/2018	EPA 200.7	2.03	0.1	0.5	U	Not Detected	mg/L
Iron, Dissolved	RDA	11/6/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
Iron, Total	RDA	11/9/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
Potassium, Total	ABB	10/29/2018	EPA 200.8	5.075	0.215	2.5	U	Not Detected	mg/L
Mangenese, Dissolved	ABB	11/5/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Mangenese, Total	ABB	10/29/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
Sodium, Total	RDA	11/9/2018	EPA 200.7	2.03	0.1	0.5	U	Not Detected	mg/L
General Characteristics									
pH for Alkalinity	EMG	11/6/2018	SM 4500H+ B	1		4.00		5.38	SU
Alkalinity, Total as CaCO3	EMG	11/6/2018	SM 2320 B	1		0.10		0.20	mg/L
Carbonate Alkalinity, as CaCO3	EMG	11/6/2018	SM 4500CO2 D	1				0.00	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG	11/6/2018	SM 4500CO2 D	1				0.20	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGFB Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Field Blank

Laboratory ID Number: AY25377

		MB				'	LCS		Rec		Prec
ample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
25378 Iron, Dissolved	mg/L -0.000781	0.022	0.2	0.197	0.203	0.199	0.17 to 0.23	98.7	70 to 130	2.60	20
25378 Magnesium, Total	mg/L -0.0127	0.22	5.00	4.86	4.85	4.82	4.25 to 5.75	97.2	70 to 130	0.163	20
25376 pH for Alkalinity	SU					6.96	6.95 to 7.05				
25277 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.7	11.1	10.2	8.5 to 11.5	104	70 to 130	3.70	20
25376 Alkalinity, Total as CaC	O3 mg/L				239	49.2	45.0 to 55.0			1.27	10
25378 Iron, Total	mg/L -0.000677	0.022	0.2	0.197	0.197	0.200	0.17 to 0.23	98.3	70 to 130	0.0030	520
25378 Sodium, Total	mg/L -0.00185	0.22	5.00	4.98	5.00	5.04	4.25 to 5.75	99.6	70 to 130	0.477	20
25277 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.285	0.279	0.100	0.085 to 0.115	102	70 to 130	2.25	20
25378 Mangenese, Dissolved	mg/L -0.00000782	0.005	0.10	0.101	0.105		0.085 to 0.115	101	70 to 130	3.76	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGEB Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

Description: Gaston Gypsum Equipment Blank

Laboratory ID Number: AY25378

Name	Analyst	Test Date	Reference	Vio Spec DF	MDL	RL	Q	Results	Units
Metals, Cyanide, Total Phenols		·							
* Magnesium, Total	RDA	11/9/2018	EPA 200.7	2.03	0.1	0.5	U	Not Detected	mg/L
* Iron, Dissolved	RDA	11/6/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
* Iron, Total	RDA	11/9/2018	EPA 200.7	2.03	0.01	0.05	U	Not Detected	mg/L
* Potassium, Total	ABB	10/29/2018	EPA 200.8	5.075	0.215	2.5	U	Not Detected	mg/L
* Mangenese, Dissolved	ABB	11/5/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Mangenese, Total	ABB	10/29/2018	EPA 200.8	5.075	0.001	0.005	U	Not Detected	mg/L
* Sodium, Total	RDA	11/9/2018	EPA 200.7	2.03	0.1	0.5	U	Not Detected	mg/L
General Characteristics									
pH for Alkalinity	EMG	11/6/2018	SM 4500H+ B	1		4.00		5.39	SU
Alkalinity, Total as CaCO3	EMG	11/6/2018	SM 2320 B	1		0.10	U	Not Detected	mg/L
Carbonate Alkalinity, as CaCO3	EMG	11/6/2018	SM 4500CO2 D	1				0	mg/L
Bicarbonate Alkalinity, as CaCO3	EMG	11/6/2018	SM 4500CO2 D	1				0	mg/L

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018

This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

To: Dustin Brooks Greg Dyer

Customer Account: WMWGASGEB Sample Date: 24-Oct-18

Customer ID:

Delivery Date: 24-Oct-18

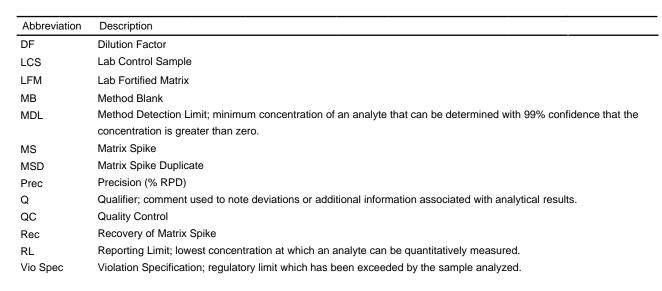
Description: Gaston Gypsum Equipment Blank

Laboratory ID Number: AY25378

		MB					LCS		Rec		Prec
Sample Analysis	Units MB	Limit	Spike	MS	MSD	LCS	Limit	Rec	Limit	Prec	Limit
Y25376 pH for Alkalinity	SU					6.96	6.95 to 7.05				
Y25378 Iron, Dissolved	mg/L -0.000781	0.022	0.2	0.197	0.203	0.199	0.17 to 0.23	98.7	70 to 130	2.60	20
Y25378 Magnesium, Total	mg/L -0.0127	0.22	5.00	4.86	4.85	4.82	4.25 to 5.75	97.2	70 to 130	0.163	20
Y25378 Iron, Total	mg/L -0.000677	0.022	0.2	0.197	0.197	0.200	0.17 to 0.23	98.3	70 to 130	0.0030	520
Y25378 Sodium, Total	mg/L -0.00185	0.22	5.00	4.98	5.00	5.04	4.25 to 5.75	99.6	70 to 130	0.477	20
Y25277 Potassium, Total	mg/L 0.00815	0.0946	10.0	10.7	11.1	10.2	8.5 to 11.5	104	70 to 130	3.70	20
Y25376 Alkalinity, Total as C	aCO3 mg/L				239	49.2	45.0 to 55.0			1.27	10
Y25277 Mangenese, Total	mg/L -0.000271	0.0022	0.10	0.285	0.279	0.100	0.085 to 0.115	102	70 to 130	2.25	20
Y25378 Mangenese, Dissolv	ed mg/L -0.0000078	2 0.005	0.10	0.101	0.105		0.085 to 0.115	101	70 to 130	3.76	20

MDL's and RL's are adjusted for sample dilution, as applicable

Comments: The client submitted filtered samples for dissolved analysis, but no MB or LCS were submitted. Therefore, dissolved data is qualified. LBM 11/26/2018


This Certificate states the physical and/or chemical characteristics of the sample as submitted. This document shall not be reproduced, except in full, without written consent from Alabama Power's General Test Laboratory.

^{*} Test results for these accredited parameters meet all 2003 NELAC and 2009 TNI requirements, with exceptions noted on this report Laboratory certification ID: E571114 Issued By: State of Florida, Department of Health Expiration: June 30, 2019

Definitions

Alabama Power General Test Laboratory 744 County Road 87, GSC#8 Calera, AL 35040 (205) 664-6032 or 6171 FAX (205) 257-1654

Qualifier	Description
В	Analyte found in reagent blank. Indicates possible reagent or background contamination.
E	Estimated reported value exceeded calibration range.
J	Reported value is an estimate because concentration is less than reporting limit.
N	Organic constituents tentatively identified. Confirmation is needed.
R	Matrix spike recovery is out of range.
U	Compound was analyzed, but not detected.
Р	Precision is out of range.
С	Analyte was verified by re-analysis.
Н	The holding time for this test is immediately following sample collection. The samples were analyzed as soon as
	possible after receipt by the laboratory.
L	Check standard is outside of the required specification limit.
D	All samples were stored at less than or equal to 6 °C and for no longer than 48 hours from time of sampling, unless
	otherwise noted.
F	Water Field Group (WFG) qualifier; see comments for more information

Chain of Custody	Field Complete	Outside Lab
Field Groundwater APC General Testing Labors	Lab Complete	
APC General Testing Labors	etory.	

Lab ETA 10/23/2018 17:40

						•									
Reques	ste	d Complete I	Date	Routir	ne				Results To Dustin Brooks, Greg Dyer						
	Sit	e Representa	itive	Tanis	ha	Fenderson			Requested By	Greg Dye	Greg Dyer				
		Colle	ctor	Antho	ny	Goggins			Location	Gaston C	Зур	sum			
Bottles	1	Metals	500 n	nL	3	Alkalinity	250 mL	5	N/A	N/A	7	N/A	N/A		
	2	Dissolved Meta	500 m	ıL	4	N/A	N/A	6	N/A	N/A	8	N/A	N/A		
	С	omments Re	linquis	hed to s	ecu	re location Biolog	gy Shipping La	b G	SC Building 8						

			Bottle		Lab	
Sample #	Date	Time	Count	Description	Filter	Lab Id
MW-5	10/22/18	09:57	3	Groundwater		AY25263
MW-6	10/22/2018	10:56	3	Groundwater		AY25264
MW-7	10/22/2018	12:17	3	Groundwater		AY25265
MW-8	10/22/2018	13:50	3	Groundwater		AY25266
MW-9	10/22/2018	15:10	3	Groundwater		AY25267
MW-2	10/22/2018	17:08	3	Groundwater		AY25268
MW-15	10/23/2018	09:11	3	Groundwater		AY25269
MW-3	10/23/2018	10:50	3	Groundwater		AY25270
MW-14S	10/23/2018	11:56	3	Groundwater		AY25271
MW-12	10/23/2018	12:53	3	Groundwater		AY25272
MW-13	10/23/2018	13:52	3	Groundwater		AY25273
MW-1	10/23/2018	14:45	3	Groundwater		AY25274
MW-6DUP	10/22/2018	10:56	3	Sample Duplicate		AY25275
FB-1	10/22/2018	16:40	3	Field Blank		AY25276
MW-12DUP	10/23/2018	12:53	3	Sample Duplicate		AY25277

Relinquished By	Received By	Date/Time		
and Go	Laura Midkiff Digitally signed by Laura Midkiff Dix cn-alara Midkiff (a-Alabama Power Company, Date: 2018.10.24 07:34.28-05:00' Date: 2018.10.24 07:34.28-05:00'	10/24/2018 07:34		

 SmarTroll ID
 4696-23443-3-2

 Turbidity ID
 5160-26211-1-1

 Sample Event
 1177

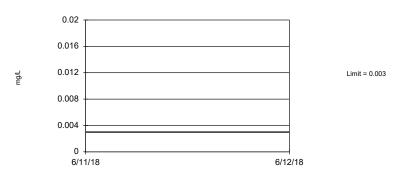
All metals and radiological bottles have pH < 2
Cooler Temp
0.3 degrees C

Thermometer ID
5408-27568-2-2

pH Strip ID
6959-37696-30-17

Alabama Laboratoric SERVIC	Chain of Ground	water	·	La	eld Cor lb Com	-		Outsio		ab ETA	10/24/20	018 15:3	ō
Requested Complete Date Routine							T	Results To Dustin Brooks, Greg Dyer					
Site Representative Tanisha Fenderson							\dashv	Requested By Greg Dyer					
Collector Nick Pitts						┨	Location			1		\dashv	
						╧					닉		
Bottles	\vdash	500 mL	3	· · · · · ·			5	1.7	N/A	7 N/A			_
	2 Dissolved Meta	a 500 mL	4	N/A	N/A		6	N/A	N/A	8 N/A		N/A	
	Comments												
					Bottle					Lab			
Į	Sample #	Date		Time	Count	_		Description		Filter	Lab Io		
ļ	MW-11	10/24/18	3	11:28	3	Grou	nd	water			AY253	' 5	
	MW-10	10/24/201	10/24/2018 13:05			Grou	Groundwater				AY25376		
	FB-2	10/24/2018 11:50			3	Field	Field Blank				AY25377		
ļ	EB-1	10/24/2018		13:40	3	Equipme		ent Blank			AY2537	8	
ļ		-											
-						<u> </u>							
						_							
-													
ŀ						<u> </u>							
ļ													
-													
ļ		-				<u> </u>							
ŀ						-			-				
ŀ						<u> </u>							
ŀ						<u> </u>							
ŀ		-											
ļ		+				<u> </u>			_				
		1				-				\vdash			
}		1				-							
	Daling	uiched By				<u> </u>		Dagaiyad Ry			Data	/Time	
Relinquished By				Received I			Received by Rawa Males	Date/Tin					
	26							(Yawa Palgo	•		10/24/20	118 15:5	6
													╛
SmarTroll ID 5141-26150-1-1							netals and radi	ological l	oottles h	nave pH <	2 V		
Turbidity ID 3901-20009-2-1							Cooler Temp			1			
Sample Event 1177						Thermometer ID 5408-27568-2-2							
				_			pH Strip ID	6959-376	96-30-17	,			

Page 42 of 42

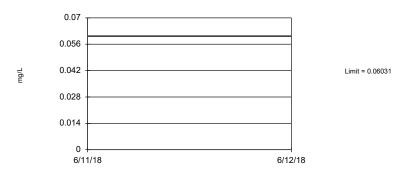

7.1

Appendix B

1st Semi-Annual

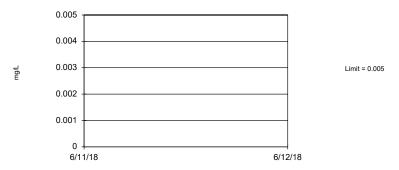
Upper Tolerance Limits - App IV

		Plant Gaston	Client: Southern	Company Dat	ta: Gaston GSA	Printed 1/1	4/2019, 9:26 AM		
Constituent	Upper Lim.	Bg N	<u>Bg Mean</u>	Std. Dev.	%NDs	ND Adj.	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Antimony (mg/L)	0.003	40	n/a	n/a	95	n/a	n/a	0.1285	NP Inter(NDs)
Arsenic (mg/L)	0.005	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Barium (mg/L)	0.06031	40	0.02996	0.01428	0	None	No	0.05	Inter
Beryllium (mg/L)	0.003	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Boron (mg/L)	0.1	40	n/a	n/a	97.5	n/a	n/a	0.1285	NP Inter(NDs)
Cadmium (mg/L)	0.001	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Chromium (mg/L)	0.01	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Cobalt (mg/L)	0.01	40	n/a	n/a	95	n/a	n/a	0.1285	NP Inter(NDs)
Combined Radium 226 + 228 (pCi/L)	1.6	40	n/a	n/a	5	n/a	n/a	0.1285	NP Inter(normal
Fluoride (mg/L)	0.3	44	n/a	n/a	29.55	n/a	n/a	0.1047	NP Inter(normal
Lead (mg/L)	0.005	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Lithium (mg/L)	0.05	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Mercury (mg/L)	0.0005	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Molybdenum (mg/L)	0.01	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Selenium (mg/L)	0.01	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Thallium (mg/L)	0.001	40	n/a	n/a	97.5	n/a	n/a	0.1285	NP Inter(NDs)



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 40 background values. 95% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

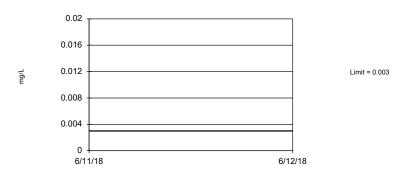
Constituent: Antimony Analysis Run 1/14/2019 9:24 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

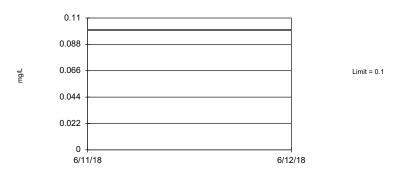
Tolerance Limit Interwell Parametric

95% coverage. Background Data Summary: Mean=0.02996, Std. Dev.=0.01428, n=40. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9196, critical = 0.919. Report alpha = 0.05.

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05. Report alpha = 0.1285.

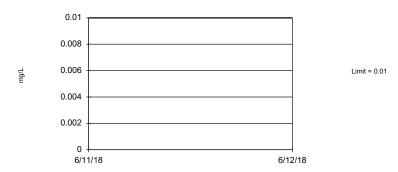
Constituent: Arsenic Analysis Run 1/14/2019 9:24 AM View: Tolerance Limits


Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

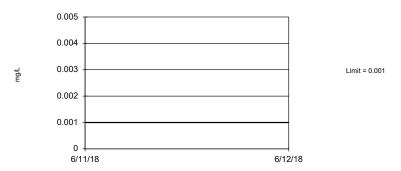
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 40 background values. 97.5% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

Constituent: Boron Analysis Run 1/14/2019 9:24 AM View: Tolerance Limits

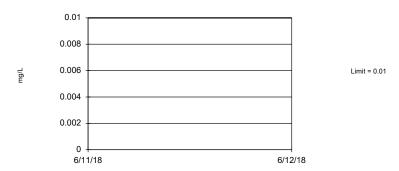
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

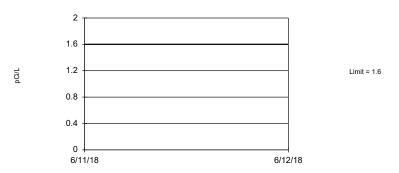
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha=0.1285.

Tolerance Limit Interwell Non-parametric



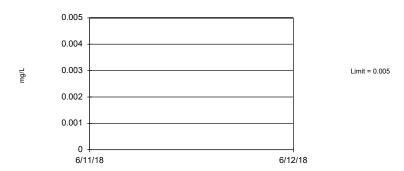
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05. Report alpha = 0.1285.


Constituent: Cadmium Analysis Run 1/14/2019 9:24 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

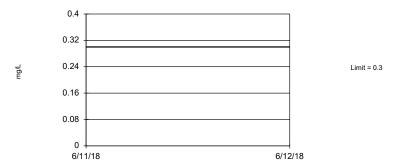
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 40 background values. 95% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.


Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 40 background values. 5% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05, Report alpha=0.01285.

Constituent: Combined Radium 226 + 228 Analysis Run 1/14/2019 9:24 AM View: Tolerance Limits

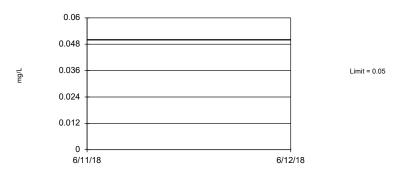
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

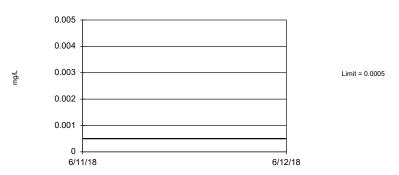
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

Tolerance Limit Interwell Non-parametric



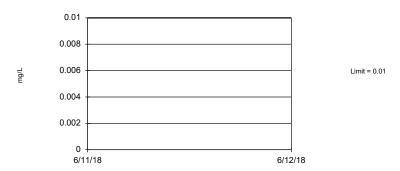
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 44 background values. 29.55% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.01; 93.55% coverage at alpha=0.01.


Constituent: Fluoride Analysis Run 1/14/2019 9:24 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

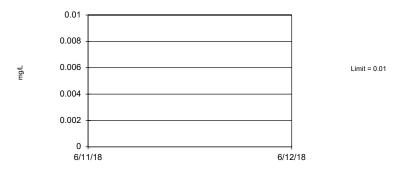
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.5 Report alpha = 0.01285.

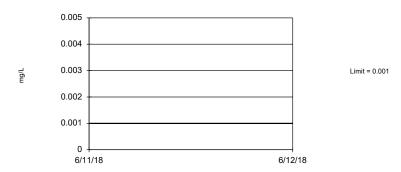
Constituent: Mercury Analysis Run 1/14/2019 9:25 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05. Report alpha = 0.1285.

Constituent: Molybdenum Analysis Run 1/14/2019 9:25 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Tolerance Limit Interwell Non-parametric

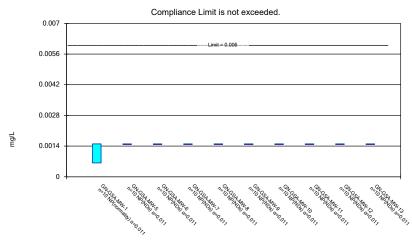
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 40 background values. 97.5% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

Confidence Intervals - Significant Results

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Arsenic (mg/L)	GN-GSA-MW-1	0.02573	0.01087	0.01	Yes	7	0	No	0.01	Param

Confidence Intervals - All Results

	Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
	Antimony (mg/L)	GN-GSA-MW-1	0.0015	0.000629	0.006	No	10	60	No	0.011	NP (normality)
	Antimony (mg/L)	GN-GSA-MW-5	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
	Antimony (mg/L)	GN-GSA-MW-6	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
	Antimony (mg/L)	GN-GSA-MW-7	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
	Antimony (mg/L)	GN-GSA-MW-8	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
	Antimony (mg/L)	GN-GSA-MW-9	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
	Antimony (mg/L)	GN-GSA-MW-10	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
	Antimony (mg/L)	GN-GSA-MW-11	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
	Antimony (mg/L)	GN-GSA-MW-12	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
	Antimony (mg/L)	GN-GSA-MW-13		0.0015	0.006	No	10	100	No	0.011	NP (NDs)
	Arsenic (mg/L)	GN-GSA-MW-1	0.02573	0.01087	0.01		7	0	No	0.01	Param.
	Arsenic (mg/L)	GN-GSA-MW-5	0.0025	0.00119	0.01	No	10	90	No	0.011	NP (NDs)
	Arsenic (mg/L)	GN-GSA-MW-6	0.0025	0.0025	0.01	No	10	100	No	0.011	NP (NDs)
	Arsenic (mg/L)	GN-GSA-MW-7	0.0025	0.0025	0.01	No	10	100	No	0.011	NP (NDs)
	Arsenic (mg/L)	GN-GSA-MW-8	0.0025	0.0023	0.01	No	10	100	No	0.011	NP (normality)
	Arsenic (mg/L)	GN-GSA-MW-9	0.0025	0.00101	0.01	No	10	80	No	0.011	NP (NDs)
	Arsenic (mg/L)	GN-GSA-MW-10		0.0025	0.01	No	10	100	No	0.011	NP (NDs)
	Arsenic (mg/L)	GN-GSA-MW-11		0.0025	0.01	No	10	100	No	0.011	NP (NDs)
	Arsenic (mg/L)	GN-GSA-MW-12		0.00102	0.01	No	10	20	No	0.011	NP (Cohens/xfrm)
	Arsenic (mg/L)	GN-GSA-MW-13		0.0011	0.01	No	10	50	No	0.011	NP (normality)
	Barium (mg/L)	GN-GSA-MW-1	1.924	1.512	2	No	10	0	sqrt(x)	0.01	Param.
	Barium (mg/L)	GN-GSA-MW-5	0.04553	0.03411	2	No	10	0	sqrt(x)	0.01	Param.
	Barium (mg/L)	GN-GSA-MW-6	0.01611	0.01395	2	No	10	0	No	0.01	Param.
	Barium (mg/L)	GN-GSA-MW-7	0.02145	0.01883	2	No	10	0	No	0.01	Param.
	Barium (mg/L)	GN-GSA-MW-8	0.03156	0.02532	2	No	10	0	No	0.01	Param.
	Barium (mg/L)	GN-GSA-MW-9	0.03049	0.02245	2	No	10	0	No	0.01	Param.
	Barium (mg/L)	GN-GSA-MW-10	0.03626	0.03244	2	No	10	0	No	0.01	Param.
	Barium (mg/L)	GN-GSA-MW-11	0.009051	0.006197	2	No	10	0	No	0.01	Param.
	Barium (mg/L)	GN-GSA-MW-12	0.02369	0.01953	2	No	10	0	No	0.01	Param.
	Barium (mg/L)	GN-GSA-MW-13	0.05498	0.04514	2	No	10	0	No	0.01	Param.
	Beryllium (mg/L)	GN-GSA-MW-1	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
	Beryllium (mg/L)	GN-GSA-MW-5	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
	Beryllium (mg/L)	GN-GSA-MW-6	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
	Beryllium (mg/L)	GN-GSA-MW-7	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
	Beryllium (mg/L)	GN-GSA-MW-8	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
	Beryllium (mg/L)	GN-GSA-MW-9	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
	Beryllium (mg/L)	GN-GSA-MW-10		0.0015	0.004	No	10	100	No	0.011	NP (NDs)
	Beryllium (mg/L)	GN-GSA-MW-11		0.0015	0.004	No	10	100	No	0.011	NP (NDs)
	Beryllium (mg/L)	GN-GSA-MW-12		0.0015	0.004	No	10	100	No	0.011	NP (NDs)
	Beryllium (mg/L)	GN-GSA-MW-12		0.0015	0.004	No	10	100	No	0.011	NP (NDs)
			0.0015	0.0015	4		10	0		0.011	
	Boron (mg/L)	GN-GSA-MW-1			•	No			No		Param.
	Boron (mg/L)	GN-GSA-MW-5	0.05	0.022	4	No	10	80	No	0.011	NP (NDs)
	Boron (mg/L)	GN-GSA-MW-6	0.05	0.05	4	No	10	100	No	0.011	NP (NDs)
	Boron (mg/L)	GN-GSA-MW-7	0.05	0.05	4	No	10	100	No	0.011	NP (NDs)
	Boron (mg/L)	GN-GSA-MW-8	0.05	0.05	4	No	10	100	No	0.011	NP (NDs)
	Boron (mg/L)	GN-GSA-MW-9	0.05	0.05	4	No	10	100	No	0.011	NP (NDs)
	Boron (mg/L)	GN-GSA-MW-10	0.05	0.05	4	No	10	100	No	0.011	NP (NDs)
	Boron (mg/L)	GN-GSA-MW-11		0.0295	4	No	10	0	No	0.011	NP (normality)
	Boron (mg/L)	GN-GSA-MW-12		0.02952	4	No	10	0	No	0.01	Param.
	Boron (mg/L)	GN-GSA-MW-13	0.05	0.05	4	No	10	100	No	0.011	NP (NDs)
	Cadmium (mg/L)	GN-GSA-MW-1	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
	Cadmium (mg/L)	GN-GSA-MW-5	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
	Cadmium (mg/L)	GN-GSA-MW-6	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
	Cadmium (mg/L)	GN-GSA-MW-7	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
	Cadmium (mg/L)	GN-GSA-MW-8	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
	Cadmium (mg/L)	GN-GSA-MW-9	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
	Cadmium (mg/L)	GN-GSA-MW-10	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
	Cadmium (mg/L)	GN-GSA-MW-11	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
	Cadmium (mg/L)	GN-GSA-MW-12	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
	Cadmium (mg/L)	GN-GSA-MW-13	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
	Chromium (mg/L)	GN-GSA-MW-1	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Chromium (mg/L)	GN-GSA-MW-5	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Chromium (mg/L)	GN-GSA-MW-6	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Chromium (mg/L)	GN-GSA-MW-7	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Chromium (mg/L)	GN-GSA-MW-8	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Chromium (mg/L)	GN-GSA-MW-9	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Chromium (mg/L) Chromium (mg/L)	GN-GSA-MW-10									
				0.005	0.1	No No	10	100	No No	0.011	NP (NDs)
ĺ	Chromium (mg/L)	GN-GSA-MW-11	0.000	0.005	0.1	No	10	100	No	0.011	NP (NDs)

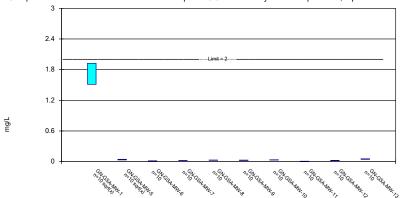

Confidence Intervals - All Results

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Chromium (mg/L)	GN-GSA-MW-12	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	GN-GSA-MW-13	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-1	0.005	0.005	0.01	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-5	0.005	0.00274	0.01	No	10	30	No	0.011	NP (normality)
Cobalt (mg/L)	GN-GSA-MW-6	0.005	0.005	0.01	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-7	0.01017	0.003095	0.01	No	10	30	No	0.01	Param.
Cobalt (mg/L)	GN-GSA-MW-8	0.005	0.005	0.01	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-9	0.005	0.005	0.01	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-10	0.005	0.005	0.01	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-11		0.002652	0.01	No	10	0	No	0.01	Param.
Cobalt (mg/L)	GN-GSA-MW-12		0.005	0.01	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-13		0.004651	0.01	No	10	40	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-1	1.206	0.7692	5	No	10	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-5	0.8718	0.1009	5	No	10	10	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-6	0.9984	0.03359	5	No	10	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-7	0.8456	0.0362	5	No	10	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L) Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-8	0.368	-0.0526	5	No	10	10	No	0.011	NP (normality)
,				5						
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-9	1.029	0.2135		No	10	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-10		0.04601	5	No	10	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-11		-0.02995	5	No	10	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-12		0.1044	5	No	10	10	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-13		-0.03163	5	No	10	10	No	0.01	Param.
Fluoride (mg/L)	GN-GSA-MW-1	0.3525	0.2879	4	No	11	0	No	0.01	Param.
Fluoride (mg/L)	GN-GSA-MW-5	0.1	0.028	4	No	11	36.36	No	0.006	NP (Cohens/xfrm)
Fluoride (mg/L)	GN-GSA-MW-6	0.15	0.036	4	No	11	54.55	No	0.006	NP (normality)
Fluoride (mg/L)	GN-GSA-MW-7	0.1066	0.07434	4	No	11	9.091	ln(x)	0.01	Param.
Fluoride (mg/L)	GN-GSA-MW-8	0.1613	0.1158	4	No	11	0	x^2	0.01	Param.
Fluoride (mg/L)	GN-GSA-MW-9	0.1	0.035	4	No	11	18.18	No	0.006	NP (Cohens/xfrm)
Fluoride (mg/L)	GN-GSA-MW-10	0.1	0.02	4	No	11	36.36	No	0.006	NP (Cohens/xfrm)
Fluoride (mg/L)	GN-GSA-MW-11	0.3343	0.03871	4	No	11	36.36	No	0.01	Param.
Fluoride (mg/L)	GN-GSA-MW-12	0.095	0.05	4	No	11	9.091	No	0.006	NP (normality)
Fluoride (mg/L)	GN-GSA-MW-13	0.085	0.039	4	No	11	0	No	0.006	NP (normality)
Lead (mg/L)	GN-GSA-MW-1	0.0025	0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-5	0.0025	0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-6	0.0025	0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-7	0.0025	0.00229	0.015	No	10	90	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-8	0.0025	0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-9	0.0025	0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-10		0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-11		0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-12		0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-13		0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-1	0.0025	0.0025	0.013	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-5	0.025	0.025	0.05	No	10	100		0.011	NP (NDs)
Lithium (mg/L) Lithium (mg/L)	GN-GSA-WW-6	0.025	0.025		No	10	100	No No	0.011	
, , ,				0.05						NP (NDs)
Lithium (mg/L)	GN-GSA-MW-7	0.025	0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-8	0.025	0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-9	0.025	0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-10		0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-11		0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-12		0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-13		0.025	0.05	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-1	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-5	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-6	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-7	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-8	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-9	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-10	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-11	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-12	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-13	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	GN-GSA-MW-1	0.01852	0.007824	0.1	No	10	0	sqrt(x)	0.01	Param.
Molybdenum (mg/L)	GN-GSA-MW-5	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	GN-GSA-MW-6	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	GN-GSA-MW-7	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	GN-GSA-MW-8	0.00446	0.003358	0.1	No	10	0	No	0.01	Param.
Molybdenum (mg/L)	GN-GSA-MW-9	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)

Confidence Intervals - All Results

	Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	Transform	<u>Alpha</u>	Method
	Molybdenum (mg/L)	GN-GSA-MW-10	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Molybdenum (mg/L)	GN-GSA-MW-11	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Molybdenum (mg/L)	GN-GSA-MW-12	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Molybdenum (mg/L)	GN-GSA-MW-13	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-1	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-5	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-6	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-7	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-8	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-9	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-10	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-11	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-12	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-13	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-1	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-5	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-6	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-7	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-8	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-9	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-10	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-11	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-12	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-13	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
1											

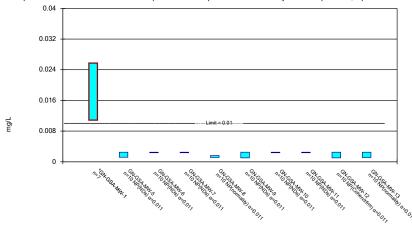
Non-Parametric Confidence Interval



Constituent: Antimony Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

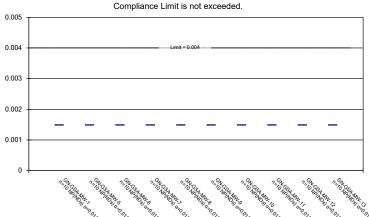
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Parametric Confidence Interval

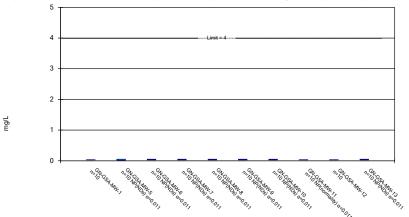

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Parametric and Non-Parametric (NP) Confidence Interval

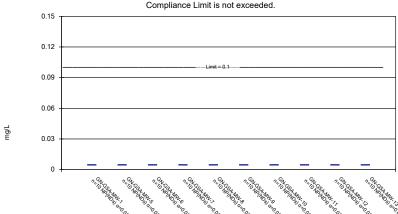

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

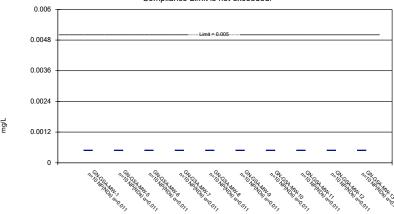
Non-Parametric Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Boron Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

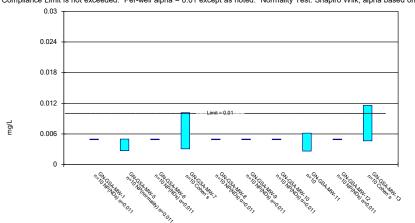
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG


Non-Parametric Confidence Interval Compliance Limit is not exceeded.

Constituent: Chromium Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Non-Parametric Confidence Interval

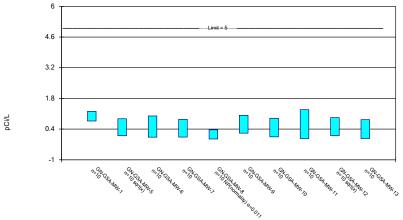
Compliance Limit is not exceeded.



Constituent: Cadmium Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

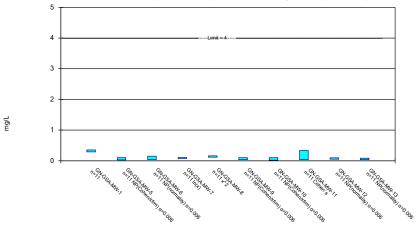
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals

Plant Gaston Client: Southern Company Data: Gaston GSA

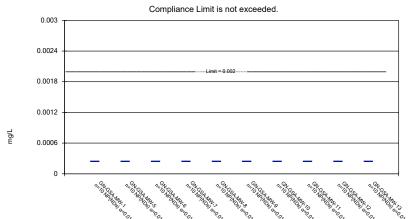

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded. 0.02 0.016 0.012 0.008 0.004 0.008

Constituent: Lead Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals Plant Gaston Client: Southern Company Data: Gaston GSA

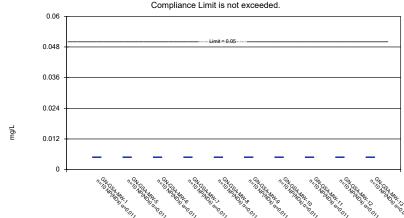
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Fluoride Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

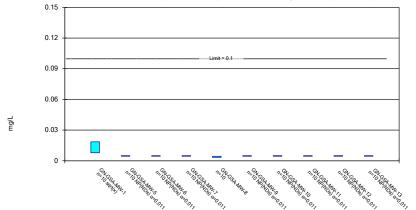
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded.


Non-Parametric Confidence Interval

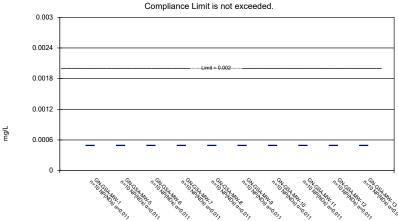
Constituent: Mercury Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG


Non-Parametric Confidence Interval

Constituent: Selenium Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

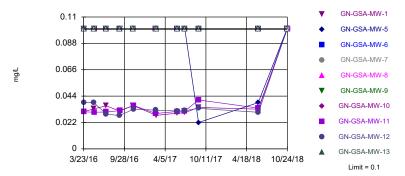
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval

2nd Semi-Annual

Interwell Prediction Limit Summary Table - Significant Results

Constituent	<u>Well</u>	Upper Lin	n. Lower Lim	n. Date	Observ.	Sig. Bg N	Bg Mea	n Std. Dev.	%NDsND Adj.	Transfo	rm Alpha Method
Fluoride (mg/L)	GN-GSA-MW-1	0.111	n/a	10/23/2018	0.39	Yes 48	n/a	n/a	35.42 n/a	n/a	0.0008027 NP Inter (normality) 1 of 2
Fluoride (mg/L)	GN-GSA-MW-8	0.111	n/a	10/22/2018	0.15	Yes 48	n/a	n/a	35.42 n/a	n/a	0.0008027 NP Inter (normality) 1 of 2
рН (рН)	GN-GSA-MW-1	7.53	5.84	10/23/2018	7.65	Yes 48	n/a	n/a	0 n/a	n/a	0.001605 NP Inter (normality) 1 of 2
pH (pH)	GN-GSA-MW-6	7.53	5.84	10/22/2018	4.68	Yes 48	n/a	n/a	0 n/a	n/a	0.001605 NP Inter (normality) 1 of 2

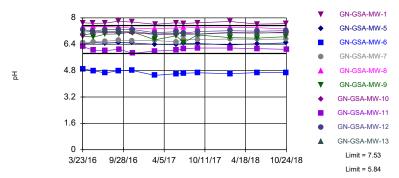

Interwell Prediction Limit Summary Table - All Results

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig	Bg N	Bg Mean	Std. Dev.	%NDs	sND Adj.	Transform	<u>Alpha</u>	Method		
Boron (mg/L)	GN-GSA-MW-1	0.1	n/a	10/23/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-5	0.1	n/a	10/22/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-6	0.1	n/a	10/22/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-7	0.1	n/a	10/22/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-8	0.1	n/a	10/22/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-9	0.1	n/a	10/22/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-10	0.1	n/a	10/24/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-11	0.1	n/a	10/24/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-12	0.1	n/a	10/23/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-13	0.1	n/a	10/23/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-1	0.111	n/a	10/23/2018	0.39	Yes	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-5	0.111	n/a	10/22/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-6	0.111	n/a	10/22/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-7	0.111	n/a	10/22/2018	0.1	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-8	0.111	n/a	10/22/2018	0.15	Yes	s 48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-9	0.111	n/a	10/22/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-10	0.111	n/a	10/24/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-11	0.111	n/a	10/24/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-12	0.111	n/a	10/23/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-13	0.111	n/a	10/23/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-1	7.53	5.84	10/23/2018	7.65	Yes	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-5	7.53	5.84	10/22/2018	6.48	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-6	7.53	5.84	10/22/2018	4.68	Yes	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-7	7.53	5.84	10/22/2018	6.71	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-8	7.53	5.84	10/22/2018	7.33	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-9	7.53	5.84	10/22/2018	6.86	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-10	7.53	5.84	10/24/2018	7.14	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-11	7.53	5.84	10/24/2018	6.09	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-12	7.53	5.84	10/23/2018	7.22	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-13	7.53	5.84	10/23/2018	7.09	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Interwell Non-parametric

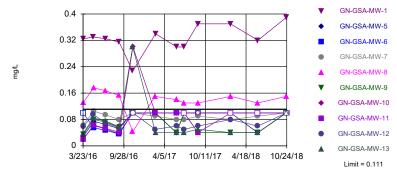

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 4 background values. 97.73% NDs. Annual per-constituent alpha = 0.02075. Individual comparison alpha = 0.009524 (1 of 2). Comparing 10 points to limit. Assumes 1 future value.

Constituent: Boron Analysis Run 12/18/2018 1:35 PM View: PLs - Interwell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Exceeds Limits: GN-GSA-MW-1, GN-GSA-MW-6

Prediction Limit
Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 48 background values. Annual perconstituent alpha = 0.03502. Individual comparison alpha = 0.001605 (1 of 2). Comparing 10 points to limit. Assumes 1 future value.

Constituent: pH Analysis Run 12/18/2018 1:35 PM View: PLs - Interwell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Exceeds Limit: GN-GSA-MW-1, GN-GSA-MW-8

Prediction Limit
Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 48 background values. 35.42% NDs. Annual perconstituent alpha = 0.01751. Individual comparison alpha = 0.008027 (1 of 2). Comparing 10 points to limit. Assumes 1 future value.

Constituent: Boron (mg/L) Analysis Run 12/18/2018 1:38 PM View: PLs - Interwell

Plant Gaston Client: Southern Company Data: Gaston GSA

	GN-GSA-MW-2 (t	og)GN-GSA-MW-9	GN-GSA-MW-7	GN-GSA-MW-11	GN-GSA-MW-6	GN-GSA-MW-12	GN-GSA-MW-3 (b	g)GN-GSA-MW-5	GN-GSA-MW-1
3/23/2016	<0.1	<0.1	<0.1	0.0309 (J)	<0.1	0.0387 (J)	<0.1	<0.1	
3/24/2016									0.0311 (J)
5/10/2016	<0.1					0.0384 (J)	<0.1		0.0334 (J)
5/11/2016		<0.1	<0.1	0.0306 (J)	<0.1			<0.1	
7/5/2016	<0.1								0.0359 (J)
7/6/2016		<0.1	<0.1	0.0307 (J)	<0.1	0.029 (J)	<0.1	<0.1	
8/23/2016									
9/6/2016	<0.1		<0.1		<0.1	0.0278 (J)		<0.1	0.0316 (J)
9/7/2016		<0.1		0.0319 (J)			<0.1		
11/8/2016	<0.1	<0.1	<0.1		<0.1		<0.1	<0.1	0.0361 (J)
11/9/2016				0.0362 (J)		0.0331 (J)			
1/3/2017									
2/20/2017			<0.1		<0.1		<0.1	<0.1	
2/21/2017	<0.1	<0.1		0.0295 (J)		0.0323 (J)			
2/22/2017									0.028 (J)
5/30/2017		<0.1			<0.1			<0.1	
5/31/2017	<0.1		<0.1	0.0312 (J)		0.0316 (J)	<0.1		0.0297 (J)
7/5/2017	<0.1	<0.1	<0.1	0.0315 (J)	<0.1	0.0318 (J)	<0.1	<0.1	0.0302 (J)
9/5/2017	<0.1						<0.1		
9/7/2017		<0.1	<0.1	0.0408 (J)	<0.1	0.0338 (J)		0.022 (J)	0.0345 (J)
6/11/2018			<0.1		<0.1			0.0386 (J)	
6/12/2018	<0.1	<0.1		0.034 (J)		0.0305 (J)	<0.1		0.0331 (J)
10/22/2018	<0.1	<0.1	<0.1		<0.1			<0.1 (J)	
10/23/2018						<0.1 (J)	<0.1		<0.1 (J)
10/24/2018				<0.1 (J)					

	GN-GSA-MW-8	GN-GSA-MW-10	GN-GSA-MW-13	GN-GSA-MW-14S	GN-GSA-MW-15
3/23/2016					
3/24/2016	<0.1	<0.1	<0.1		
5/10/2016			<0.1		
5/11/2016	<0.1	<0.1			
7/5/2016				<0.1	
7/6/2016	<0.1	<0.1	<0.1		<0.1
8/23/2016				<0.1	<0.1
9/6/2016	<0.1	<0.1	<0.1		
9/7/2016				<0.1	<0.1
11/8/2016	<0.1		<0.1	<0.1	<0.1
11/9/2016		<0.1			
1/3/2017				0.0211 (J)	<0.1
2/20/2017	<0.1				<0.1
2/21/2017		<0.1		<0.1	
2/22/2017			<0.1		
5/30/2017	<0.1				
5/31/2017		<0.1	<0.1	<0.1	<0.1
7/5/2017	<0.1	<0.1	<0.1	<0.1	<0.1
9/5/2017				<0.1	<0.1
9/7/2017	<0.1	<0.1	<0.1		
6/11/2018					
6/12/2018	<0.1	<0.1	<0.1	<0.1	<0.1
10/22/2018	<0.1				
10/23/2018			<0.1	<0.1	<0.1
10/24/2018		<0.1			

2/22/2016	GN-GSA-MW-2 (bg	•	GN-GSA-MW-7		,	GN-GSA-MW-12	GN-GSA-MW-9	GN-GSA-MW-5	GN-GSA-MW-8
3/23/2016	0.022 (J)	<0.1	0.063 (J)	0.06 (J)	0.02 (J)	0.058 (J)	0.035 (J)	0.028 (J)	0.122 (1)
3/24/2016	0.000 (1)			0.444 (1)		0.005 (1)			0.132 (J)
5/10/2016	0.068 (J)	0.055 (1)	0.405 (1)	0.111 (J)	0.000 (1)	0.095 (J)	0.00 (1)	0.074 (1)	0.470 (1)
5/11/2016	0.050 (1)	0.055 (J)	0.105 (J)		0.063 (J)		0.08 (J)	0.074 (J)	0.176 (J)
7/5/2016	0.052 (J)								
7/6/2016		0.047 (J)	0.094 (J)	0.089 (J)	0.053 (J)	0.069 (J)	0.072 (J)	0.065 (J)	0.167 (J)
8/23/2016									
9/6/2016	0.038 (J)	0.036 (J)	0.08 (J)			0.055 (J)		0.052 (J)	0.153 (J)
9/7/2016				0.073 (J)	0.041 (J)		0.057 (J)		
11/8/2016	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	0.043 (J)
11/9/2016					<0.1	<0.1			
1/3/2017									
2/20/2017		0.1	0.09 (J)	0.05 (J)				0.1	0.15
2/21/2017	0.1				0.1	0.05 (J)	0.1		
2/22/2017									
5/30/2017		0.1					0.04 (J)	0.04 (J)	0.14
5/31/2017	0.1		0.08 (J)	0.06 (J)	0.1	0.06 (J)			
7/5/2017	<0.1	<0.1	0.08 (J)	0.05 (J)	<0.1	0.05 (J)	<0.1	<0.1	0.13
9/5/2017	<0.1			0.06 (J)					
9/7/2017		<0.1	0.09 (J)		0.04 (J)	0.06 (J)	0.04 (J)	<0.1	0.13
2/5/2018	0.04 (J)					0.08 (J)			
2/6/2018		<0.1	0.08 (J)	0.06 (J)	<0.1		0.04 (J)	<0.1	0.15
2/7/2018									
6/11/2018		<0.1	0.09 (J)					0.04 (J)	
6/12/2018	<0.1			0.05 (J)	<0.1	0.06 (J)	0.04 (J)		0.13
10/22/2018	<0.1	<0.1	0.1				<0.1 (J)	<0.1 (J)	0.15
10/23/2018				<0.1 (J)		<0.1 (J)			
10/24/2018					<0.1				

	GN-GSA-MW-10	GN-GSA-MW-13	GN-GSA-MW-1	GN-GSA-MW-14S	GN-GSA-MW-15
3/23/2016					
3/24/2016	0.02 (J)	0.039 (J)	0.325		
5/10/2016		0.085 (J)	0.33		
5/11/2016	0.062 (J)				
7/5/2016			0.325	0.072 (J)	
7/6/2016	0.051 (J)	0.075 (J)			0.062 (J)
8/23/2016				0.066 (J)	0.045 (J)
9/6/2016	0.037 (J)	0.058 (J)	0.315		
9/7/2016				0.062 (J)	0.042 (J)
11/8/2016		0.3 (U)	0.227 (J)	<0.1	<0.1
11/9/2016	0.3 (U)				
1/3/2017				<0.1	<0.1
2/20/2017					0.1
2/21/2017	0.1			0.1	
2/22/2017		0.04 (J)	0.34		
5/30/2017					
5/31/2017	0.1	0.04 (J)	0.3	0.06 (J)	0.1
7/5/2017	<0.1	0.04 (J)	0.3	0.04 (J)	<0.1
9/5/2017				0.06 (J)	<0.1
9/7/2017	<0.1	0.05 (J)	0.37		
2/5/2018		0.04 (J)	0.37		
2/6/2018	<0.1			0.06 (J)	
2/7/2018					<0.1
6/11/2018					
6/12/2018	<0.1	0.04 (J)	0.32	0.05 (J)	<0.1
10/22/2018					
10/23/2018		<0.1 (J)	0.39	<0.1 (J)	<0.1
10/24/2018	<0.1				

	GN-GSA-MW-2 (b	og)GN-GSA-MW-6	GN-GSA-MW-7	GN-GSA-MW-3 (b	g)GN-GSA-MW-11	GN-GSA-MW-12	GN-GSA-MW-9	GN-GSA-MW-5	GN-GSA-MW-8
3/23/2016	7.18	4.91	6.5	6.83	6.26	7.28	6.88	6.41	
3/24/2016									7.45
5/10/2016	7.2			6.84		7.19			
5/11/2016		4.79	6.54		6.04		6.84	6.5	7.48
7/5/2016	7.15								
7/6/2016		4.66	6.58	6.94	6	7.29	7.01	6.47	7.46
8/23/2016									
9/6/2016	7.17	4.8	6.64			7.29		6.51	7.44
9/7/2016				6.84	6.1		7.03		
11/8/2016	7.12	4.81	6.61	6.84			7.15	6.48	7.37
11/9/2016					5.85	7.29			
1/3/2017									
2/20/2017		4.51	6.63	7.04				6.39	7.36
2/21/2017	7.12				5.99	7.1	6.67		
2/22/2017									
5/30/2017		4.61					6.91	6.38	7.38
5/31/2017	7.17		6.54	6.91	6.03	7.16			
7/5/2017	7.18	4.64	6.67	7.02	6.13	7.08	6.51	6.44	7.44
9/5/2017	7.17			6.78					
9/7/2017		4.67	6.69		6.17	7.17	6.96	6.44	7.41
2/5/2018	7.12					7.22			
2/6/2018		4.61	6.71	6.96	6.17		6.8	6.36	7.41
2/7/2018									
6/11/2018		4.68	6.7					6.43	
6/12/2018	7.19			6.76	6.13	7.19	6.77		7.4
10/22/2018	7.06	4.68	6.71				6.86	6.48	7.33
10/23/2018				6.59		7.22			
10/24/2018					6.09				

	GN-GSA-MW-10	GN-GSA-MW-13	GN-GSA-MW-1	GN-GSA-MW-145	SGN-GSA-MW-15
3/23/2016					
3/24/2016	6.95	7.14	7.7		
5/10/2016		7.17	7.67		
5/11/2016	7.07				
7/5/2016			7.68	7.44	
7/6/2016	7.13	7.19			6.1
8/23/2016				7.47	5.87
9/6/2016	7.1	7.18	7.8		
9/7/2016				7.51	5.92
11/8/2016		7.18	7.74	7.37	5.91
11/9/2016	7.1				
1/3/2017				7.37	5.93
2/20/2017					5.91
2/21/2017	7			7.41	
2/22/2017		7.02	7.61		
5/30/2017					
5/31/2017	7.01	7.07	7.7	7.47	6
7/5/2017	7.07	7	7.66	7.5	6
9/5/2017				7.39	5.9
9/7/2017	7.01	7.02	7.7		
2/5/2018		7.12	7.78		
2/6/2018	7.09			7.47	
2/7/2018					5.86
6/11/2018					
6/12/2018	7.07	7.09	7.62	7.53	6.05
10/22/2018					
10/23/2018		7.09	7.65	7.4	5.84
10/24/2018	7.14				

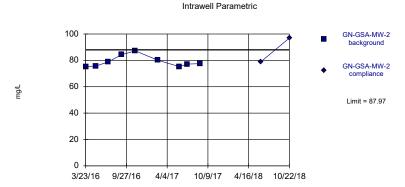
Intrawell Prediction Limit Summary Table - Significant Results

Constituent	Well	Upper Lim	. Lower Lim	. Date	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	<u>%ND</u>	SND Adj.	Transform	Alpha Method
Calcium (mg/L)	GN-GSA-MW-1	38.37	n/a	10/23/2018	38.9	Yes 9	35.73	1.237	0	None	No	0.0006839 Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-10	99.41	n/a	10/24/2018	104	Yes 9	92.19	3.387	0	None	No	0.0006839 Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-13	96.63	n/a	10/23/2018	97.6	Yes 9	83.12	6.337	0	None	No	0.0006839 Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-2	87.97	n/a	10/22/2018	96.9	Yes 9	79.02	4.196	0	None	No	0.0006839 Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-11	6.745	n/a	10/24/2018	7.2	Yes 9	4.269	1.162	0	None	No	0.0006839 Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-5	31.02	n/a	10/22/2018	40	Yes 9	15.51	7.278	0	None	No	0.0006839 Param 1 of 3
TDS (mg/L)	GN-GSA-MW-5	269.4	n/a	10/22/2018	292	Yes 9	203.3	30.98	0	None	No	0.0006839 Param 1 of 3

Intrawell Prediction Limit Summary Table - All Results

Constituent	Well	Upper Lim	Lower Lim	<u>Date</u>	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%ND	sND Adj.	Transform	<u>Alpha</u>	Method
Calcium (mg/L)	GN-GSA-MW-1	38.37	n/a	10/23/2018	38.9	Yes 9	35.73	1.237	0	None	No	0.0006839	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-10	99.41	n/a	10/24/2018	104	Yes 9	92.19	3.387	0	None	No	0.0006839	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-11	15.57	n/a	10/24/2018	7.73	No 9	10.82	2.23	0	None	No	0.0006839	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-12	75.87	n/a	10/23/2018	64.3	No 9	66.13	4.568	0	None	No	0.0006839	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-13	96.63	n/a	10/23/2018	97.6	Yes 9	83.12	6.337	0	None	No	0.0006839	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-14S	56.07	n/a	10/23/2018	44.4	No 9	49.4	3.13	0	None	No	0.000683	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-15	10.8	n/a	10/23/2018	5.94	No 9	8.347	1.15	0	None	No	0.000683	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-2	87.97	n/a	10/22/2018	96.9	Yes 9	79.02	4.196	0	None	No	0.0006839	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-3	114.2	n/a	10/23/2018	68.8	No 9	96.47	8.312	0	None	No	0.0006839	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-5	65.71	n/a	10/22/2018	60.6	No 9	52.77	6.075	0	None	No	0.000683	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-6	1.54	n/a	10/22/2018	0.79	No 9	1.013	0.2472	0	None	No	0.0006839	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-7	72.45	n/a	10/22/2018	70.3	No 9	63.62	4.141	0	None	No	0.000683	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-8	61.65	n/a	10/22/2018	55.4	No 9	56.57	2.387	0	None	No	0.000683	Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-9	67.03	n/a	10/22/2018	52.4	No 9	50.08	7.955	0	None	No	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-1	4.011	n/a	10/23/2018	2.1	No 9	2.554	0.6834	11.11	None	No	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-10	4.197	n/a	10/24/2018	2.9	No 9	2.646	0.7282	11.11	None	No	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-11	6.745	n/a	10/24/2018	7.2	Yes 9	4.269	1.162	0	None	No	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-12	5.623	n/a	10/23/2018	2.1	No 9	3.181	1.146	11.11	None	No	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-13	5.021	n/a	10/23/2018	3.5	No 9	3.646	0.6455	0	None	No	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-14S	5.523	n/a	10/23/2018	3.4	No 9	4.387	0.5333	0	None	No	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-15	4.666	n/a	10/23/2018	1ND	No 9	2.783	0.8834	11.11	None	No	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-2	4.891	n/a	10/22/2018	3.6	No 9	3.738	0.5409	0	None	No	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-3	3.86	n/a	10/23/2018	2.6	No 9	3.14	0.3379	0	None	No	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-5	17	n/a	10/22/2018	14	No 9	n/a	n/a	0	n/a	n/a	0.004675	NP (normality) 1 of 3
Chloride (mg/L)	GN-GSA-MW-6	4.015	n/a	10/22/2018	2.6	No 9	8.785	3.44	11.11	None	x^2	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-7	4.538	n/a	10/22/2018	3.7	No 9	3.468	0.502	0	None	No	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-8	2.587	n/a	10/22/2018	1ND	No 9	1.769	0.3837	11.11	None	No	0.0006839	Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-9	3.528	n/a	10/22/2018	2	No 9	2.32	0.567	11.11	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-1	6.414	n/a	10/23/2018	2.5ND	No 9	4.099	1.086	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-10	2.582	n/a	10/24/2018	2.5ND	No 9	1.887	0.326	11.11	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-11	15.03	n/a	10/24/2018	2.5ND	No 9	7.499	3.536	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-12	16.55	n/a	10/23/2018	2.5ND	No 9	9.349	3.38	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-13	10.47	n/a	10/23/2018	6.7	No 9	8.328	1.007	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-14S	18.04	n/a	10/23/2018	5.4	No 9	9.944	3.798	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-15	5.604	n/a	10/23/2018	2.5ND	No 9	3.231	1.113	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-2	10.62	n/a	10/22/2018	8.3	No 9	7.103	1.648	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-3	35.15	n/a	10/23/2018	12	No 9	20.38	6.93	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-5	31.02	n/a	10/22/2018	40	Yes 9	15.51	7.278	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-6	4.369	n/a	10/22/2018	2.5ND	No 9	1.754	1.227	22.22	Kaplan-Meier	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-7	14.51	n/a	10/22/2018	8.8	No 9	10.79	1.745	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-8	2.629	n/a	10/22/2018	2.5ND	No 9	1.843	0.3686	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-9	6.386	n/a	10/22/2018	5.1	No 9	5.261	0.528	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L)	GN-GSA-MW-1	242.9	n/a	10/23/2018	195	No 9	198.4	20.85	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L)	GN-GSA-MW-10	267.8	n/a	10/24/2018	265	No 9	251.8	7.496	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L)	GN-GSA-MW-11	112.4	n/a	10/24/2018	68	No 9	75.3	17.43	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L)	GN-GSA-MW-12	275.9	n/a	10/23/2018	201	No 9	222.9	24.89	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L)	GN-GSA-MW-13	333.9	n/a	10/23/2018	279	No 9	255.8	36.67	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L)	GN-GSA-MW-14S	228.5	n/a	10/23/2018	204	No 9	203.1	11.92	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L)	GN-GSA-MW-15	60.28	n/a	10/23/2018	27.3	No 9	44.88	7.227	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L)	GN-GSA-MW-2	311.1	n/a	10/22/2018	278	No 9	287.6	11.06	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L)	GN-GSA-MW-3	355.7	n/a	10/23/2018	215	No 9	306.8	22.93	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L)	GN-GSA-MW-5	269.4	n/a	10/22/2018	292	Yes 9	203.3	30.98	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L)	GN-GSA-MW-6	30	n/a	10/22/2018		No 9	n/a	n/a	66.67	' n/a	n/a	0.004675	NP (NDs) 1 of 3
TDS (mg/L)	GN-GSA-MW-7	255.2	n/a	10/22/2018		No 9	218.4	17.24	0	None	No		Param 1 of 3
TDS (mg/L)	GN-GSA-MW-8	204.3	n/a	10/22/2018	184	No 9	191.4	6.023	0	None	No	0.0006839	Param 1 of 3

Page 2


Intrawell Prediction Limit Summary Table - All Results

Plant Gaston Client: Southern Company Data: Gaston GSA Printed 12/18/2018, 2:05 PM

 Constituent
 Well
 Upper Lim. Lower Lim. Date
 Observ.
 Sig. Bg N
 Bg Mean
 Std. Dev.
 %NDsND Adj.
 Transform Alpha
 Method

 TDS (mg/L)
 GN-GSA-MW-9
 212.4
 n/a
 10/22/2018
 177
 No
 9
 167.9
 20.88
 0
 None
 No
 0.0006839 Param 1 of 3

Exceeds Limit Prediction Limit

Background Data Summary: Mean=79.02, Std. Dev.=4.196, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8568, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

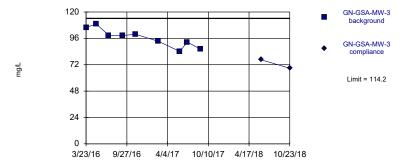
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Within Limit Prediction Limit Intrawell Parametric

60

60

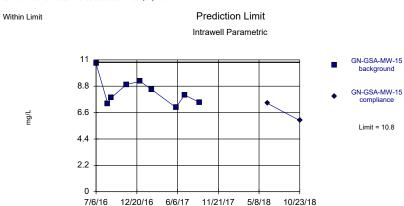
6N-GSA-MW-14S background


GN-GSA-MW-14S compliance

Limit = 56.07

Background Data Summary: Mean=49.4, Std. Dev.=3.13, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9446, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

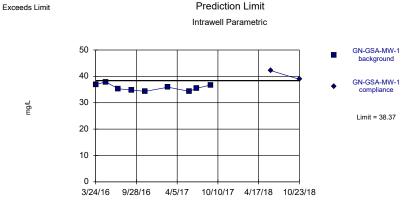


Background Data Summary: Mean=96.47, Std. Dev.=8.312, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9589, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

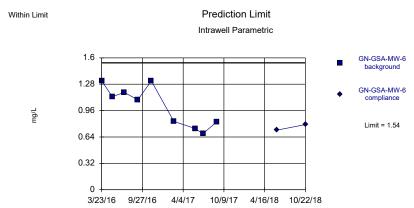
Background Data Summary: Mean=8.347, Std. Dev.=1.15, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9286, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.


	GN-GSA-MW-2	GN-GSA-MW-2
3/23/2016	75.3	
5/10/2016	75.7	
7/5/2016	78.8	
9/6/2016	84.3	
11/8/2016	87.2	
2/21/2017	80	
5/31/2017	75.2	
7/5/2017	77.2	
9/5/2017	77.5	
6/12/2018		78.9
10/22/2018		96.9

	GN-GSA-MW-3	GN-GSA-MW-3
3/23/2016	106	
5/10/2016	109	
7/6/2016	98.7	
9/7/2016	98.6	
11/8/2016	99.7	
2/20/2017	93.4	
5/31/2017	84.1	
7/5/2017	92.6	
9/5/2017	86.1	
6/12/2018		76.5
10/23/2018		68.8

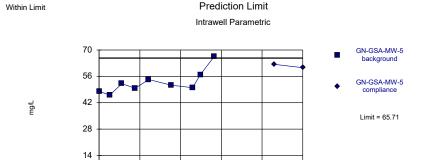
	GN-GSA-MW-14S	GN-GSA-MW-14S
7/5/2016	50.8	
8/23/2016	51.7	
9/7/2016	48.4	
11/8/2016	50.7	
1/3/2017	55.4	
2/21/2017	48	
5/31/2017	45.4	
7/5/2017	45.7	
9/5/2017	48.5	
6/12/2018		45.2
10/23/2018		44.4

	GN-GSA-MW-15	GN-GSA-MW-15
7/6/2016	10.7	
8/23/2016	7.34	
9/7/2016	7.86	
11/8/2016	8.94	
1/3/2017	9.21	
2/20/2017	8.53	
5/31/2017	7.02	
7/5/2017	8.08	
9/5/2017	7.44	
6/12/2018		7.37
10/23/2018		5.94


s 1.3.0.0/ Salitas solivante izensea to solunteri company, od

Background Data Summary: Mean=35.73, Std. Dev.=1.237, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9419, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.005132).

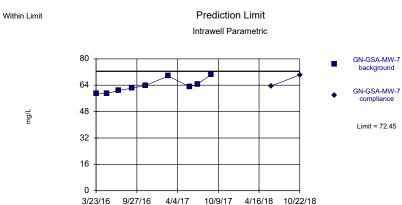
Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=1.013, Std. Dev.=0.2472, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.898, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

3/23/16 9/27/16



Background Data Summary: Mean=52.77, Std. Dev.=6.075, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8706, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

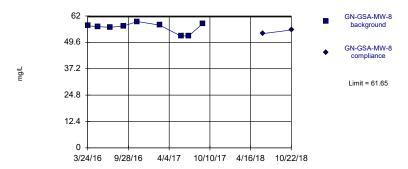
4/4/17 10/9/17 4/16/18 10/22/18

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=63.62, Std. Dev.=4.141, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9059, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

	GN-GSA-MW-1	GN-GSA-MW-1
3/24/2016	36.9	
5/10/2016	37.9	
7/5/2016	35.3	
9/6/2016	34.8	
11/8/2016	34.3	
2/22/2017	35.9	
5/31/2017	34.3	
7/5/2017	35.5	
9/7/2017	36.7	
6/12/2018		42.2
10/23/2018		38.9


	GN-GSA-MW-5	GN-GSA-MW-5
3/23/2016	48.1	
5/11/2016	46	
7/6/2016	52.1	
9/6/2016	49.7	
11/8/2016	54.3	
2/20/2017	51.3	
5/30/2017	50	
7/5/2017	56.9	
9/7/2017	66.5	
6/11/2018		62.4
10/22/2018		60.6

	GN-GSA-MW-6	GN-GSA-MW-6
3/23/2016	1.32	
5/11/2016	1.13	
7/6/2016	1.18	
9/6/2016	1.09	
11/8/2016	1.32	
2/20/2017	0.829	
5/30/2017	0.743	
7/5/2017	0.68	
9/7/2017	0.825	
6/11/2018		0.722
10/22/2018		0.79

	GN-GSA-MW-7	GN-GSA-MW-7
3/23/2016	59.1	
5/11/2016	58.9	
7/6/2016	60.8	
9/6/2016	62.2	
11/8/2016	63.9	
2/20/2017	69.6	
5/31/2017	63	
7/5/2017	64.6	
9/7/2017	70.5	
6/11/2018		63.5
10/22/2018		70.3

Within Limit

Prediction Limit
Intrawell Parametric

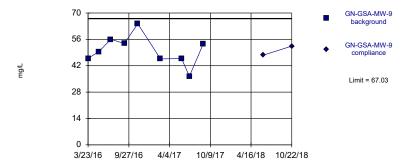
Background Data Summary: Mean=56.57, Std. Dev.=2.387, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8287, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Exceeds Limit

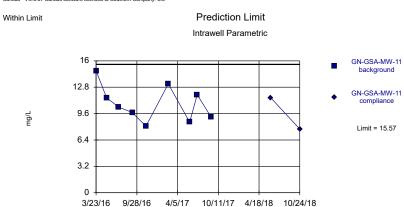
Intrawell Parametric


GN-GSA-MW-10
background
GN-GSA-MW-10
compliance

Limit = 99.41

Background Data Summary: Mean=92.19, Std. Dev.=3.387, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9444, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG



Background Data Summary: Mean=50.08, Std. Dev.=7.955, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9649, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839 (0.0006839).

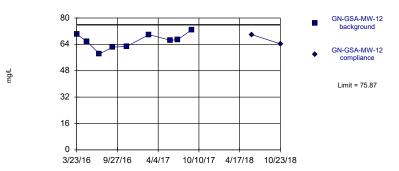
Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=10.82, Std. Dev.=2.23, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9564, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

	GN-GSA-MW-8	GN-GSA-MW-8
3/24/2016	57.4	
5/11/2016	57	
7/6/2016	56.7	
9/6/2016	57.3	
11/8/2016	59.4	
2/20/2017	57.7	
5/30/2017	52.5	
7/5/2017	52.7	
9/7/2017	58.4	
6/12/2018		53.7
10/22/2018		55.4

	GN-GSA-MW-9	GN-GSA-MW-9
3/23/2016	45.9	
5/11/2016	49.4	
7/6/2016	56	
9/7/2016	53.8	
11/8/2016	64.3	
2/21/2017	45.6	
5/30/2017	45.8	
7/5/2017	36.4	
9/7/2017	53.5	
6/12/2018		47.6
10/22/2018		52.4


	GN-GSA-MW-10	GN-GSA-MW-10
3/24/2016	90.3	
5/11/2016	91.1	
7/6/2016	90.7	
9/6/2016	94.5	
11/9/2016	92.9	
2/21/2017	93.1	
5/31/2017	86.6	
7/5/2017	91.5	
9/7/2017	99	
6/12/2018		101
10/24/2018		104

GN-GSA-MW-11	GN-GSA-MW-11
14.8	
11.5	
10.4	
9.73	
8.07	
13.2	
8.56	
11.9	
9.2	
	11.5
	7.73
	14.8 11.5 10.4 9.73 8.07 13.2 8.56 11.9

Sanitas** v.9.6.07 Sanitas software licensed to Southern Company. UG

Within Limit

Background Data Summary: Mean=66.13, Std. Dev.=4.568, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9759, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Within Limit

Intrawell Parametric

GN-GSA-MW-2
background

GN-GSA-MW-2
compliance

Limit = 4.891

Background Data Summary: Mean=3.738, Std. Dev.=0.5409, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9147, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.006132

3/23/16 9/27/16 4/4/17

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=83.12, Std. Dev.=6.337, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9932, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Within Limit Prediction Limit Intrawell Parametric

GN-GSA-MW-3 background

GN-GSA-MW-3 compliance

Limit = 3.86

Background Data Summary: Mean=3.14, Std. Dev.=0.3379, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.969, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006339.

10/9/17 4/16/18 10/22/18

	GN-GSA-MW-12	GN-GSA-MW-12
3/23/2016	70.2	
5/10/2016	65.6	
7/6/2016	58.2	
9/6/2016	62.3	
11/9/2016	62.7	
2/21/2017	69.9	
5/31/2017	66.5	
7/5/2017	66.9	
9/7/2017	72.9	
6/12/2018		69.9
10/23/2018		64.3

	GN-GSA-MW-13	GN-GSA-MW-13
3/24/2016	79.9	
5/10/2016	77.6	
7/6/2016	72	
9/6/2016	81.6	
11/8/2016	83.8	
2/22/2017	86.4	
5/31/2017	84.1	
7/5/2017	89.5	
9/7/2017	93.2	
6/12/2018		101
10/23/2018		97.6

	GN-GSA-MW-2	GN-GSA-MW-2
3/23/2016	3.6	
5/10/2016	4.18	
7/5/2016	3.12	
9/6/2016	3.21	
11/8/2016	3.33	
2/21/2017	4.6	
5/31/2017	3.8	
7/5/2017	3.4	
9/5/2017	4.4	
6/12/2018		3.4
10/22/2018		3.6

	GN-GSA-MW-3	GN-GSA-MW-3
3/23/2016	3.67	
5/10/2016	3.34	
7/6/2016	3.08	
9/7/2016	2.95	
11/8/2016	2.92	
2/20/2017	3.3	
5/31/2017	2.9	
7/5/2017	2.6	
9/5/2017	3.5	
6/12/2018		3.1
10/23/2018		2.6

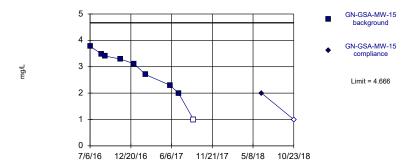
Within Limit Prediction Limit
Intrawell Parametric

Constituent: Chloride Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas^{tu} v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Parametric


GN-GSA-MW-1
background
GN-GSA-MW-1
compliance
Limit = 4.011

3/24/16 9/28/16 4/5/17 10/10/17 4/17/18 10/23/18

Background Data Summary: Mean=2.554, Std. Dev.=0.6834, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8742, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=2.783, Std. Dev.=0.8834, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9126, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Constituent: Chloride Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

3/23/16 9/27/16

Within Limit

Prediction Limit
Intrawell Non-parametric

GN-GSA-MW-5
background

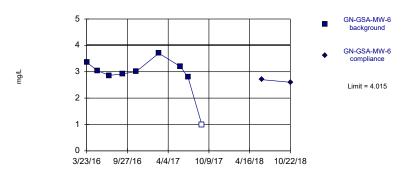
GN-GSA-MW-5
compliance

Limit = 17

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 9 background values. Well-constituent pair annual alpha = 0.009329. Individual comparison alpha = 0.004675 (1 of 3).

4/4/17 10/9/17 4/16/18 10/22/18

	GN-GSA-MW-14S	GN-GSA-MW-14S
7/5/2016	3.86	
8/23/2016	4.69	
9/7/2016	4.6	
11/8/2016	4.68	
1/3/2017	5.25	
2/21/2017	4.3	
5/31/2017	4.2	
7/5/2017	3.4	
9/5/2017	4.5	
6/12/2018		3.6
10/23/2018		3.4

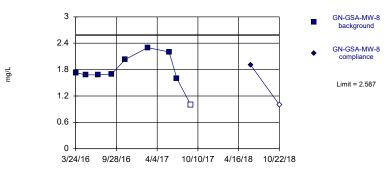

	GN-GSA-MW-15	GN-GSA-MW-15
7/6/2016	3.78	
8/23/2016	3.47	
9/7/2016	3.4	
11/8/2016	3.29	
1/3/2017	3.11	
2/20/2017	2.7	
5/31/2017	2.3	
7/5/2017	2	
9/5/2017	<2 (U*)	
6/12/2018		2
10/23/2018		<2 (J)

	GN-GSA-MW-1	GN-GSA-MW-1
3/24/2016	3.35	
5/10/2016	3.06	
7/5/2016	2.9	
9/6/2016	2.54	
11/8/2016	2.34	
2/22/2017	2.9	
5/31/2017	2.7	
7/5/2017	2.2	
9/7/2017	<2 (U*)	
6/12/2018		2.4
10/23/2018		2.1

	GN-GSA-MW-5	GN-GSA-MW-5
3/23/2016	4.84	
5/11/2016	4.19	
7/6/2016	4.67	
9/6/2016	4.23	
11/8/2016	4.51	
2/20/2017	5.8	
5/30/2017	13	
7/5/2017	17	
9/7/2017	17	
6/11/2018		14
10/22/2018		14

Hollow symbols indicate censored values.

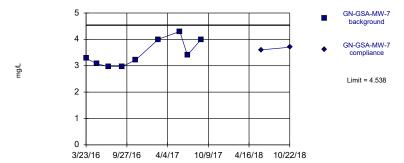
Prediction Limit Within Limit Intrawell Parametric


Background Data Summary (based on square transformation): Mean=8.785, Std. Dev.=3.44, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8682, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: Chloride Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

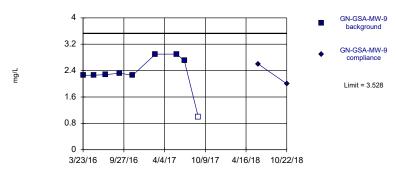
Within Limit



Background Data Summary: Mean=1.769, Std. Dev.=0.3837, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9076, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Prediction Limit Within Limit Intrawell Parametric



Background Data Summary: Mean=3.468, Std. Dev.=0.502, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8667, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

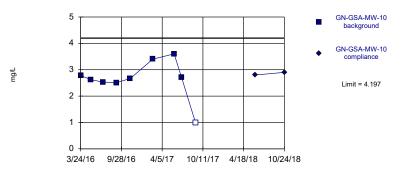
> Constituent: Chloride Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=2.32, Std. Dev.=0.567, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7828, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha

	GN-GSA-MW-6	GN-GSA-MW-6
3/23/2016	3.36	
5/11/2016	3.04	
7/6/2016	2.86	
9/6/2016	2.92	
11/8/2016	3.01	
2/20/2017	3.7	
5/30/2017	3.2	
7/5/2017	2.8	
9/7/2017	<2 (U*)	
6/11/2018		2.7
10/22/2018		2.6


	GN-GSA-MW-7	GN-GSA-MW-7
3/23/2016	3.28	
5/11/2016	3.08	
7/6/2016	2.96	
9/6/2016	2.97	
11/8/2016	3.22	
2/20/2017	4	
5/31/2017	4.3	
7/5/2017	3.4	
9/7/2017	4	
6/11/2018		3.6
10/22/2018		3.7

	GN-GSA-MW-8	GN-GSA-MW-8
3/24/2016	1.73	
5/11/2016	1.68	
7/6/2016	1.68	
9/6/2016	1.7	
11/8/2016	2.03	
2/20/2017	2.3	
5/30/2017	2.2	
7/5/2017	1.6 (J)	
9/7/2017	<2 (U*)	
6/12/2018		1.9 (J)
10/22/2018		<2

	GN-GSA-MW-9	GN-GSA-MW-9
3/23/2016	2.26	
5/11/2016	2.26	
7/6/2016	2.28	
9/7/2016	2.32	
11/8/2016	2.26	
2/21/2017	2.9	
5/30/2017	2.9	
7/5/2017	2.7	
9/7/2017	<2 (U*)	
6/12/2018		2.6
10/22/2018		2

Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=2.646, Std. Dev.=0.7282, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8302, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: Chloride Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric 6 GN-GSA-MW-12 background 4.8 GN-GSA-MW-12 compliance 3.6 Limit = 5.623 2.4 1.2

3/23/16 9/27/16 4/4/17 10/10/17 4/17/18 10/23/18

Background Data Summary: Mean=3.181, Std. Dev.=1.146, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9447, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

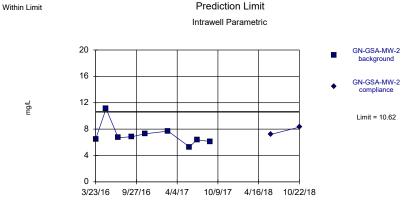
Background Data Summary: Mean=4.269, Std. Dev.=1.162, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9661, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: Chloride Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Prediction Limit Within Limit Intrawell Parametric GN-GSA-MW-13 background 48 GN-GSA-MW-13 compliance 3.6 Limit = 5.021 2.4 1.2 3/24/16 9/28/16 4/5/17 10/10/17 4/17/18 10/23/18

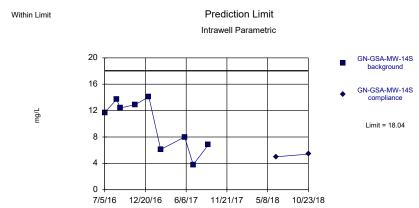
Background Data Summary: Mean=3.646, Std. Dev.=0.6455, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8625, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

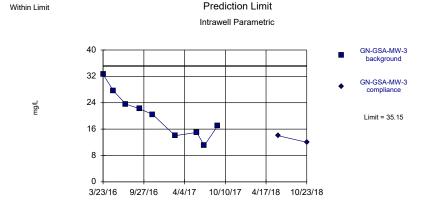

	GN-GSA-MW-10	GN-GSA-MW-10
3/24/2016	2.78	
5/11/2016	2.62	
7/6/2016	2.53	
9/6/2016	2.51	
11/9/2016	2.67	
2/21/2017	3.4	
5/31/2017	3.6	
7/5/2017	2.7	
9/7/2017	<2 (U*)	
6/12/2018		2.8
10/24/2018		2.9

	GN-GSA-MW-11	GN-GSA-MW-11
3/23/2016	2.64	
5/11/2016	3.02	
7/6/2016	4.01	
9/7/2016	4.51	
11/9/2016	3.74	
2/21/2017	4.1	
5/31/2017	5.3	
7/5/2017	4.6	
9/7/2017	6.5	
6/12/2018		8.8
10/24/2018		7.2

	GN-GSA-MW-12	GN-GSA-MW-12
3/23/2016	4.43	
5/10/2016	3.38	
7/6/2016	2.62	
9/6/2016	2.65	
11/9/2016	2.55	
2/21/2017	4.7	
5/31/2017	4.1	
7/5/2017	3.2	
9/7/2017	<2 (U*)	
6/12/2018		3.1
10/23/2018		2.1

	GN-GSA-MW-13	GN-GSA-MW-13
3/24/2016	3.16	
5/10/2016	3.02	
7/6/2016	3.1	
9/6/2016	3.31	
11/8/2016	3.32	
2/22/2017	4.8	
5/31/2017	4	
7/5/2017	3.6	
9/7/2017	4.5	
6/12/2018		3.5
10/23/2018		3.5


Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG


Background Data Summary: Mean=7.103, Std. Dev.=1.648, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7912, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha =

> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=9.944, Std. Dev.=3.798, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8929, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha =

Background Data Summary: Mean=20.38, Std. Dev.=6.93, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9717, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Background Data Summary: Mean=3.231, Std. Dev.=1.113, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9241, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

7/6/16

	GN-GSA-MW-2	GN-GSA-MW-2
3/23/2016	6.48	
5/10/2016	11.1	
7/5/2016	6.7	
9/6/2016	6.85	
11/8/2016	7.3	
2/21/2017	7.7	
5/31/2017	5.3	
7/5/2017	6.4	
9/5/2017	6.1	
6/12/2018		7.2
10/22/2018		8.3

	GN-GSA-MW-3	GN-GSA-MW-3
3/23/2016	32.6	
5/10/2016	27.6	
7/6/2016	23.6	
9/7/2016	22.2	
11/8/2016	20.4	
2/20/2017	14	
5/31/2017	15	
7/5/2017	11	
9/5/2017	17	
6/12/2018		14
10/23/2018		12

	GN-GSA-MW-14S	GN-GSA-MW-14S
7/5/2016	11.7	
8/23/2016	13.7	
9/7/2016	12.4	
11/8/2016	12.9	
1/3/2017	14.1	
2/21/2017	6.1	
5/31/2017	8	
7/5/2017	3.8 (J)	
9/5/2017	6.8	
6/12/2018		5
10/23/2018		5.4

	GN-GSA-MW-15	GN-GSA-MW-15
7/6/2016	5.38	
8/23/2016	4.23	
9/7/2016	3.84	
11/8/2016	3.23	
1/3/2017	3	
2/20/2017	3.1 (J)	
5/31/2017	2.1 (J)	
7/5/2017	2 (J)	
9/5/2017	2.2 (J)	
6/12/2018		2.3 (J)
10/23/2018		<5

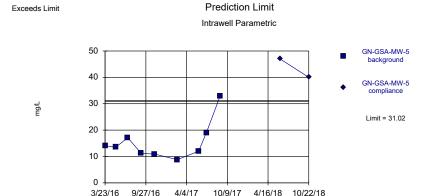
Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=4.099, Std. Dev.=1.086, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8668, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha =

> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

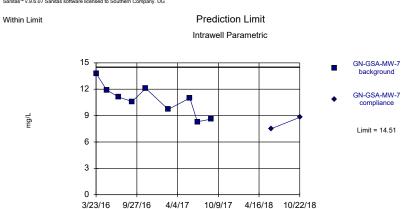
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.


Prediction Limit Within Limit Intrawell Parametric GN-GSA-MW-6 background GN-GSA-MW-6 compliance 3 Limit = 4.369

3/23/16 9/27/16 4/4/17

Background Data Summary (after Kaplan-Meier Adjustment): Mean=1.754, Std. Dev.=1.227, n=9, 22.22% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7711, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

10/9/17 4/16/18 10/22/18


Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=15.51, Std. Dev.=7.278, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7851, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha =

> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=10.79, Std. Dev.=1.745, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9676, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

	GN-GSA-MW-1	GN-GSA-MW-1
3/24/2016	6.06	
5/10/2016	5.47	
7/5/2016	4.8	
9/6/2016	3.91	
11/8/2016	2.95	
2/22/2017	3.3 (J)	
5/31/2017	3.4 (J)	
7/5/2017	3.4 (J)	
9/7/2017	3.6 (J)	
6/12/2018		4.2 (J)
10/23/2018		<5 (J)

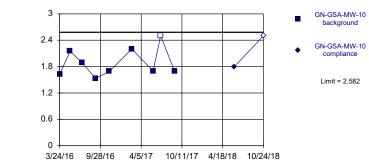
	GN-GSA-MW-5	GN-GSA-MW-5
3/23/2016	14.1	
5/11/2016	13.5	
7/6/2016	17.1	
9/6/2016	11.2	
11/8/2016	10.9	
2/20/2017	8.8	
5/30/2017	12	
7/5/2017	19	
9/7/2017	33	
6/11/2018		47
10/22/2018		40

	GN-GSA-MW-6	GN-GSA-MW-6
3/23/2016	1.89	
5/11/2016	1.79	
7/6/2016	1.3	
9/6/2016	1.14	
11/8/2016	0.622 (J)	
2/20/2017	5	
5/30/2017	5	
7/5/2017	<5	
9/7/2017	<5	
6/11/2018		<5
10/22/2018		<5

	GN-GSA-MW-7	GN-GSA-MW-7
3/23/2016	13.8	
5/11/2016	11.9	
7/6/2016	11.1	
9/6/2016	10.6	
11/8/2016	12.1	
2/20/2017	9.7	
5/31/2017	11	
7/5/2017	8.3	
9/7/2017	8.6	
6/11/2018		7.5
10/22/2018		8.8

Hollow symbols indicate censored values.

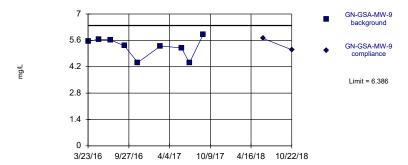
Prediction Limit Within Limit Intrawell Parametric


Background Data Summary: Mean=1.843, Std. Dev.=0.3686, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9707, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha =

> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

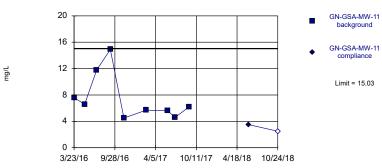
Within Limit



Background Data Summary: Mean=1.887, Std. Dev.=0.326, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8863, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Prediction Limit Within Limit Intrawell Parametric



Background Data Summary: Mean=5.261, Std. Dev.=0.528, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8677, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

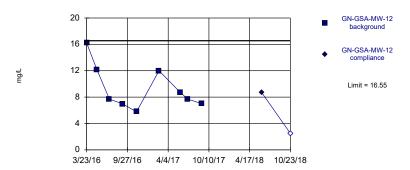
> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=7.499, Std. Dev.=3.536, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7987, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

	GN-GSA-MW-8	GN-GSA-MW-8
3/24/2016	2.42	
5/11/2016	2.16	
7/6/2016	1.7	
9/6/2016	1.31	
11/8/2016	1.4	
2/20/2017	2 (J)	
5/30/2017	1.6 (J)	
7/5/2017	1.9 (J)	
9/7/2017	2.1 (J)	
6/12/2018		2.7 (J)
10/22/2018		<5 (J)


	GN-GSA-MW-9	GN-GSA-MW-9
3/23/2016	5.54	
5/11/2016	5.66	
7/6/2016	5.62	
9/7/2016	5.31	
11/8/2016	4.42	
2/21/2017	5.3	
5/30/2017	5.2	
7/5/2017	4.4 (J)	
9/7/2017	5.9	
6/12/2018		5.7
10/22/2018		5.1

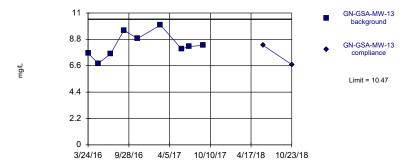
	GN-GSA-MW-10	GN-GSA-MW-10
3/24/2016	1.62	
5/11/2016	2.15	
7/6/2016	1.89	
9/6/2016	1.53	
11/9/2016	1.69	
2/21/2017	2.2 (J)	
5/31/2017	1.7 (J)	
7/5/2017	<5	
9/7/2017	1.7 (J)	
6/12/2018		1.8 (J)
10/24/2018		<5

	GN-GSA-MW-11	GN-GSA-MW-11
3/23/2016	7.59	
5/11/2016	6.6	
7/6/2016	11.8	
9/7/2016	14.9	
11/9/2016	4.5	
2/21/2017	5.7	
5/31/2017	5.6	
7/5/2017	4.6 (J)	
9/7/2017	6.2	
6/12/2018		3.5 (J)
10/24/2018		<5 (J)

Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric

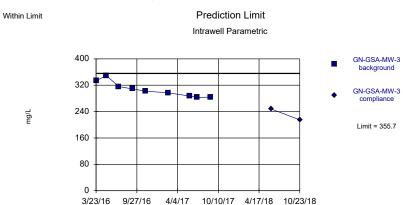
Background Data Summary: Mean=9.349, Std. Dev.=3.38, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8645, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha =


> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Prediction Limit Within Limit Intrawell Parametric 320 GN-GSA-MW-2 background 256 GN-GSA-MW-2 compliance 192 Limit = 311.1 128 64 3/23/16 9/27/16 4/4/17 10/9/17 4/16/18 10/22/18

Background Data Summary: Mean=287.6, Std. Dev.=11.06, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9438, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

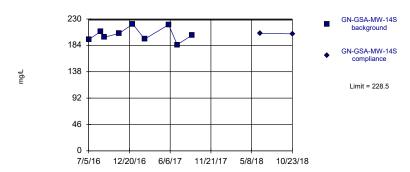

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=8.328, Std. Dev.=1.007, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9665, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: Sulfate Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=306.8, Std. Dev.=22.93, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9121, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.


	GN-GSA-MW-12	GN-GSA-MW-12
3/23/2016	16.2	
5/10/2016	12.1	
7/6/2016	7.7	
9/6/2016	6.97	
11/9/2016	5.77	
2/21/2017	12	
5/31/2017	8.7	
7/5/2017	7.7	
9/7/2017	7	
6/12/2018		8.7
10/23/2018		<5 (J)

	GN-GSA-MW-13	GN-GSA-MW-13
3/24/2016	7.64	
5/10/2016	6.79	
7/6/2016	7.59	
9/6/2016	9.56	
11/8/2016	8.87	
2/22/2017	10	
5/31/2017	8	
7/5/2017	8.2	
9/7/2017	8.3	
6/12/2018		8.3
10/23/2018		6.7

	GN-GSA-MW-2	GN-GSA-MW-2
3/23/2016	272	
5/10/2016	283	
7/5/2016	294	
9/6/2016	295	
11/8/2016	310	
2/21/2017	280	
5/31/2017	287	
7/5/2017	287	
9/5/2017	280	
6/12/2018		284
10/22/2018		278

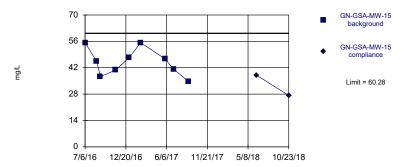
	GN-GSA-MW-3	GN-GSA-MW-3
3/23/2016	334	
5/10/2016	349	
7/6/2016	316	
9/7/2016	309	
11/8/2016	302	
2/20/2017	297	
5/31/2017	287	
7/5/2017	283	
9/5/2017	284	
6/12/2018		248
10/23/2018		215

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=203.1, Std. Dev.=11.92, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9499, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: TDS Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

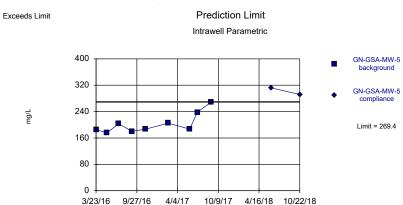
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG


Within Limit Prediction Limit Intrawell Parametric

300
240
300
GN-GSA-MW-1 background
SN-GSA-MW-1 compliance
Limit = 242.9

Background Data Summary: Mean=198.4, Std. Dev.=20.85, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8742, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG



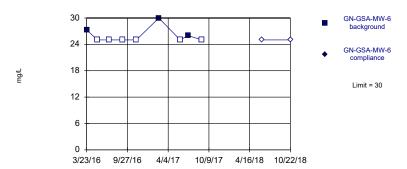
Background Data Summary: Mean=44.88, Std. Dev.=7.227, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9367, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839 (0.0006839).

Constituent: TDS Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=203.3, Std. Dev.=30.98, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8137, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

	GN-GSA-MW-14S	GN-GSA-MW-14S
7/5/2016	194	
8/23/2016	208	
9/7/2016	198	
11/8/2016	205	
1/3/2017	221	
2/21/2017	195	
5/31/2017	220	
7/5/2017	185	
9/5/2017	202	
6/12/2018		205
10/23/2018		204


	GN-GSA-MW-15	GN-GSA-MW-15
7/6/2016	55.3	
8/23/2016	45.3	
9/7/2016	37.3	
11/8/2016	40.7	
1/3/2017	47.3	
2/20/2017	55.3	
5/31/2017	46.7	
7/5/2017	41.3	
9/5/2017	34.7	
6/12/2018		38
10/23/2018		27.3

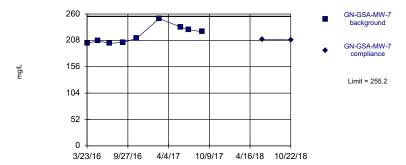
	GN-GSA-MW-1	GN-GSA-MW-1
3/24/2016	203	
5/10/2016	204	
7/5/2016	188	
9/6/2016	188	
11/8/2016	197	
2/22/2017	165	
5/31/2017	244	
7/5/2017	201	
9/7/2017	196	
6/12/2018		221
10/23/2018		195

	GN-GSA-MW-5	GN-GSA-MW-5
3/23/2016	185	
5/11/2016	176	
7/6/2016	203	
9/6/2016	180	
11/8/2016	187	
2/20/2017	205	
5/30/2017	187	
7/5/2017	238	
9/7/2017	269	
6/11/2018		312
10/22/2018		292

Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric

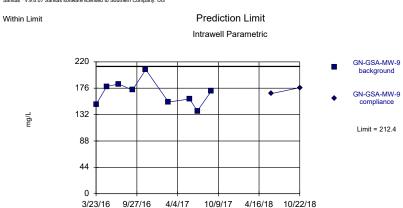
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 9 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.009329. Individual comparison alpha =


> Constituent: TDS Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Prediction Limit Within Limit Intrawell Parametric 210 GN-GSA-MW-8 background 168 GN-GSA-MW-8 compliance 126 Limit = 204.3 84 42 3/24/16 9/28/16 4/4/17 10/10/17 4/16/18 10/22/18

Background Data Summary: Mean=191.4, Std. Dev.=6.023, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8217, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

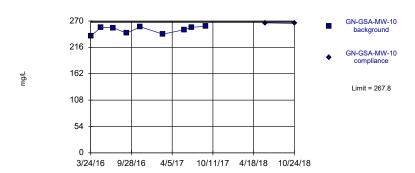


Background Data Summary: Mean=218.4, Std. Dev.=17.24, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.885, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: TDS Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=167.9, Std. Dev.=20.88, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9719, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.


	GN-GSA-MW-6	GN-GSA-MW-6
3/23/2016	27.3	
5/11/2016	<25	
7/6/2016	<25	
9/6/2016	<25	
11/8/2016	<25	
2/20/2017	30	
5/30/2017	<25	
7/5/2017	26	
9/7/2017	<25	
6/11/2018		<25
10/22/2018		<25

	GN-GSA-MW-7	GN-GSA-MW-7
3/23/2016	202	
5/11/2016	207	
7/6/2016	202	
9/6/2016	204	
11/8/2016	212	
2/20/2017	251	
5/31/2017	234	
7/5/2017	229	
9/7/2017	225	
6/11/2018		210
10/22/2018		209

	GN-GSA-MW-8	GN-GSA-MW-8
3/24/2016	179	
5/11/2016	195	
7/6/2016	192	
9/6/2016	193	
11/8/2016	198	
2/20/2017	195	
5/30/2017	184	
7/5/2017	194	
9/7/2017	193	
6/12/2018		186
10/22/2018		184

	GN-GSA-MW-9	GN-GSA-MW-9
3/23/2016	149	
5/11/2016	179	
7/6/2016	183	
9/7/2016	173	
11/8/2016	207	
2/21/2017	153	
5/30/2017	158	
7/5/2017	138	
9/7/2017	171	
6/12/2018		167
10/22/2018		177

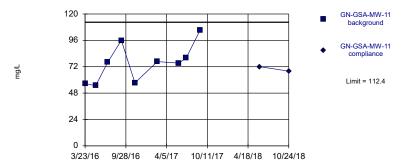
Within Limit Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=251.8, Std. Dev.=7.496, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8447, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: TDS Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

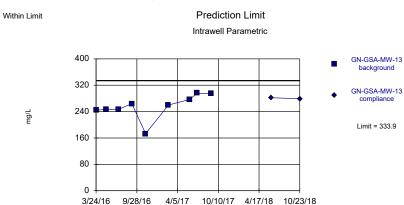
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG


Within Limit Prediction Limit Intrawell Parametric

280
224
GN-GSA-MW-12 background
GN-GSA-MW-12 compliance
Limit = 275.9

Background Data Summary: Mean=222.9, Std. Dev.=24.89, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9327, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG



Background Data Summary: Mean=75.3, Std. Dev.=17.43, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9086, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Constituent: TDS Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

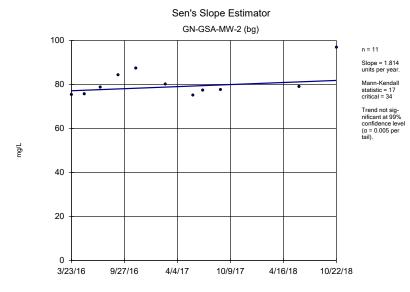
Background Data Summary: Mean=255.8, Std. Dev.=36.67, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8598, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

	GN-GSA-MW-10	GN-GSA-MW-10
3/24/2016	239	
5/11/2016	257	
7/6/2016	256	
9/6/2016	245	
11/9/2016	258	
2/21/2017	243	
5/31/2017	252	
7/5/2017	257	
9/7/2017	259	
6/12/2018		266
10/24/2018		265

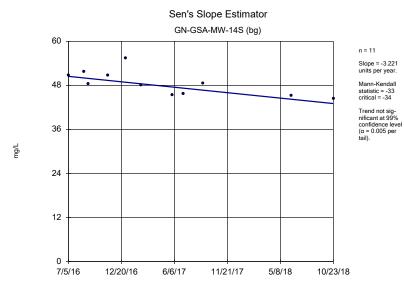
	GN-GSA-MW-11	GN-GSA-MW-11
3/23/2016	56.7	
5/11/2016	54.7	
7/6/2016	76	
9/7/2016	96	
11/9/2016	57.3	
2/21/2017	76.7	
5/31/2017	75.3	
7/5/2017	80	
9/7/2017	105	
6/12/2018		72
10/24/2018		68

	GN-GSA-MW-12	GN-GSA-MW-12
3/23/2016	237	
5/10/2016	226	
7/6/2016	191	
9/6/2016	200	
11/9/2016	190	
2/21/2017	264	
5/31/2017	242	
7/5/2017	231	
9/7/2017	225	
6/12/2018		230
10/23/2018		201

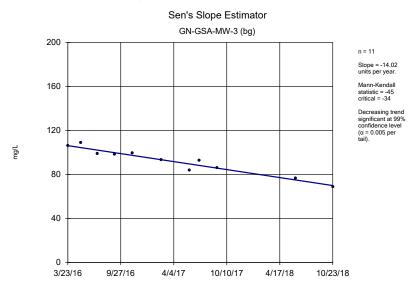
	GN-GSA-MW-13	GN-GSA-MW-13
3/24/2016	244	
5/10/2016	247	
7/6/2016	247	
9/6/2016	264	
11/8/2016	173	
2/22/2017	260	
5/31/2017	277	
7/5/2017	296	
9/7/2017	294	
6/12/2018		282
10/23/2018		279


Trend Test Summary Table - Significant Results Plant Gaston Client: Southern Company Data: Gaston GSA Printed 12/18/2018, 2:15 PM

	Plant Gaston Client: S	outnern Company	Data: Gasto	on GSA P	rinted 12	2/18/20	18, 2:15 1	PIM			
Constituent	Well	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GN-GSA-MW-3 (bg)	-14.02	-45	-34	Yes	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-13	10.24	45	34	Yes	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-15 (bg)	-1.52	-51	-34	Yes	11	18.18	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-11	1.99	45	34	Yes	11	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-3 (bg)	-8.111	-42	-34	Yes	11	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-15 (bg)	-1.627	-35	-34	Yes	11	9.091	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-3 (bg)	-39.69	-51	-34	Yes	11	0	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-5	53.75	40	34	Yes	11	0	n/a	n/a	0.01	NP

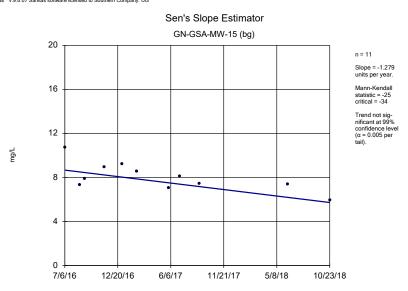

Trend Test Summary Table - All Results

Plant Gaston Client: Southern Company Data: Gaston GSA Printed 12/18/2018, 2:15 PM

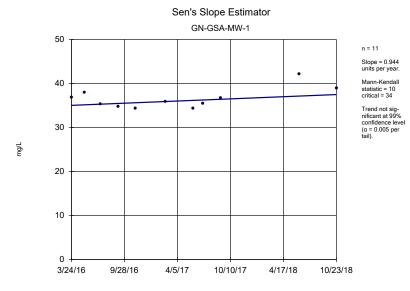

		,					-,				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GN-GSA-MW-2 (bg)	1.814	17	34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-3 (bg)	-14.02	-45	-34	Yes	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-14S (bg)	-3.221	-33	-34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-15 (bg)	-1.279	-25	-34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-1	0.944	10	34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-10	4.742	31	34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-13	10.24	45	34	Yes	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-2 (bg)	0.1382	9	34	No	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-3 (bg)	-0.2147	-24	-34	No	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-14S (bg)	-0.5489	-24	-34	No	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-15 (bg)	-1.52	-51	-34	Yes	11	18.18	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-11	1.99	45	34	Yes	11	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GN-GSA-MW-2 (bg)	0.01133	25	38	No	12	41.67	n/a	n/a	0.01	NP
Fluoride (mg/L)	GN-GSA-MW-3 (bg)	-0.00848	-15	-38	No	12	16.67	n/a	n/a	0.01	NP
Fluoride (mg/L)	GN-GSA-MW-14S (bg)	-0.008334	-21	-38	No	12	25	n/a	n/a	0.01	NP
Fluoride (mg/L)	GN-GSA-MW-15 (bg)	1.5e-9	24	38	No	12	58.33	n/a	n/a	0.01	NP
Fluoride (mg/L)	GN-GSA-MW-1	0.02215	15	38	No	12	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GN-GSA-MW-8	-0.006981	-18	-38	No	12	0	n/a	n/a	0.01	NP
pH (pH)	GN-GSA-MW-2 (bg)	-0.01811	-15	-38	No	12	0	n/a	n/a	0.01	NP
pH (pH)	GN-GSA-MW-3 (bg)	-0.03383	-9	-38	No	12	0	n/a	n/a	0.01	NP
pH (pH)	GN-GSA-MW-14S (bg)	0.01334	8	38	No	12	0	n/a	n/a	0.01	NP
pH (pH)	GN-GSA-MW-15 (bg)	-0.02105	-12	-38	No	12	0	n/a	n/a	0.01	NP
pH (pH)	GN-GSA-MW-1	-0.01358	-11	-38	No	12	0	n/a	n/a	0.01	NP
pH (pH)	GN-GSA-MW-6	-0.05604	-14	-38	No	12	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-2 (bg)	0.1984	1	34	No	11	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-3 (bg)	-8.111	-42	-34	Yes	11	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-14S (bg)	-4.189	-27	-34	No	11	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-15 (bg)	-1.627	-35	-34	Yes	11	9.091	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-5	10.82	21	34	No	11	0	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-2 (bg)	-2.039	-7	-34	No	11	0	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-3 (bg)	-39.69	-51	-34	Yes	11	0	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-14S (bg)	1.58	2	34	No	11	0	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-15 (bg)	-8.306	-24	-34	No	11	0	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-5	53.75	40	34	Yes	11	0	n/a	n/a	0.01	NP

Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

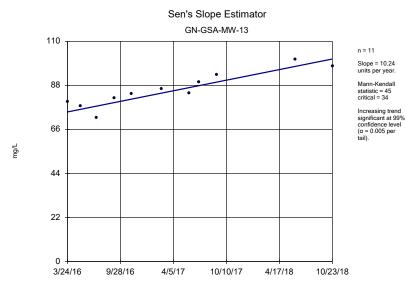
Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

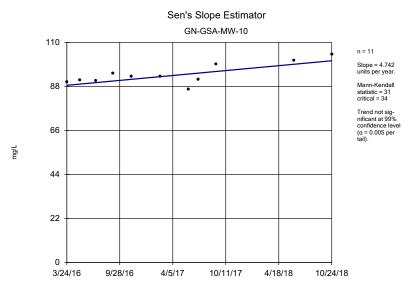


Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests

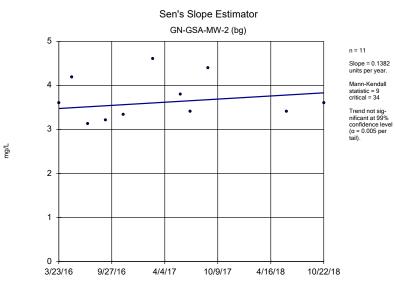

Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

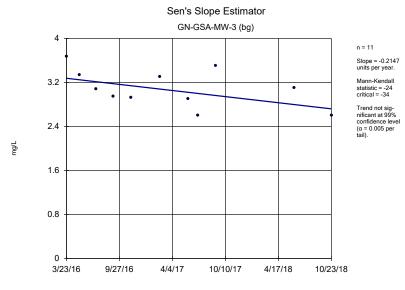

Plant Gaston


Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

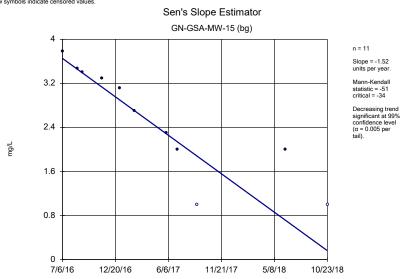


Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

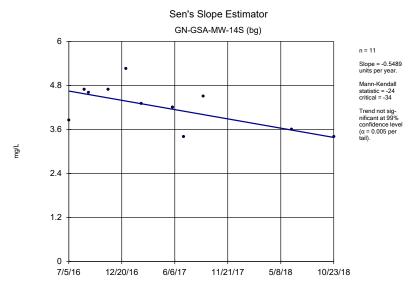


Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

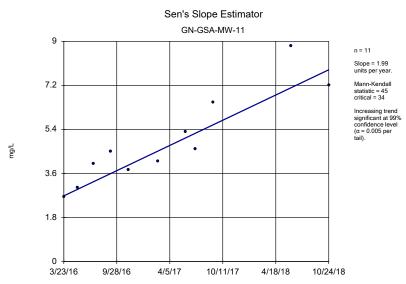
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG



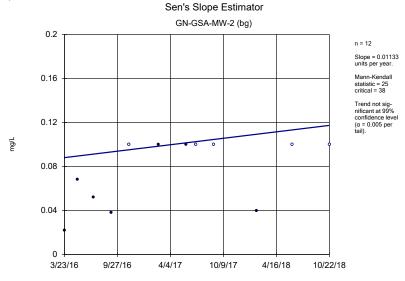
Constituent: Chloride Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA



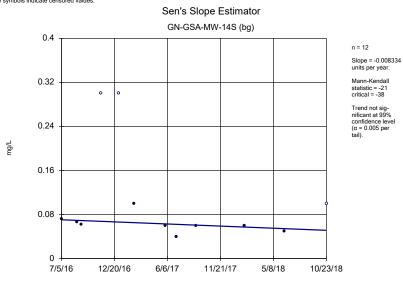
Constituent: Chloride Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA



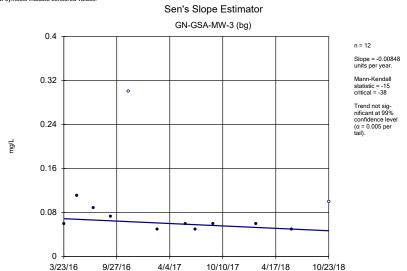
Constituent: Chloride Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA



Constituent: Chloride Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Chloride Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

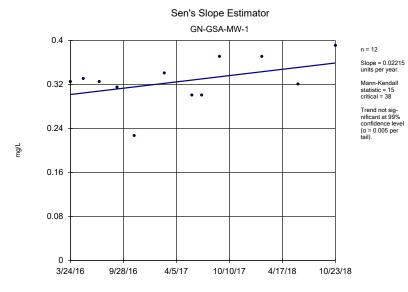
Hollow symbols indicate censored values.


Constituent: Fluoride Analysis Run 12/18/2018 2:14 PM View: Trend Tests Plant Gaston Client: Southern Company Data: Gaston GSA

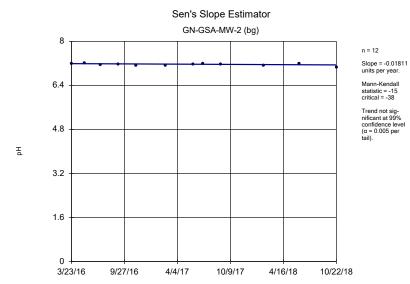
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

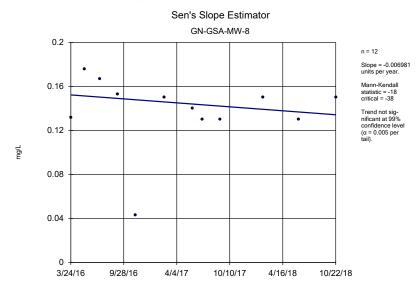

Constituent: Fluoride Analysis Run 12/18/2018 2:14 PM View: Trend Tests Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

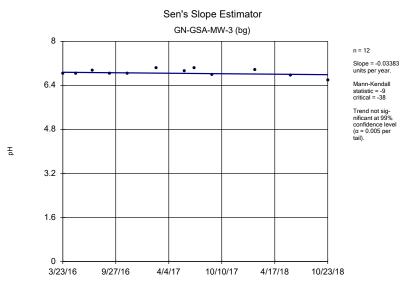


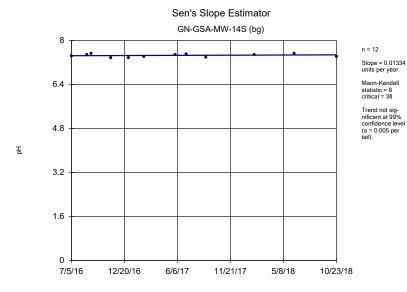
Constituent: Fluoride Analysis Run 12/18/2018 2:14 PM View: Trend Tests Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

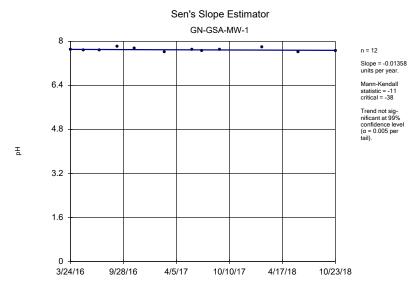

Constituent: Fluoride Analysis Run 12/18/2018 2:14 PM View: Trend Tests Plant Gaston Client: Southern Company Data: Gaston GSA

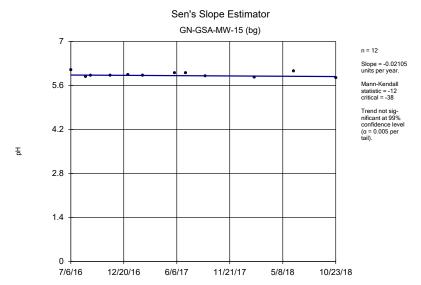
Constituent: Fluoride Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: pH Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

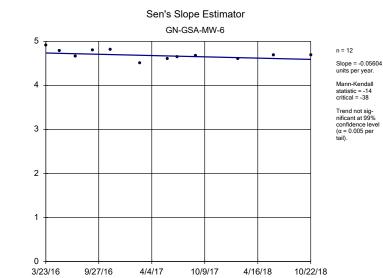

Plant Gaston Client: Southern Company Data: Gaston GSA

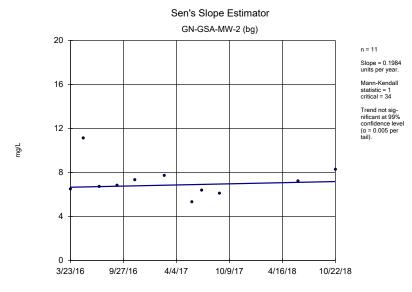
Constituent: Fluoride Analysis Run 12/18/2018 2:14 PM View: Trend Tests


Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

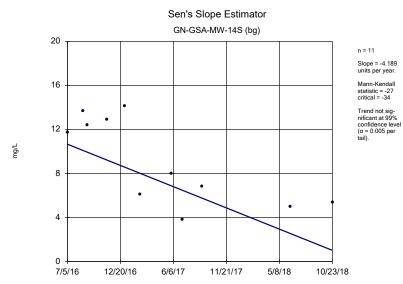

Constituent: pH Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

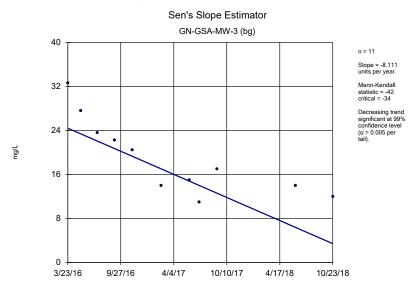
Constituent: pH Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: pH Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: pH Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

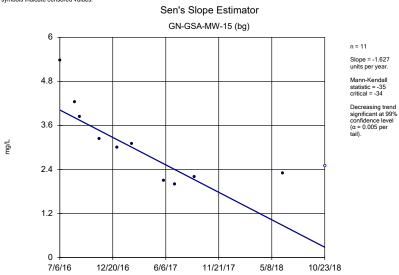
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG


표

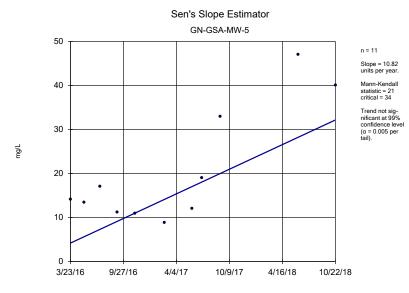

Constituent: pH Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

Constituent: Sulfate Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

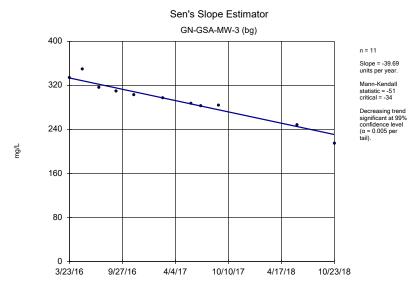
Constituent: Sulfate Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

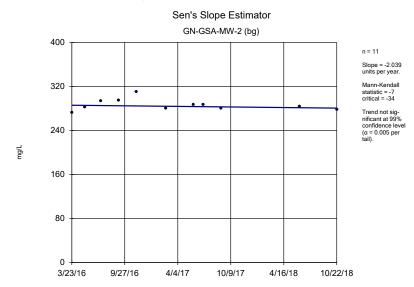


Plant Gaston Client: Southern Company Data: Gaston GSA

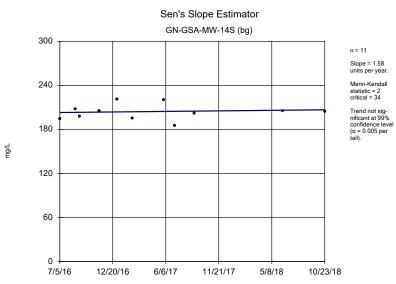

Analysis Run 12/18/2018 2:14 PM View: Trend Tests

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.


Constituent: Sulfate


Constituent: Sulfate Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

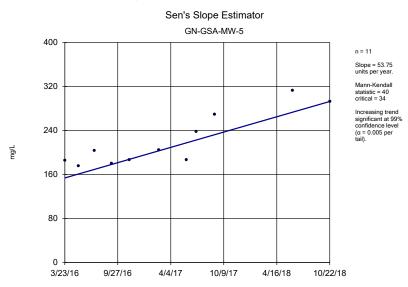
Constituent: Sulfate Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA



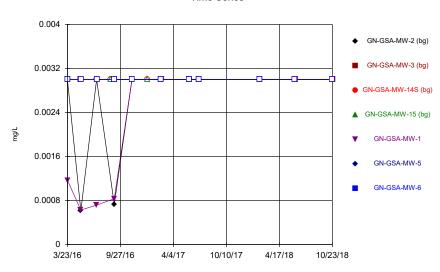
Constituent: TDS Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: TDS Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

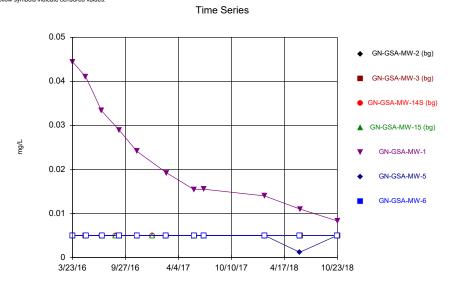
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG


Constituent: TDS Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

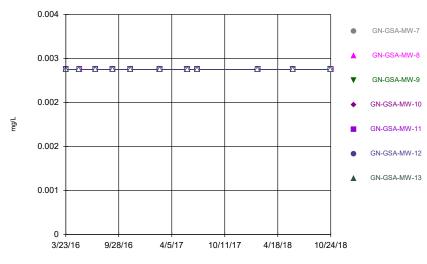
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG


Constituent: TDS Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

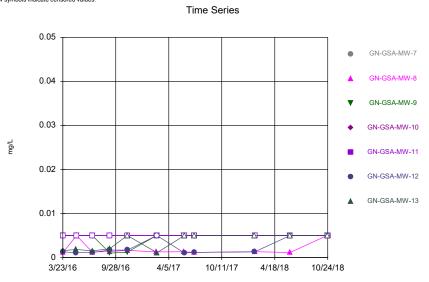
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG



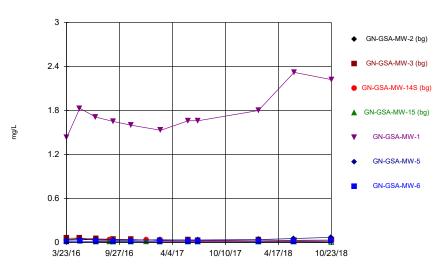
Constituent: TDS Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA



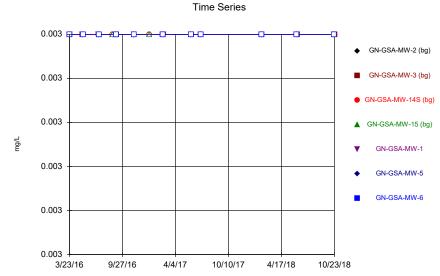
Constituent: Antimony Analysis Run 12/18/2018 2:11 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA



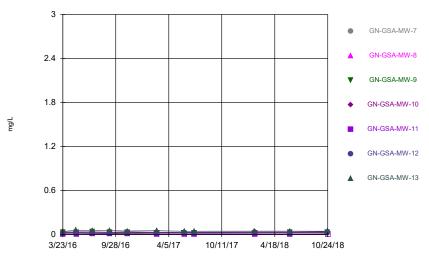
Constituent: Arsenic Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA


Time Series

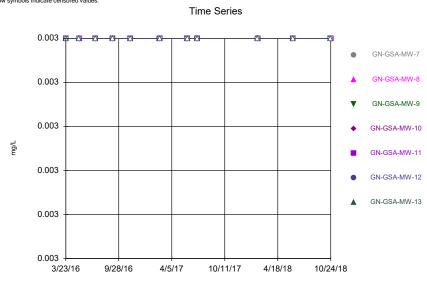
Constituent: Antimony Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA



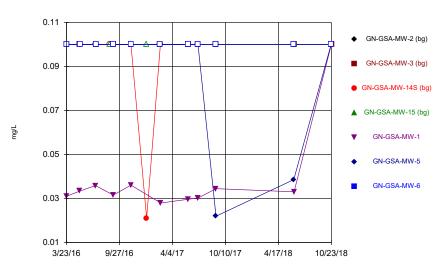
Constituent: Arsenic Analysis Run 12/18/2018 2:11 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Barium Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

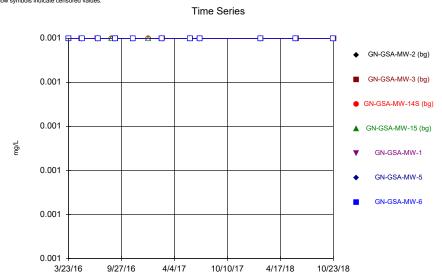
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.



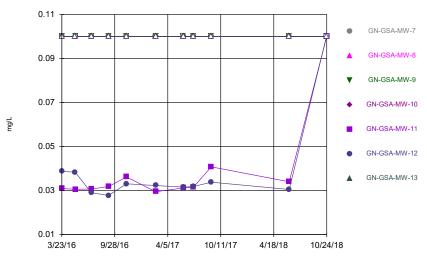
Constituent: Beryllium Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA


Time Series

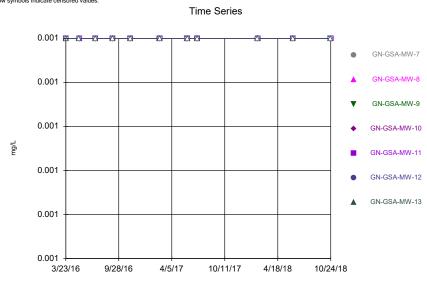
Constituent: Barium Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA



Constituent: Beryllium Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

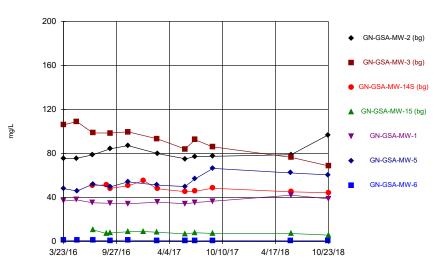

Constituent: Boron Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

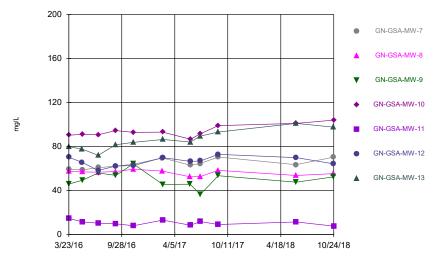


Constituent: Cadmium Analysis Run 12/18/2018 2:11 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

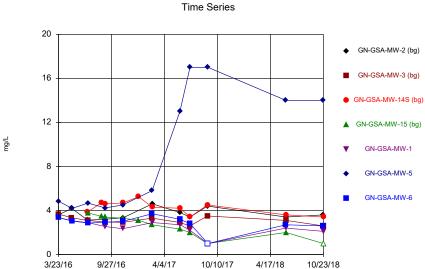
Time Series



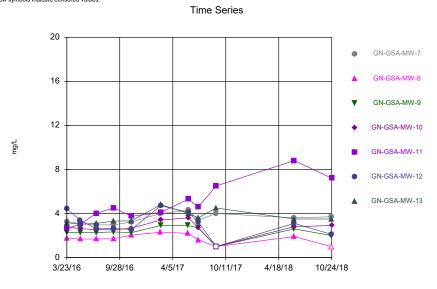
Constituent: Boron Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA



Constituent: Cadmium Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

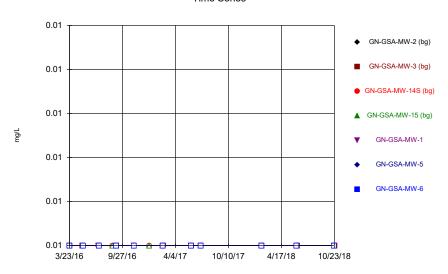


Constituent: Calcium Analysis Run 12/18/2018 2:11 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

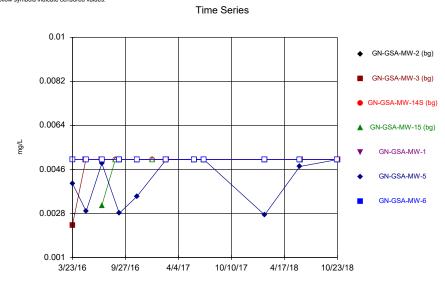


Constituent: Calcium Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

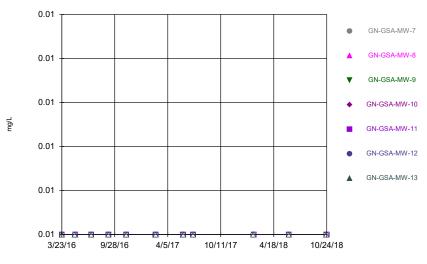
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.



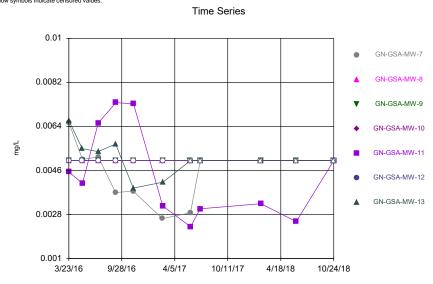
Constituent: Chloride Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA



Constituent: Chloride Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

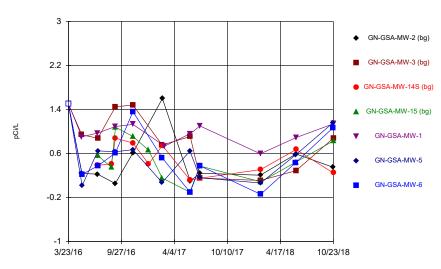


Constituent: Chromium Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

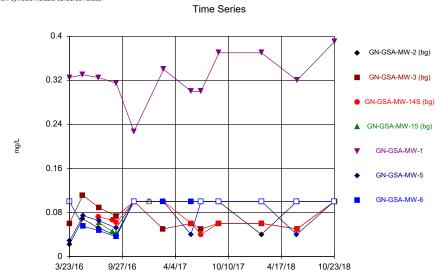


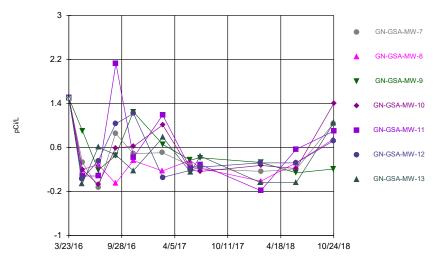
Constituent: Cobalt Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

Time Series

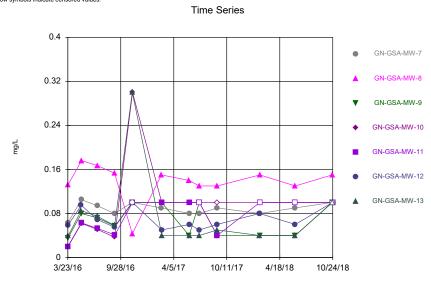


Constituent: Chromium Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

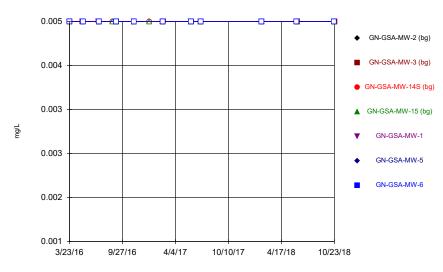

Constituent: Cobalt Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Combined Radium 226 + 228 Analysis Run 12/18/2018 2:12 PM View: Descriptive

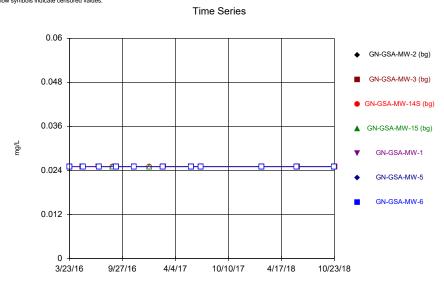
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Fluoride Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

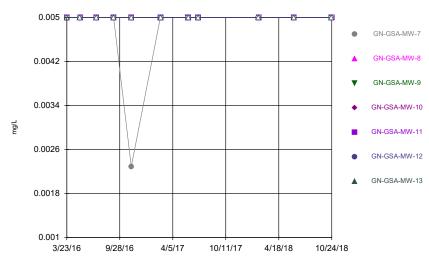
Time Series


Constituent: Combined Radium 226 + 228 Analysis Run 12/18/2018 2:12 PM View: Descriptive

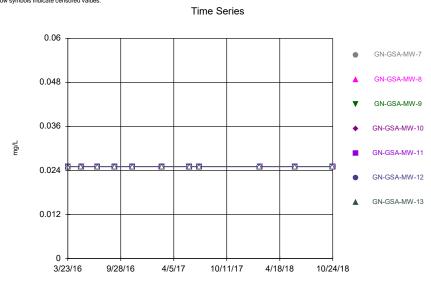
Plant Gaston Client: Southern Company Data: Gaston GSA



Constituent: Fluoride Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA



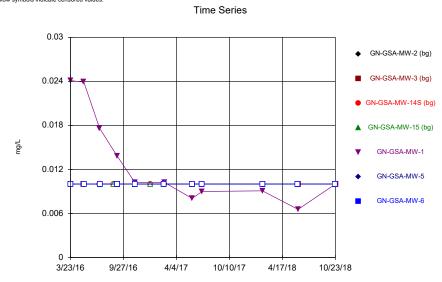
Constituent: Lead Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA



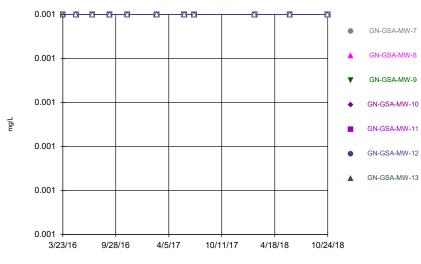
Constituent: Lithium Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

Time Series

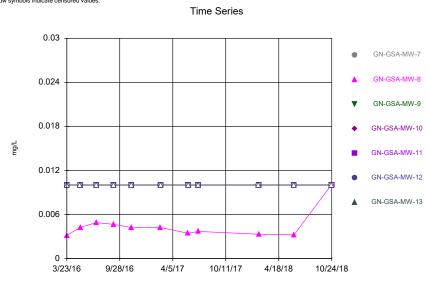
Constituent: Lead Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA



Constituent: Lithium Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

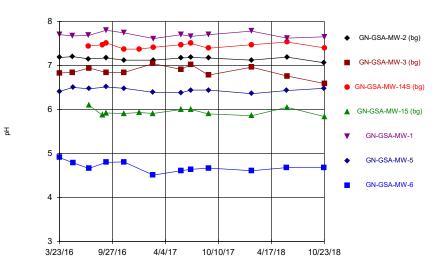


Constituent: Mercury Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

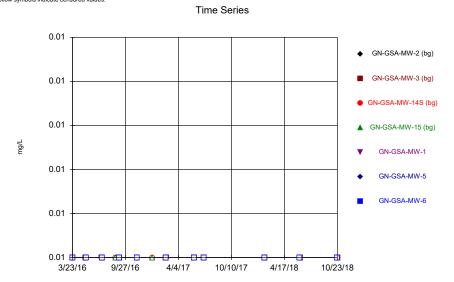


Constituent: Molybdenum Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

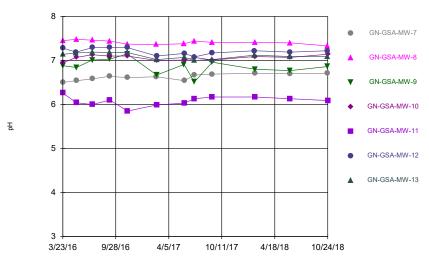
Time Series



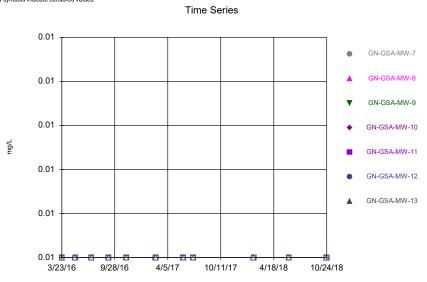
Constituent: Mercury Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA



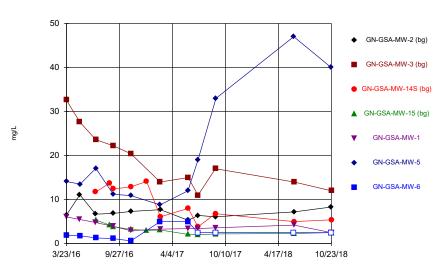
Constituent: Molybdenum Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA



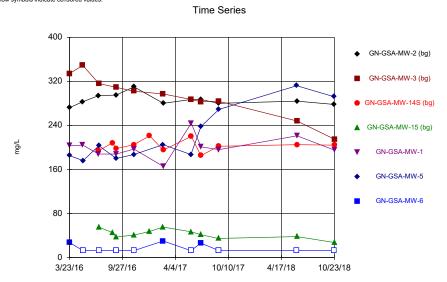
Constituent: pH Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA



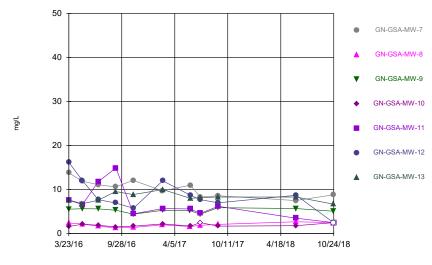
Constituent: Selenium Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA


Time Series

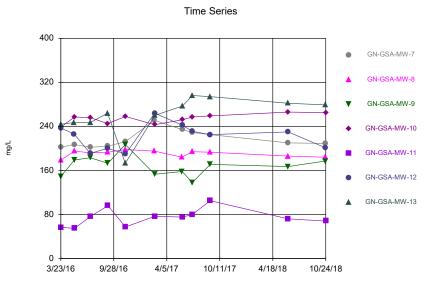
Constituent: pH Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA



Constituent: Selenium Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

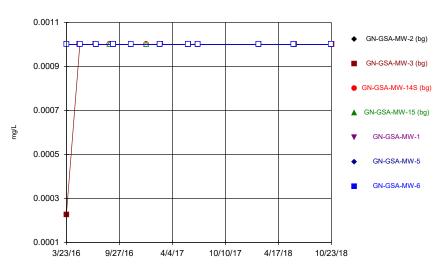

Constituent: Sulfate Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.


Constituent: TDS Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

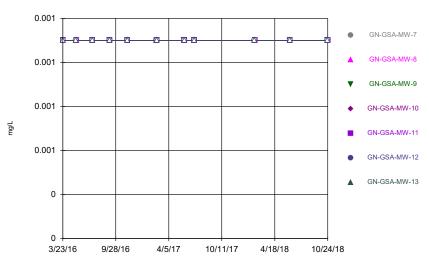
Time Series

Constituent: Sulfate Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA


$\text{Sanitas}^{\text{\tiny{TM}}} \text{ v.9.6.07 Sanitas software licensed to Southern Company. UG}$

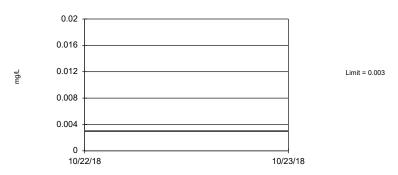
Constituent: TDS Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.



Constituent: Thallium Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

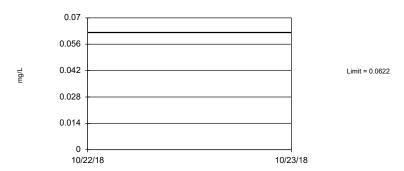
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.


Time Series

Constituent: Thallium Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

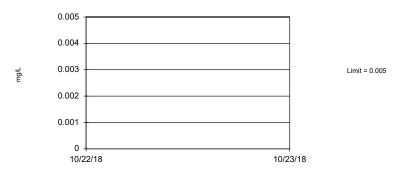
Upper Tolerance Limits - App IV

		Plant Gaston	Client: Southerr	Company Da	ata: Gaston GSA	Printed 1/1	4/2019, 8:24 AM		
Constituent	Upper Lim.	Bg N	Bg Mean	Std. Dev.	<u>%NDs</u>	ND Adj.	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	0.003	44	n/a	n/a	95.45	n/a	n/a	0.1047	NP Inter(NDs)
Arsenic (mg/L)	0.005	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Barium (mg/L)	0.0622	44	n/a	n/a	2.273	n/a	n/a	0.1047	NP Inter(normal
Beryllium (mg/L)	0.003	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Boron (mg/L)	0.1	44	n/a	n/a	97.73	n/a	n/a	0.1047	NP Inter(NDs)
Cadmium (mg/L)	0.001	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Chromium (mg/L)	0.01	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Cobalt (mg/L)	0.01	44	n/a	n/a	95.45	n/a	n/a	0.1047	NP Inter(NDs)
Combined Radium 226 + 228 (pCi/L)	1.6	44	n/a	n/a	4.545	n/a	n/a	0.1047	NP Inter(normal
Fluoride (mg/L)	0.3	48	n/a	n/a	35.42	n/a	n/a	0.08526	NP Inter(normal
Lead (mg/L)	0.005	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Lithium (mg/L)	0.02	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Mercury (mg/L)	0.0005	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Molybdenum (mg/L)	0.01	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Selenium (mg/L)	0.01	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Thallium (mg/L)	0.001	44	n/a	n/a	97.73	n/a	n/a	0.1047	NP Inter(NDs)



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 44 background values. 95.45% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.105; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

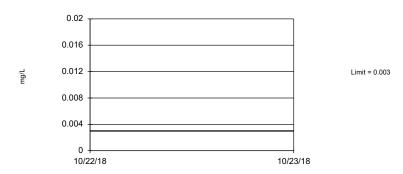
Constituent: Antimony Analysis Run 1/14/2019 8:22 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

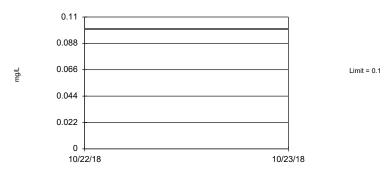
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 44 background values. 2.273% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Tolerance Limit Interwell Non-parametric



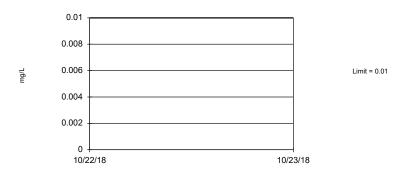
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05. Report alpha = 0.01047.


Constituent: Arsenic Analysis Run 1/14/2019 8:22 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

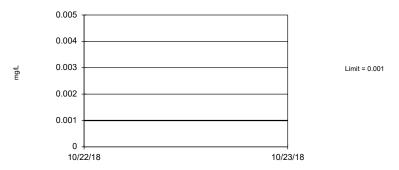
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 44 background values. 97.73% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.105; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Constituent: Boron Analysis Run 1/14/2019 8:23 AM View: Tolerance Limits

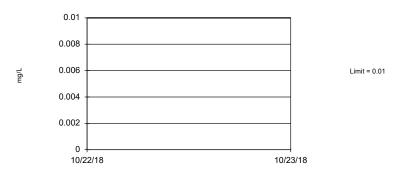
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

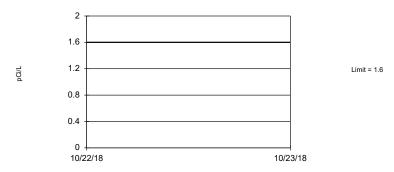
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Tolerance Limit Interwell Non-parametric



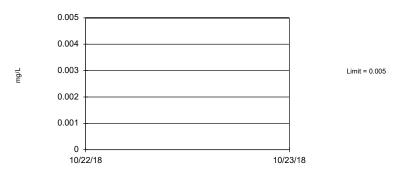
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05. Report alpha = 0.01047.


Constituent: Cadmium Analysis Run 1/14/2019 8:23 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

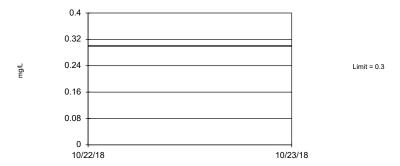
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 44 background values. 95.45% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.


Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 44 background values. 4.545% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Constituent: Combined Radium 226 + 228 Analysis Run 1/14/2019 8:23 AM View: Tolerance Limits

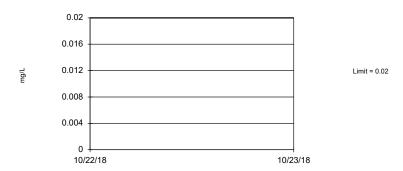
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

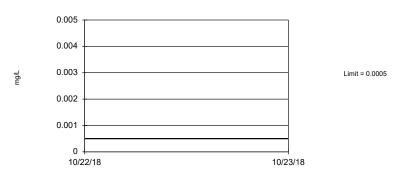
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Tolerance Limit Interwell Non-parametric



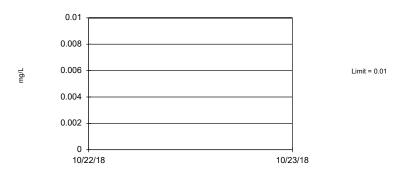
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 48 background values. 35.42% NDs. 90.82% coverage at alpha=0.01; 93.95% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.08526.


Constituent: Fluoride Analysis Run 1/14/2019 8:23 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

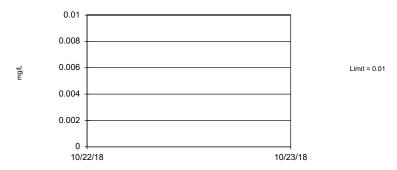
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.5 Report alpha = 0.1047.

Constituent: Mercury Analysis Run 1/14/2019 8:23 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05. Report alpha = 0.01047.

Constituent: Molybdenum Analysis Run 1/14/2019 8:23 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 44 background values. 97.73% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Confidence Intervals - All Results (No Significant Results)

Client: Southern Company Data: Gaston GSA Printed 1/31/2019, 11:37 AM Sig. Ν Transform Alpha Antimony (mg/L) GN-GSA-MW-1 0.000629 11 0.0015 0.006 Antimony (mg/L) No 11 0.006 NP (NDs) 0.0015 0.006 Antimony (mg/L) No 11 100 No 0.006 Antimony (mg/L) 0.0015 0.006 No 11 100 0.006 Antimony (mg/L) 0.0015 0.006 No 11 100 Antimony (mg/L) GN-GSA-MW-9 0.0015 0.006 No 11 100 Antimony (mg/L) GN-GSA-MW-10 0.0015 0.006 No 11 100 0.006 Antimony (mg/L) 0.006 No 11 100 No 0.006 NP (NDs) Antimony (mg/L) GN-GSA-MW-12 0.0015 0.0015 0.006 No 11 100 No 0.006 NP (NDs) Antimony (mg/L) GN-GSA-MW-13 0.0015 0.006 No 11 100 NP (NDs) Arsenic (mg/L) GN-GSA-MW-1 0.01 No 8 No 0.01 GN-GSA-MW-5 0.01 No 11 90.91 No 0.006 NP (NDs) Arsenic (mg/L) Arsenic (ma/L) 0.01 No 11 100 No 0.006 NP (NDs) Arsenic (mg/L) 0.01 No 11 100 No NP (NDs) GN-GSA-MW-8 0.00112 11 Arsenic (mg/L) 0.0025 0.01 No 18.18 No 0.006 NP (normality) GN-GSA-MW-9 0.00101 0.01 11 Arsenic (mg/L) No 81.82 No 0.006 NP (NDs) Arsenic (mg/L) GN-GSA-MW-10 0.0025 0.0025 0.01 No 11 No 0.006 NP (NDs) 100 GN-GSA-MW-11 0.0025 11 Arsenic (mg/L) 0.0025 0.01 No 100 No 0.006 NP (NDs) GN-GSA-MW-12 0.0025 0.00102 11 27.27 0.01 No 0.006 NP (Cohens/xfrm) Arsenic (mg/L) No GN-GSA-MW-13 0.0025 0.0011 0.01 11 No 54.55 No 0.006 NP (normality) Arsenic (mg/L) GN-GSA-MW-1 11 0 Barium (mg/L) 1.536 No No 0.01 GN-GSA-MW-5 2 11 0 NP (normality) 0.0333 No No 0.006 Barium (mg/L) 2 Barium (mg/L) GN-GSA-MW-6 0.01664 0.01405 No 11 0 No 0.01 Param 2 0 GN-GSA-MW-7 0.02172 0.01904 11 Param. Barium (mg/L) No No 0.01 2 11 0 GN-GSA-MW-8 0.03157 0.02585 No Param. Barium (mg/L) No 0.01 0.02291 2 11 0 GN-GSA-MW-9 0.03003 No 0.01 Param. Barium (mg/L) No 0 GN-GSA-MW-10 0.0369 0.0327 No 11 No 0.01 Param Barium (mg/L) GN-GSA-MW-11 0.008811 0.00596 No 11 9.091 No 0.01 Param. Barium (mg/L) Barium (mg/L) GN-GSA-MW-12 0.02334 0.01915 2 No 11 0 No 0.01 Param. Barium (mg/L) GN-GSA-MW-13 0.05416 0.04517 2 No 11 0 No 0.01 Param. GN-GSA-MW-1 0.0015 0.004 11 Beryllium (mg/L) 0.0015 No 100 No 0.006 NP (NDs) GN-GSA-MW-5 0.0015 0.004 11 Beryllium (mg/L) 0.0015 No 100 No 0.006 NP (NDs) 0.0015 Beryllium (mg/L) GN-GSA-MW-6 0.0015 0.004 No 11 100 No 0.006 NP (NDs) 0.0015 Beryllium (mg/L) GN-GSA-MW-7 0.0015 0.004 No 11 100 No 0.006 NP (NDs) Beryllium (mg/L) GN-GSA-MW-8 0.0015 0.0015 0.004 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-9 0.0015 11 NP (NDs) Beryllium (mg/L) 0.0015 0.004 No 100 No 0.006 0.0015 Beryllium (mg/L) GN-GSA-MW-10 0.0015 0.004 No 11 100 No 0.006 NP (NDs) 0.0015 Beryllium (mg/L) GN-GSA-MW-11 0.0015 0.004 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-12 0.0015 0.0015 Beryllium (mg/L) 0.004 No 11 100 No 0.006 NP (NDs) Beryllium (mg/L) GN-GSA-MW-13 0 0015 0.0015 0.004 No 11 100 Nο 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-1 0.0361 0.028 No 11 9.091 No 0.006 NP (normality) Boron (mg/L) GN-GSA-MW-5 0.05 0.022 No 11 81.82 No 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-6 0.05 0.05 No 11 100 No 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-7 0.05 0.05 No 11 100 No 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-8 0.05 0.05 No 11 100 No 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-9 0.05 0.05 No 11 100 No 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-10 0.05 0.05 No 11 100 No 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-11 0.0408 0.0295 No 11 9.091 No 0.006 NP (normality) Boron (mg/L) GN-GSA-MW-12 0.03912 0.02932 No 11 9.091 sqrt(x) 0.01 Param. Boron (mg/L) GN-GSA-MW-13 0.05 0.05 No 11 100 Nο 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-1 0.0005 0.0005 0.005 No 11 100 No 0.006 NP (NDs) 0.0005 Cadmium (mg/L) GN-GSA-MW-5 0.0005 0.005 No 11 100 No 0.006 NP (NDs) 0.0005 Cadmium (mg/L) GN-GSA-MW-6 0.0005 0.005 No 11 100 No 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-7 0.0005 0.0005 0.005 No 11 100 No 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-8 0.0005 0.0005 0.005 No 11 100 No 0.006 NP (NDs) 0.0005 Cadmium (mg/L) GN-GSA-MW-9 0.0005 0.005 No 11 100 No 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-10 0.0005 0.0005 0.005 No 11 100 No 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-11 0.0005 0.0005 0.005 No 11 100 No 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-12 0.0005 0.0005 0.005 No 11 100 No 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-13 0.0005 0.005 No 11 100 No 0.0005 0.006 NP (NDs) GN-GSA-MW-1 Chromium (mg/L) 0.005 0.1 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-5 No Chromium (mg/L) 0.005 0.1 11 100 No 0.006 NP (NDs) Chromium (mg/L) GN-GSA-MW-6 0.005 0.1 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-7 No 11 100 Chromium (mg/L) 0.005 0.1 No 0.006 NP (NDs) Chromium (mg/L) GN-GSA-MW-8 0.005 0.1 No 11 100 No 0.006 NP (NDs) Chromium (mg/L) GN-GSA-MW-9 0.005 0.1 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-10 0.005 Chromium (mg/L) 0.005 0.1 No 11 100 No 0.006 NP (NDs) Chromium (mg/L) GN-GSA-MW-11 0.005 0.005 0.1 No 11 100 No 0.006 NP (NDs)

Confidence Intervals - All Results (No Significant Results)

Client: Southern Company Data: Gaston GSA Printed 1/31/2019, 11:37 AM Lower Lim. Sig. Ν Transform Alpha GN-GSA-MW-12 Chromium (mg/L) 0.005 0.1 11 0.006 Chromium (mg/L) GN-GSA-MW-13 0.005 0.1 No 11 No 0.006 NP (NDs) 0.01 Cobalt (mg/L) GN-GSA-MW-1 0.0025 No 11 No 0.006 NP (NDs) Cobalt (mg/L) GN-GSA-MW-5 0.0025 0.01 No 11 36.36 0.006 Cobalt (mg/L) GN-GSA-MW-6 0.0025 0.01 No 11 0.006 NP (NDs) Cobalt (mg/L) GN-GSA-MW-7 0.01104 0.003631 0.01 No 11 36.36 No 0.01 Cobalt (mg/L) GN-GSA-MW-8 0.0025 0.01 No 11 No 0.006 NP (NDs) Cobalt (mg/L) GN-GSA-MW-9 0.01 No 11 100 0.006 Cobalt (mg/L) GN-GSA-MW-10 0.005 0.01 No 11 100 Cobalt (mg/L) GN-GSA-MW-11 0.005716 0.01 No 11 sqrt(x) Cobalt (mg/L) GN-GSA-MW-12 0.005 0.01 No 11 100 No 0.006 NP (NDs) Cobalt (mg/L) GN-GSA-MW-13 0.01227 0.01 No 11 No 0.01 Combined Radium 226 + 228 (pCi/L' GN-GSA-MW-1 0.8042 No 11 Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-5 0.1666 No 11 Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-6 5 11 0.1168 No 9.091 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-7 0.1065 5 No 11 0.8824 9.091 No 0.01 Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-8 0.748 -0.0526 5 No 11 9.091 No 0.006 NP (normality) Combined Radium 226 + 228 (pCi/L) 11 GN-GSA-MW-9 0.9601 0.2081 No 9.091 No 0.01 Param Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-10 0.9964 11 0.112 No 9.091 0.01 Param. No Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-11 1.242 0.06572 11 No 9.091 No 0.01 Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-12 0.9607 0.1291 11 No 9.091 No 0.01 Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-13 0.8734 0.04335 5 11 Param No 9.091 No 0.01 Fluoride (mg/L) GN-GSA-MW-1 0.359 0.293 No 12 No 0.01 Param 12 Fluoride (mg/L) GN-GSA-MW-5 0.04 No 41.67 No NP (Cohens/xfrm) 0.01 GN-GSA-MW-6 0.047 12 Fluoride (mg/L) 0.15 No 58.33 No NP (normality) 0.01 GN-GSA-MW-7 0.07603 12 Param Fluoride (ma/L) 0.1067 No 8.333 x^(1/3) 0.01 Fluoride (ma/L) GN-GSA-MW-8 0.1601 0.1194 No 12 0 x^2 0.01 Fluoride (ma/L) GN-GSA-MW-9 0.035 No 12 25 No 0.01 NP (Cohens/xfrm) Fluoride (mg/L) GN-GSA-MW-10 0.1 0.037 No 12 41.67 No 0.01 NP (normality) Fluoride (mg/L) GN-GSA-MW-11 0.1 0.04 No 12 41.67 No 0.01 NP (Cohens/xfrm) Fluoride (mg/L) GN-GSA-MW-12 0.095 0.05 12 No 16.67 No 0.01 NP (normality) Fluoride (mg/L) GN-GSA-MW-13 0.085 0.039 No 12 NP (normality) 8.333 No 0.01 0.0025 0.015 Lead (mg/L) GN-GSA-MW-1 0.0025 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-5 0.0025 0.015 Lead (mg/L) 0.0025 No 11 100 No 0.006 NP (NDs) Lead (mg/L) GN-GSA-MW-6 0.0025 0.0025 0.015 No 11 100 No 0.006 NP (NDs) 0.00229 GN-GSA-MW-7 0.0025 0.015 11 NP (NDs) Lead (mg/L) No 90.91 No 0.006 0.0025 Lead (mg/L) GN-GSA-MW-8 0.0025 0.015 No 11 100 No 0.006 NP (NDs) 0.0025 Lead (mg/L) GN-GSA-MW-9 0.0025 0.015 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-10 0.0025 0.0025 Lead (mg/L) 0.015 No 11 100 No 0.006 NP (NDs) Lead (mg/L) GN-GSA-MW-11 0 0025 0.0025 0.015 No 11 100 Nο 0.006 NP (NDs) Lead (mg/L) GN-GSA-MW-12 0.0025 0.0025 0.015 No 11 100 No 0.006 NP (NDs) Lead (mg/L) GN-GSA-MW-13 0.0025 0.0025 0.015 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-1 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-5 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-6 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-7 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-8 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-9 0.025 0.01 0.04No 11 100 Nο 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-10 0.025 0.01 0.04No 11 100 Nο 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-11 0.025 0.01 0.04No 11 100 Nο 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-12 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-13 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) 0.00025 Mercury (mg/L) GN-GSA-MW-1 0.00025 0.002 No 11 100 No 0.006 NP (NDs) Mercury (mg/L) GN-GSA-MW-5 0.00025 0.00025 0.002 No 11 100 No 0.006 NP (NDs) 0.00025 Mercury (mg/L) GN-GSA-MW-6 0.00025 0.002 No 11 100 No 0.006 NP (NDs) 0.00025 Mercury (mg/L) GN-GSA-MW-7 0.00025 0.002 No 11 100 No 0.006 NP (NDs) Mercury (mg/L) GN-GSA-MW-8 0.00025 0.00025 0.002 No 11 100 No 0.006 NP (NDs) Mercury (mg/L) GN-GSA-MW-9 0.00025 0.00025 0.002 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-10 0.00025 0.002 No 11 Mercury (mg/L) 0.00025 100 No 0.006 NP (NDs) GN-GSA-MW-11 0.00025 0.002 No 11 100 No Mercury (mg/L) 0.00025 0.006 NP (NDs) GN-GSA-MW-12 0.00025 Mercury (mg/L) 0.00025 0.002 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-13 0.00025 No Mercury (mg/L) 0.00025 0.002 11 100 No 0.006 NP (NDs) Molybdenum (mg/L) GN-GSA-MW-1 0.01801 0.006982 0.1 No 11 9.091 No 0.01 Param. GN-GSA-MW-5 No 11 100 NP (NDs) Molybdenum (mg/L) 0.005 0.1 No 0.006 Molybdenum (mg/L) GN-GSA-MW-6 0.005 No 11 100 No 0.005 0.1 0.006 NP (NDs) Molybdenum (mg/L) GN-GSA-MW-7 0.005 0.1 No 11 100 No 0.006 NP (NDs) Molybdenum (mg/L) GN-GSA-MW-8 0.004568 0.003448 0.1 No 11 9.09 No 0.01 Param. Molybdenum (mg/L) GN-GSA-MW-9 0.005 0.1 No 11 100 No 0.006 NP (NDs)

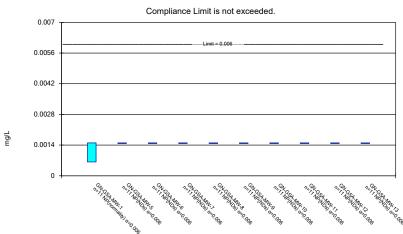
Confidence Intervals - All Results (No Significant Results)

Constituent

Molybdenum (mg/L)

Molybdenum (mg/L)

Molybdenum (mg/L)


Molybdenum (mg/L)

Selenium (mg/L)

Thallium (mg/L)

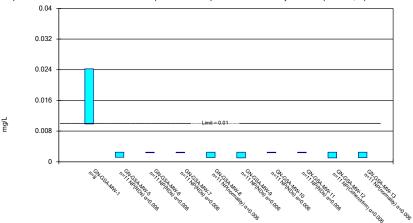
Client: Southern Company Data: Gaston GSA Printed 1/31/2019, 11:37 AM Lower Lim. Compliance Sig. N %NDs Transform <u>Alpha</u> GN-GSA-MW-10 0.005 0.005 0.1 No 11 100 0.006 NP (NDs) GN-GSA-MW-11 0.005 0.005 0.1 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-12 0.005 0.005 0.1 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-13 0.005 0.005 0.1 No 11 100 0.006 GN-GSA-MW-1 0.005 0.05 No 11 100 0.006 NP (NDs) GN-GSA-MW-5 0.005 0.05 No 11 100 0.006 NP (NDs) GN-GSA-MW-6 0.005 0.05 No 11 100 0.006 NP (NDs) GN-GSA-MW-7 0.005 0.05 No 11 100 No NP (NDs) GN-GSA-MW-8 0.005 0.05 No 11 100 NP (NDs) GN-GSA-MW-9 0.005 0.05 No 11 100 GN-GSA-MW-10 0.005 0.05 11 No 100 No 0.006 NP (NDs) GN-GSA-MW-11 0.005 0.05 No 11 100 No NP (NDs) GN-GSA-MW-12 0.005 0.005 0.05 11 NP (NDs) No 100 GN-GSA-MW-13 0.005 0.005 0.05 11 NP (NDs) No 100 GN-GSA-MW-1 0.0005 0.0005 0.002 No 11 100 0.006 NP (NDs) No GN-GSA-MW-5 0.0005 0.0005 0.002 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-6 0.0005 0.0005 0.002 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-7 0.0005 0.0005 0.002 11 100 0.006 NP (NDs) No No GN-GSA-MW-8 0.0005 0.0005 0.002 11 100 0.006 NP (NDs) No No GN-GSA-MW-9 0.0005 0.0005 0.002 11 100 0.006 NP (NDs) No No GN-GSA-MW-10 0.0005 0.0005 0.002 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-11 0.0005 0.0005 0.002 11 100 No 0.006 NP (NDs) No GN-GSA-MW-12 0.0005 0.0005 0.002 11 NP (NDs) No 100 No 0.006 GN-GSA-MW-13 0.0005 0.0005 0.002 No 11 100 No 0.006 NP (NDs)

Non-Parametric Confidence Interval

Constituent: Antimony Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

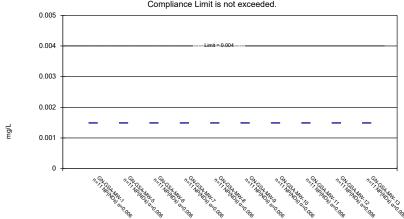
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals Plant Gaston Client: Southern Company Data: Gaston GSA

Parametric and Non-Parametric (NP) Confidence Interval

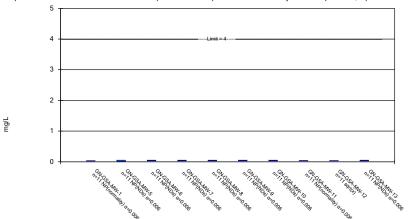
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Arsenic Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals Plant Gaston Client: Southern Company Data: Gaston GSA

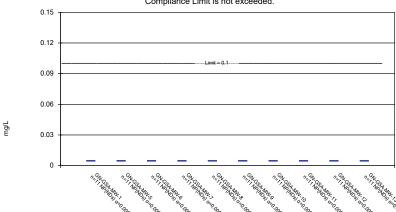
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

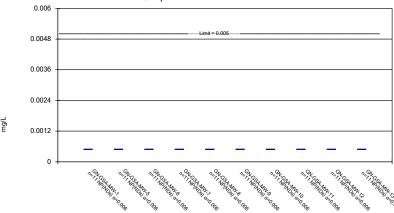
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Boron Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

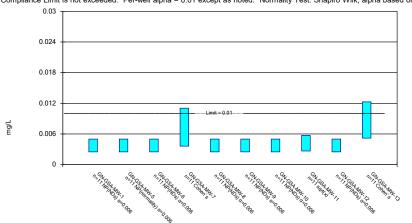
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG


Non-Parametric Confidence Interval Compliance Limit is not exceeded.

Constituent: Chromium Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

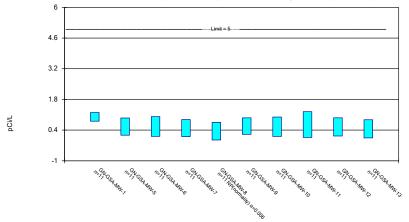
Non-Parametric Confidence Interval

Compliance Limit is not exceeded.



Constituent: Cadmium Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG


Parametric and Non-Parametric (NP) Confidence Interval

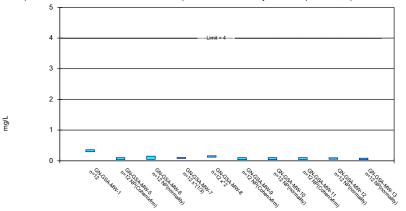
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals

Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded. 0.02 0.016 0.012 0.008 0.004 0.004

Constituent: Lead Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals Plant Gaston Client: Southern Company Data: Gaston GSA

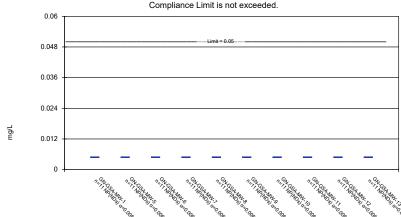
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

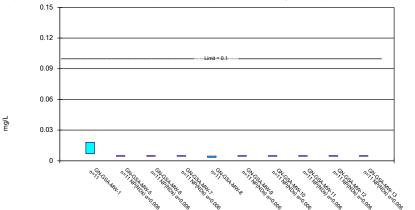
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded. 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.04 0.05 0.04 0.05 0.04 0.05 0.06 0.07 0.08 0.09 0.


Non-Parametric Confidence Interval

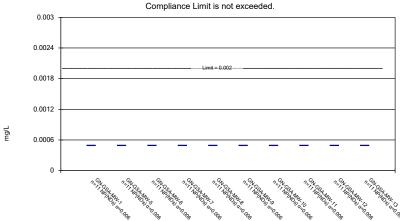
Constituent: Mercury Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG


Non-Parametric Confidence Interval

Constituent: Selenium Analysis Run 1/31/2019 11:36 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval

Appendix C

Prepared for

Alabama Power Company 600 North 18th Street Birmingham, AL 35203

ALTERNATE SOURCE DEMONSTRATION PLANT GASTON GYPSUM POND

Prepared By

Southern Company Services

January 2019

CERTIFICATION STATEMENT

This Alternate Source Demonstration for the Alabama Power Company, Plant Gaston, Gypsum Pond, has been prepared in compliance with applicable United States Environmental Protection Agency (USEPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015) and ADEM Admin Code r. 335-13-15-.06(6)(g)4.(ii) under the direction of a licensed professional engineer with Southern Company Services.

I hereby certify that this *Alternate Source Demonstration* has been prepared to meet the requirements of 40 CFR §257.95(g)(3)(ii) and ADEM Admin Code r. 335-13-15-.06(6)(g)4.(ii).

Gregory B. Dyer, PG

Alabama Professional Geologist No. 1471

Date

Gregory Whetstone FE

AL Registered Professional En

Date

TABLE OF CONTENTS

1	INT	RODUC	TION	l
	1.1	Purpos	e	1
	1.2	Site Se	tting and Operational History	2
	1.3	Ground	dwater Monitoring	3
	1.4	Basis o	of the SSL	3
2	AL	ΓERNAT	TE SOURCE DEMONSTRATION	5
	2.1	Compa	rison of Gypsum Chemistry with Groundwater Geochemistry	6
		2.1.1	Gypsum Chemistry	6
		2.1.2	FGD Indicator Parameters	7
		2.1.3	Major Cations and Anions – Piper Diagrams	8
		2.1.4	Boron	8
		2.1.5	Arsenic	9
	2.2	Time o	f Travel and Groundwater Flow Direction	10
	2.3	Geolog	y and Well Screen Placement	10
	2.4	Compli	iant Liner System and Separation from Uppermost Aquifer	11
3	CO	NCLUSI	ONS	12
4	REI	FERENC	ES	14
			LIST OF TABLE	
Table Table Table	2	Boro	GSA-MW-1 FGD Gypsum Indicator Parameter Comparison n Concentrations in well GN-GSA-MW-1 nic Concentrations in well GN-GSA-MW-1	
1 aut	5	Aisci	The Concentrations in well Oly-OSA-IVI VV-1	

i

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan Map
Figure 3	Monitoring Well Location Map
Figure 4	Time Series: Calcium, Sulfate, & TDS (Upgradient vs MW-1)
Figure 5	Piper (Trilinear) Diagram
Figure 6	Boron Time Series (GN-GSA-MW-1)
Figure 7	Arsenic vs pH Time Series
Figure 8	Arsenic vs ORP Timer Series
Figure 9	2008 Potentiometric Surface Map
Figure 10	June 2018 Potentiometric Surface Map
Figure 11	Geologic Map

LIST OF APPENDICES

Appendix A Statistical Analysis Plan and Statistical Analyses

LIST OF ACRONYMS

ASD Alternate Source Demonstration

CCR Coal Combustion Residual cm/sec centimeter per second

EPA United States Environmental Protection Agency

HDPE high-density polyethylene MCL maximum contaminant level

mg/L milligrams per liter s.u. standard units

SSI statistically significant increase SSL statistically significant levels

UPL upper prediction limit

1 INTRODUCTION

1.1 Purpose

This document presents an alternate source demonstration (ASD) for statistically significant concentrations of arsenic over the Maximum Contaminant Level (MCL) in groundwater samples collected from well GN-GSA-MW-1. This ASD has been prepared pursuant to 40 CFR §257.95(g)(3)(ii) and r. 335-13-15-.06(6)(g)4.(ii), which allows the owner or operator to demonstrate that a source other than the CCR unit caused the apparent exceedance, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

Southern Company Services (SCS) implemented groundwater monitoring activities at Alabama Power Company's Plant Gaston Gypsum Pond (Gypsum Pond) during March 2016 to comply with the requirements of the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 CFR 257 Subpart D). Statistical analyses conducted on data from the first assessment monitoring event (June 2018) identified a statistically significant level (SSL) of arsenic in well GN-GSA-MW-1 above the groundwater protection standard, i.e. the MCL. During the second assessment event (October 2018), arsenic concentrations in well GN-GSA-MW-1 dropped below the promulgated MCL of 0.01 mg/L and no SSL for arsenic was observed.

Southern Company Services has prepared this ASD to address the statistically significant result for arsenic observed in monitoring well GN-GSA-MW-1 during the assessment monitoring event in June 2018. Lines of evidence supporting the conclusion that the SSL identified in the June 2018 are not the result of an impact by the Gypsum Pond include:

- (i) Arsenic concentrations observed in well GN-GSA-MW-1 exhibit a decreasing trend and are currently below the MCL (i.e. there is no longer an actionable arsenic concentration at this well);
- (ii) Other constituents that would be indicative of an FGD gypsum leachate impact (i.e. calcium, sulfate, and total dissolved solids) do not occur at well GN-GSA-MW-1 at elevated concentrations;

- (iii) Appendix III indicator parameters do not exhibit statistically significant increases (SSIs) above background (an SSI for pH has been identified, but that is likely the result of natural groundwater chemistry variability);
- (iv) There is an insufficient time for a theoretical release from the Gypsum Pond to migrate to monitoring well GN-GSA-MW-1 based on subsurface permeability and groundwater flow velocity;
- (v) The type of waste contained in the Gypsum Pond is not a viable source for arsenic at the site; in a study of 32 gypsum samples conducted by EPRI (2011a), FGD gypsum leachate data were non-detect for arsenic down to 0.005 mg/L as characterized by toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP), indicating that FGD gypsum like that stored in the Gypsum Pond is not a viable source for arsenic;

To summarize the ASD, the SSL for arsenic in monitoring well GN-GSA-MW-1 is not the result of a release from the Gypsum Pond and is likely caused by natural groundwater chemistry variation.

1.2 Site Setting and Operational History

Ernest C. Gaston Electric Generating Plant (Plant Gaston) is located along the Coosa River, adjacent to and partially within the Town of Wilsonville in Shelby County, Alabama. It lies approximately 25 miles southeast of Birmingham at 31972 Alabama Highway 25, Wilsonville, AL 35186. The Gypsum Pond is located to the north of the plant proper. Figure 1, Site Location Map, depicts the location of the Plant and Gypsum Pond with respect to the surrounding area. Figure 2, Site Plan Map, depicts the general configuration of the CCR unit and the site monitoring well network. The foundation soils beneath the impoundment are comprised of residuum of dolomite, limestone and shale, typically classified as highly plastic clays and silty clays, with occasional chert layers. The geologic properties of the site are characterized by carbonate rocks of the Knox Group of the Cambrian and Ordovician age that locally, have been folded and faulted along with the Ft Payne chert and Parkwood shale. When weathered, the carbonate rocks can yield cherty residual clay or incipient karst type topography.

The Gypsum Pond facility was originally built in the 1980's for dry ash storage but was never utilized. In the late 2000's, the storage area was converted to an impoundment for gypsum storage. The existing dikes were razed to the former ground surface elevation and rebuilt with structural fill in accordance with the specifications for the new impoundment. Some material was reused as fill, and additional fill was borrowed from adjacent areas on the plant property. The construction of the impoundment was completed in 2010. The Plant Gaston Gypsum Pond was constructed with a liner consisting of a 60mil HDPE geomembrane overlying 2-ft thick layer of compacted clay having a minimum hydraulic conductivity of 1 x 10⁻⁷ cm/sec. The constructed liner meets the requirements for composite liner as outlined 40 **CFR** §257.70(b) and ADEM Administrative Code r. 335-13-15-.04(1)(b).

1.3 **Groundwater Monitoring**

The groundwater monitoring network is comprised of 15 monitoring wells (4 upgradient and 11 downgradient). **Figure 3, Monitoring Well Locations,** depicts the PE certified monitoring well network. Based on results of the 2017 Annual Groundwater and Corrective Action Monitoring Report, Alabama Power initiated an assessment monitoring program on in January 15, 2018. Pursuant to 40 CFR §257.95(a) monitoring wells were sampled for all Appendix IV parameters in January as the initial assessment sampling event. Within 90 days of obtaining results, the first semi-annual assessment monitoring event was completed by sampling monitoring wells Appendix III and Appendix IV parameters in May. Semi-annual monitoring was repeated in October pursuant to 40 CFR §257.95(d).

1.4 Basis of the SSL

Parametric tolerance limits were used to calculate background limits from pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. The background limits were then used when determining the groundwater protection standard (GWPS). **Appendix A** presents the most recent statistical analyses.

Data collected from downgradient monitoring wells at the Plant Gaston Gypsum Pond were compared to GWPS. The result was an SSL in GN-GSA-MW-1 for arsenic during

Plant Gaston Gypsum Pond – Alternate Source Demonstration

the May 2018 sampling event. No other SSLs over the GWPS were observed during the May 2018 sampling event. During the second assessment monitoring event in October 2018, arsenic concentrations in well GN-GSA-MW-1 declined to below the promulgated MCL as well as the GWPS. No SSLs of Appendix IV constituents over the GWPS were noted during the second assessment monitoring event in October 2018.

2 ALTERNATE SOURCE DEMONSTRATION

Based on the review of site information, the SSL for arsenic in well GN-GSA-MW-1 are not related to a release from the Gypsum Pond, but the result of variations in groundwater chemistry and subsurface heterogeneity not accommodated by the site groundwater statistical analyses. The following presents the lines of evidence supporting this conclusion.

- The arsenic SSL observed during the first assessment monitoring event in well GN-GSA-MW-1 was not repeated during the second semi-annual assessment monitoring event. Arsenic has exhibited a decreasing trend and is currently below the MCL (i.e. there is no longer an actionable arsenic concentration at this well);
- Groundwater quality analyzed from GN-GSA-MW-1 is not consistent with a gypsum leachate source which would be characterized by elevated calcium, sulfate, and dissolved solids. Conversely, SSIs for calcium, dissolved solids, and sulfate have not been observed in GN-GSA-MW-1 and commonly concentrations of these key indicators are often below site background. Sampling reveals pH values typically between 7.6 and 7.8 standard units, which is well below those observed in gypsum leachate (+9.5 SU);
- A CCR impact to groundwater will result in multiple parameters exhibiting significant increase. This has not occurred in well GN-GSA-MW-1. Key monitoring parameters that would indicate impact by the Gypsum pond do not occur at elevated concentrations. Concentrations of arsenic are declining and no longer exhibit SSLs.
- FGD gypsum leachate studies conducted by the Electric Power Research Institute (EPRI, 2011a) and summarized in a report (EPRI, 2012) indicate that arsenic is not a key indicator parameter for FGD gypsum leachates. Thirty-two (32) FGD gypsum leachate tests were conducted with arsenic not-detected or below the method detection limit of 0.005 mg/L in all 32 samples. This suggests that the arsenic detected in GN-GSA-MW-1 is not related to FGD gypsum leachate, but rather a natural source or source other than the Plant Gaston Gypsum Pond.

- A theoretical release from the Gypsum Pond would require approximately 465 years to migrate to well GN-GSA-MW-1 the Gypsum Pond has been in operation less than 10 years;
- Monitoring well GN-GSA-MW-1 is unique in terms of monitoring wells at the
 facility as it was installed deep within a fractured sequence of shale and limestone,
 whereas other wells were installed in soil overburden or near the overburden top
 of rock interface. Thus, statistical evaluations fail to capture the natural variability
 in geologic materials screened across the site;
- Arsenic concentrations in GN-GSA-MW-1 have steadily declined from 0.044 mg/L in March 2016 to 0.00829 mg/L, below the promulgated MCL, in October 2018. This steady decline in arsenic is more indicative of natural geologic variability than a continuous leachate source and is likely related to arsenic sorbed to iron-stained fractures within the geologic formation;

2.1 Comparison of Gypsum Chemistry with Groundwater Geochemistry

2.1.1 Gypsum Chemistry

FGD gypsum is typically between 95 and 99 percent gypsum (EPRI, 2011a), a mineral chemically comprised of calcium-sulfate (CaSO₄·2H₂O). Elemental or total composition analyses on FGD gypsum indicates that the remaining 1 to 4 percent of FGD gypsum is largely comprised of magnesium (Mg), iron (Fe), and sodium (Na). Metalloids, such as arsenic and boron, are trace components of FGD gypsum. Arsenic and boron average 0.00098 and 0.01037 percent of the total composition of FGD gypsum, respectively (EPRI, 2011a).

Leachate studies of FGD gypsum mirror the results of the total composition analyses described in the preceding paragraph. The key components of FGD gypsum, calcium and sulfate, are present in leachates at much higher concentrations with average concentrations of 672 and 1300 mg/L, respectively. Conversely, arsenic was not detected in FGD gypsum leachates tested. Boron ranged from not-detected to 20 mg/L with an average of 0.189 mg/L (EPRI, 2011a and EPRI, 2012). Therefore, a signature profile of FGD gypsum leachates would generally be characterized by:

• *Elevated concentration of calcium (hundreds, mg/L)*

- *Elevated concentration of sulfate (hundreds to low thousands, mg/L)*
- Non-detected to trace concentrations of arsenic

A review of historical groundwater chemistry collected from well GN-GSA-MW-1 combined with additional geochemistry data gathered from wells site-wide was conducted to evaluate the source of statistically significant concentrations of arsenic in compliance well GN-GSA-MW-1. The data and discussion below provide strong evidence that arsenic detected in GN-GSA-MW-1 is from a source other than the Plant Gaston Gypsum Pond and that no FGD gypsum leachate signature is present in the groundwater analytical results.

2.1.2 FGD Indicator Parameters

During the CCR groundwater monitoring period dating from March 2016 to October 2018, eleven (11) independent groundwater samples have been collected from the PEcertified groundwater monitoring network at the Plant Gaston Gypsum Pond, including monitoring well GN-GSA-MW-1. Key FGD gypsum indicator parameters, calcium and sulfate, were collected and analyzed for during each of these 11 sampling events. Total dissolved solids, another signature of leachate plumes, was also analyzed for during each sampling event.

A review of these FGD gypsum indicator parameters indicates that groundwater quality analyzed in well GN-GSA-MW-1 is not consistent with that of an FGD leachate plume and additionally, consistently lower than upgradient well locations at the site. From March 2016 to October 2018, calcium ranged between 34.3 and 42.2 mg/L, sulfate ranged between 2.95 and 6.06 mg/L, and, total dissolved solids fluctuated very little between 188 and 244 mg/L. The concentrations of calcium and sulfate detected in GN-GSA-MW-1 are roughly 15 and 525 times lower than FGD gypsum leachate concentrations, respectively.

During this same period, calcium and sulfate, in upgradient well GN-GSA-MW-3 ranged between 68.8 mg/L and 109 mg/L while sulfate ranged between 11 and 32.6 mg/L. Total dissolved solids in upgradient well GN-GSA-MW-3 ranged between 215 and 334 mg/L. Similarly, upgradient well location GN-GSA-MW-14S displayed calcium and sulfate concentrations above those observed in well GN-GSA-MW-1. No statistical exceedances

over background for calcium, sulfate, and total dissolved solids were noted over background in well GN-GSA-MW-1.

This data strongly supports the conclusion that an FGD gypsum leachate signature is not present in groundwater quality data gathered from well GN-GSA-MW-1. **Table 1**, provides a tabular summary of the data discussed in this section. **Figure 4** provides time series to support tabulated data.

2.1.3 Major Cations and Anions – Piper Diagrams

Major cations and anions were collected in all compliance wells to analyze ionic composition of groundwater in the uppermost aquifer beneath the Plant Gaston Gypsum Pond. This data generally show low concentrations of major anions and cations in monitoring well GN-GSA-MW-1. A Piper (trilinear) diagram was constructed from the data to determine hydrogeochemical facies. This data plotted on **Figure 5** shows that groundwater sampled from GN-GSA-MW-1 falls within the calcium-bicarbonate facies similar to upgradient well GN-GSA-MW-3. Calcium-bicarbonate water facies are indicative of relatively shallow, fresh recharging groundwater where groundwater has had little residence time to interact with bedrock or soils. Conversely, and as described in the preceding section, an FGD gypsum leachate source would be typified by high calcium and sulfate (100s to low 1000s mg/L) and therefore, would display a calcium-sulfate to sodium-chloride facies. An investigation into the concentrations of key FGD gypsum leachate indicator parameters and piper diagrams constructed for more advanced analyses provide strong evidence that arsenic concentrations observed in GN-GSA-MW-1 are not related to a FGD gypsum leachate source.

2.1.4 Boron

Boron analyzed from well GN-GSA-MW-1 between March 2016 and October 2018 was reviewed to help evaluate a potential source for arsenic detected above the MCL in well GN-GSA-MW-1. This data is presented in **Table 2**.

Boron concentrations in well GN-GSA-MW-1 were detected at trace or "estimated" quantities. These values are called trace or estimated because they were detected, but at low levels, below the laboratory practical quantitation limit (PQL). Between March 2016 and October 2018, boron concentrations were consistently low, ranging from 0.028(J) mg/L to 0.0361(J) mg/L. No noticeable trends were observed in boron results from GN-

GSA-MW-1 during this time frame, as illustrated in **Figure 6**. Further, statistical analyses of data did not reveal statistically significant concentrations of boron over background in well GN-GSA-MW-1. These low-level detections of boron provide another line of evidence that arsenic observed in well GN-GSA-MW-1 is from a source other than the Plant Gaston Gypsum Pond.

2.1.5 Arsenic

Arsenic concentrations in well GN-GSA-MW-1 have been consistently and steadily decreasing from the first sampling event in March 2016 to the most recent sampling event in October 2018. Concentrations have decreased approximately 0.014 mg/L per month from 0.0444 mg/L (March 2016) to 0.00829 mg/L (October 2018), the most recent result below the promulgated MCL (**Table 3**). This steady decrease in arsenic is not a function of changing pH or ORP over time as presented in **Figures 7** and **8**; however, persistent reducing conditions (negative ORP) likely contribute to the presence of arsenic observed in GN-GSA-MW-1. This decreasing trend in arsenic is strong evidence that (1) an FGD gypsum leachate signature is not present and (2) arsenic observed in well GN-GSA-MW-1 is not associated with an FGD gypsum leachate plume from the Gaston Gypsum Pond.

Arsenic has only been detected at trace or estimated concentrations at other downgradient well locations with no detectable increasing or decreasing trends in wells downgradient of GN-GSA-MW-1. This spatial and temporal distribution of arsenic data is not representative of a persistent or passing/transient arsenic plume as relative concentrations and trends in compliance wells downgradient of GN-GSA-MW-1 should be similar, paralleling those observed in GN-GSA-MW-1. Further, other site monitoring wells, monitoring soil or top of rock interface intervals would be the first to observe an arsenic plume from the Gypsum Pond; however, these wells provide no indications of an arsenic plume. This analysis indicates that arsenic concentrations, previously detected above the MCL in well GN-GSA-MW-1, was not related to an FGD gypsum leachate plume, but more likely naturally present arsenic in subsurface limestone, shale, or fracture fill/mineralized zones connected to the well bore at location GN-GSA-MW-1.

FGD gypsum leachate studies conducted by the Electric Power Research Institute (EPRI, 2011a) and summarized in a report (EPRI, 2012) shows that arsenic is not an indicator parameter for FGD gypsum leachate. Thirty-two (32) FGD gypsum leachate tests were conducted with arsenic not-detected or below the method detection limit of 0.005 mg/L

in all 32 samples. This suggests that the arsenic detected in GN-GSA-MW-1 is not related to FGD gypsum leachate, but rather a natural source or source other than the Plant Gaston Gypsum Pond.

2.2 <u>Time of Travel and Groundwater Flow Direction</u>

The base of the Gypsum Pond sits at an elevation of approximately 403 feet above mean sea level (ft MSL). The top of screen for well GN-GSA-MW-1 sits at approximately 310 ft MSL. Site specific testing reveals low hydraulic gradients across the site and hydraulic conductivity values around 0.0256 ft/day resulting in a groundwater flow velocity of approximately 0.2 ft per year. Using this data, a leachate plume would require approximately 465 years to reach the same elevation as that of well GN-GSA-MW-1's screen. This time of travel analysis does not factor in any horizontal movement of water.

Additionally, historic and recent potentiometric surface maps provide evidence that monitoring well GN-GSA-MW-1 may be upgradient or in area of "no-flow" coming from the waste boundary. Potentiometric contours indicate gradients and groundwater flow from the northeast or east towards the southwest or west in the vicinity of GN-GSA-MW-1 in a historic potentiometric surface map (**Figure 9**). Other potentiometric surfaces suggest that the area around GN-GSA-MW-1 is stagnant or has very low gradient for flow towards GN-GSA-MW-1 from the Gypsum Pond (**Figure 10**). At a minimum, this data suggests that time of travel required to reach the well screen would be greater than the 465 years described above.

Given that the Plant Gaston Gypsum Pond was constructed in the late 2000s, this calculation provides another strong line of evidence that the arsenic observed in well GN-GSA-MW-1 is coming from a source other than the Gypsum Pond.

2.3 Geology and Well Screen Placement

Plant Gaston is located in the Coosa Valley district of the Valley and Ridge Physiographic Province of central Alabama. The geologic units on the property have been folded and faulted at various intervals, and several faults consisting of low-to-high angle thrust faults and some normal faults are present. Fault sets trend obliquely to one another in the northeastern portion of the plant, resulting in a series of imbricate thrust slices of Fort Payne chert, Parkwood and Floyd shales, and Newala limestone (Frings, 1980) (**Figure 11**).

Generalized near surface stratigraphy of the site, in descending order, consists of approximately 18 to 60 feet of overburden materials overlying the Ordovician Newala Limestone. Overburden materials are predominantly comprised of yellow-brown, clayey sand with zones of clay and gravelly fines. The underlying Newala Limestone was encountered at depths ranging from 18 to 60 feet and was described as a medium to dark gray, micritic limestone with thin shale layers and minor amounts of dolomite. A 12-ft thick section of light gray, sandstone was encountered at location GN-GSA-MW-13, possibly indicating the presence of the Parkwood Formation at portions of the site. Pyrite occurrence was noted at GN-GSA-MW-13 as well. Bedrock geology surrounding the site consists of folded Parkwood Shale, Ft Payne Chert, and Newala Limestone. These units are steeply dipping at the site (30° to 50°) and are cross-cut by multiple faults.

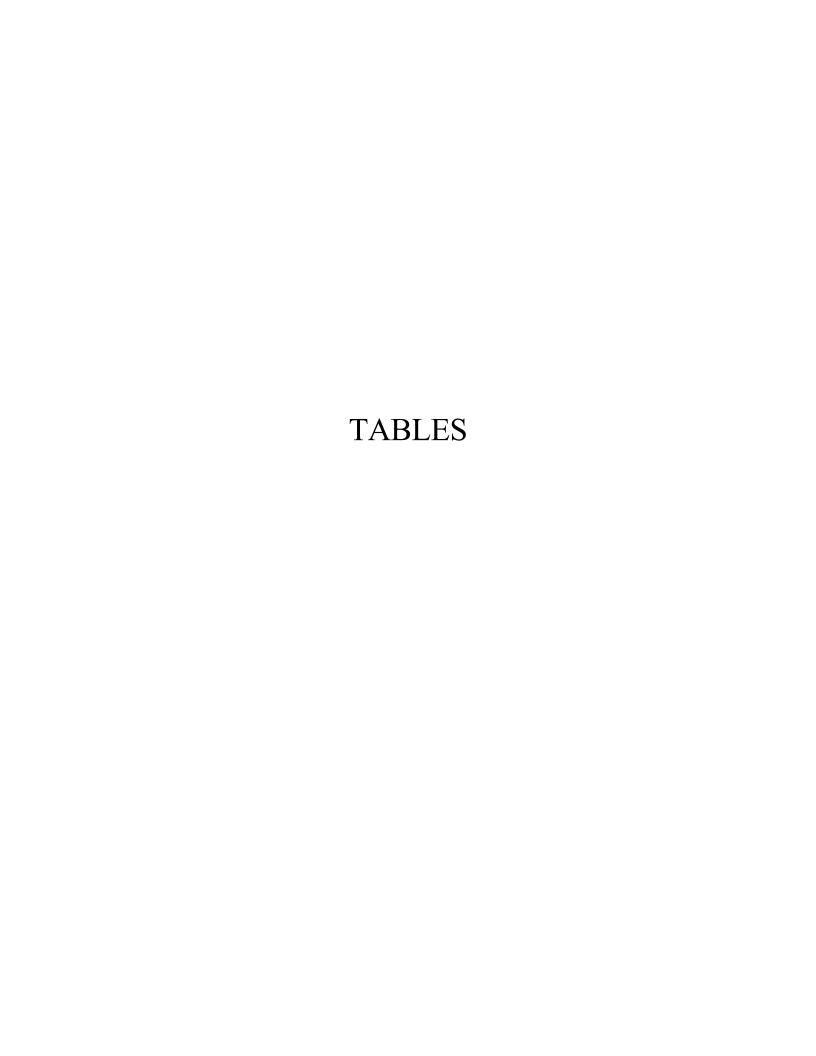
Monitoring well GN-GSA-MW-1 was screened much deeper with respect to the remaining monitoring wells at the site due to lack of saturation in overburden and near the overburden-rock interface towards the northeast corner of the site. GN-GSA-MW-1 was screened at depths between 113 and 123 feet below ground surface (BGS) and 83 to 93 feet below the overburden-top of rock interface. The boring log denotes multiple shale intervals, fractures, fracture mineralization, and slickenside signatures typical of fault zones. The remaining monitoring well network was screened across overburden materials, overburden-top of rock interface, and shallow rock and generally, between 30 and 60 feet BGS. The arsenic occurring in GN-GSA-MW-1 is likely attributable to the well screen being placed deeper within rock, where shale intervals, structural discontinuities, fracture mineralization (iron, manganese-oxides), and lower ORP values contribute to arsenic concentrations. The strongly decreasing trend suggests that arsenic occurs naturally in groundwater at the site.

2.4 Compliant Liner System and Separation from Uppermost Aquifer

The Plant Gaston Gypsum Pond is constructed with a liner system that meets the composite liner requirements of 40 CFR § 257.70(b) and ADEM Administrative Code r. 335-13-15-.04(1)(b). This low permeability liner system restricts the vertical migration of ponded water from entering the uppermost aquifer system. Further, the Plant Gaston Gypsum Pond has no sustained hydraulic connection with the uppermost aquifer and is separated by at least 1.52 meters (5 feet) above the upper limit of the uppermost aquifer. No operational, maintenance, or other deficiencies have been noted for the facility that would have led to an unpermitted discharge to groundwater.

3 CONCLUSIONS

Southern Company Services has prepared this ASD to address the statistically significant result for arsenic observed in monitoring well GN-GSA-MW-1 during the assessment monitoring event in June 2018. Based on the review of site information, the SSL for arsenic in well GN-GSA-MW-1 are not related to a release from the Gypsum Pond, but the result of variations in groundwater chemistry and subsurface heterogeneity not accommodated by the site statistics. The following presents the lines of evidence supporting this conclusion:


- (i) The absence of an FGD gypsum leachate signature in groundwater quality (i.e., high calcium, sulfate, total dissolved solids) samples obtained from GN-GSA-MW-1 combined with detected concentrations of these key indicators commonly below site background levels;
- (ii) Insufficient time of travel for arsenic to migrate to monitoring well GN-GSA-MW-1;
- (iii) FGD gypsum leachate data are non-detect for arsenic down to 0.005 mg/L as characterized by toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) in a study of 32 gypsum samples conducted by EPRI (2011a), indicating that FGD gypsum is not a sufficient explanation for arsenic concentration in well GN-GSA-MW-1;
- (iv) A temporal and spatial distribution of arsenic and key FGD gypsum indicator parameters not indicative of plume behavior, but of natural sources and variability;
- (v) Only low-levels of boron (trace or estimated detections) are detected in GN-GSA-MW-1;
- (vi) Arsenic concentrations detected in GN-GSA-MW-1 have declined steadily to below the promulgated MCL during the most recent event; and
- (vii) The Gaston Gypsum Pond is a compliant lined facility also maintaining the required 5 ft of separation from the uppermost aquifer.

Plant Gaston Gypsum Pond – Alternate Source Demonstration

This document presents an ASD for statistically significant concentrations of arsenic over the MCL in groundwater samples collected from well GN-GSA-MW-1. This ASD has been prepared pursuant to 40 CFR §257.95(g)(3)(ii) and r. 335-13-15-.06(6)(g)4.(ii) and demonstrates that the Gypsum Pond is not the cause of the reported arsenic SSL. Based on the findings presented here, the site should not implement an assessment of corrective measures pursuant to 40 CFR §257.96 and r. 335-13-15-.06(7).

4 REFERENCES

- Alabama Department of Environmental Management (ADEM), 2018, Solid Waste Program, Division 13, ADEM Admin. Code r. 335-13-15
- EPA (2015). Hazardous and Solid Waste Management Systems; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, 40 CFR Parts 257 and 261, Federal Register, Vol. 80, No. 74, April 17, 2015, pp.21302-21501
- EPRI (2011). Composition and Leaching of FGD Gypsum and Mined Gypsum, Technical Report, November 2011
- EPRI (2012). Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate, October 2012

Table	1. GN-GSA-MW	/-1 FGD Gypsum Indic	ator Parameters Compa	arison
Sample	Date	Calcium (mg/L)	Dissolved Solids (mg/L)	Sulfate (mg/L)
¹ FGD Gypsum Leachate	2011	643-777	NA	430-1550
² Site Background Concentrations	2016-2018	5.94-109	27.3-349	3-32.6
GN-GSA-MW-1	03-24-2016	36.9	203	6.06
GN-GSA-MW-1	05-10-2016	37.9	204	5.47
GN-GSA-MW-1	07-05-2016	35.3	188	4.8
GN-GSA-MW-1	09-06-2016	34.8	188	3.91
GN-GSA-MW-1	11-08-2016	34.3	197	2.95
GN-GSA-MW-1	02-22-2017	35.9	165	3.3(J)
GN-GSA-MW-1	05-31-2017	34.3	244	3.4(J)
GN-GSA-MW-1	07-05-2017	35.5	201	3.4(J)
GN-GSA-MW-1	09-07-2017	36.7	196	3.6(J)
GN-GSA-MW-1	06-12-2018	42.2	221	4.2(J)
GN-GSA-MW-1	10-23-2018	38.9	195	3(J)

Table 1 demonstrates that concentrations of key FGD gypsum indicator parameters observed in well GN-GSA-MW-1 are 15 to 23 times lower for calcium and 71 to 525 times lower for sulfate than the results of 32 FGD gypsum leachate samples analyzed by EPRI (2011). This table also demonstrates that these same indicator parameters are within range or lower than site background concentrations. This data indicates the absence of an FGD gypsum leachate signature within groundwater quality collected from GN-GSA-MW-1. Notes: *Sourced from EPRI (2011), **Range of background wells GN-GSA-MW-2, GN-GSA-MW-3, GN-GSA-MW-14S, GN-GSA-MW-15.

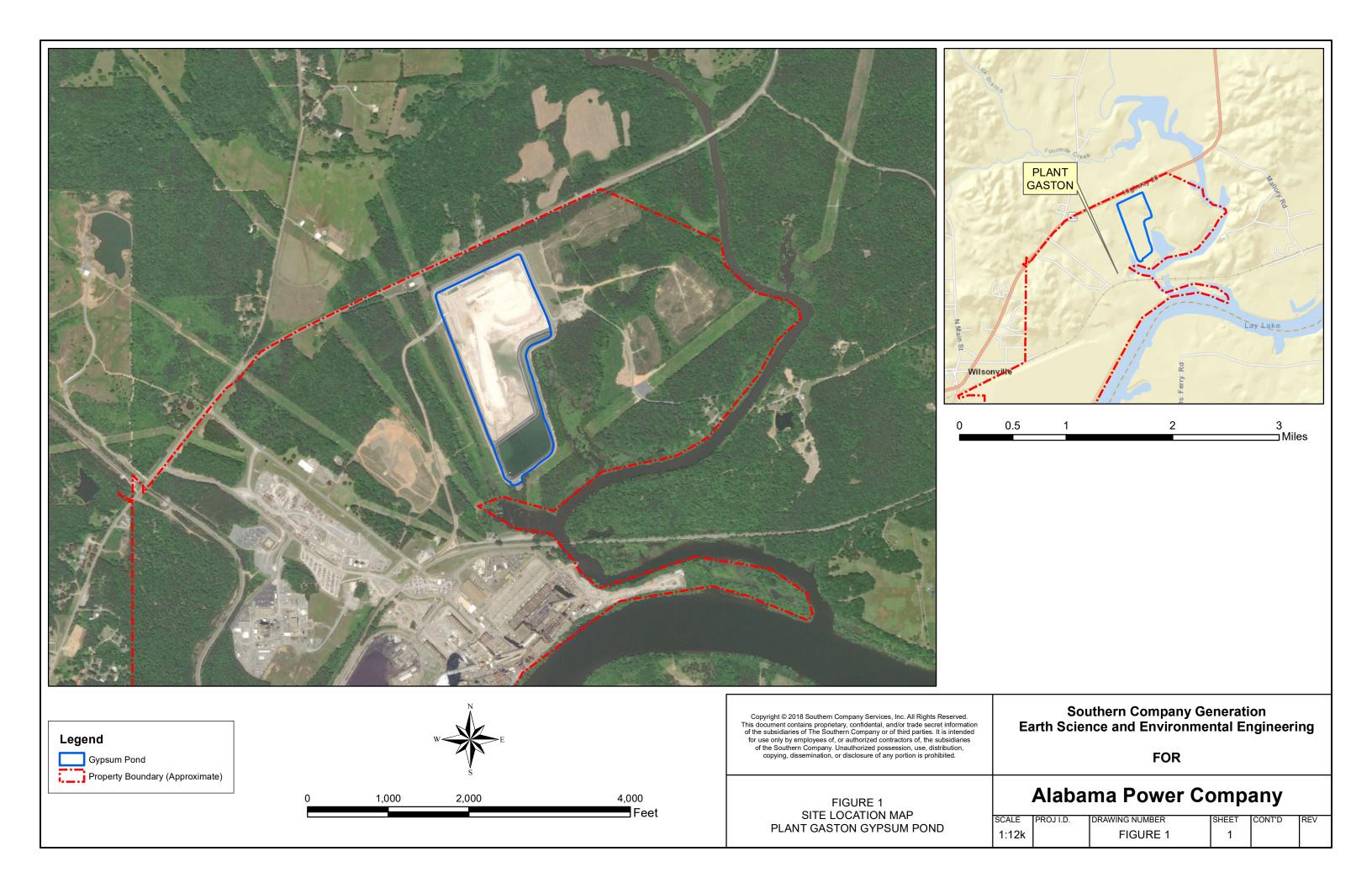
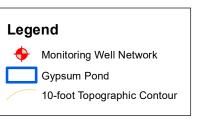
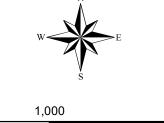

Table 2. Boron Concentrations in Well GN-GSA-MW-1								
Well	Date	Boron (mg/L)						
GN-GSA-MW-1	03-24-2016	0.0311(J)						
GN-GSA-MW-1	05-10-2016	0.0334(J)						
GN-GSA-MW-1	07-05-2016	0.0359(J)						
GN-GSA-MW-1	09-06-2016	0.0316(J)						
GN-GSA-MW-1	11-08-2016	0.0361(J)						
GN-GSA-MW-1	02-22-2017	0.028(J)						
GN-GSA-MW-1	05-31-2017	0.0297(J)						
GN-GSA-MW-1	07-05-2017	0.0302(J)						
GN-GSA-MW-1	09-07-2017	0.0345(J)						
GN-GSA-MW-1	06-12-2018	0.0331(J)						
GN-GSA-MW-1	10-23-2018	0.0345(J)						

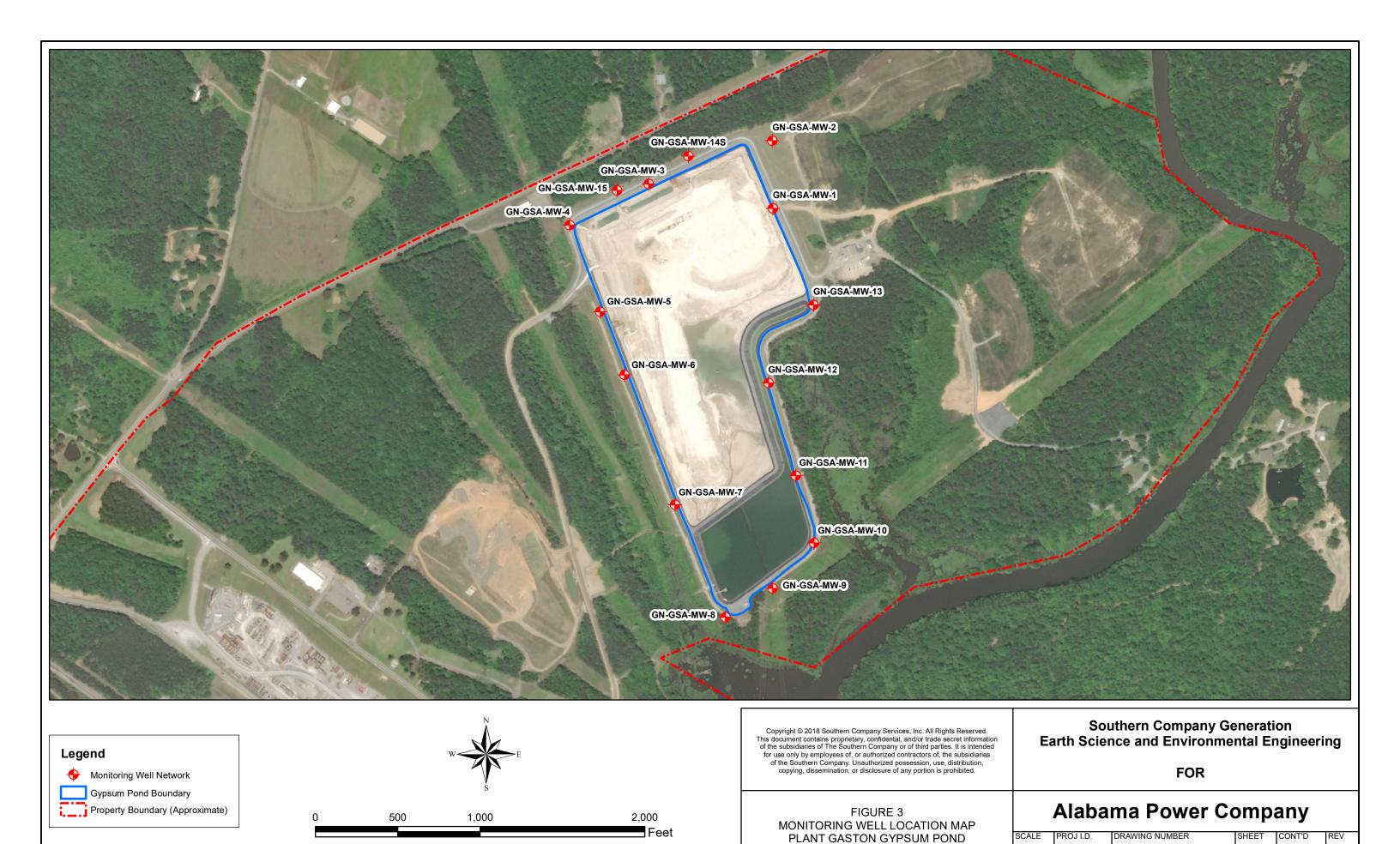
Table 2. Boron concentrations in well GN-GSA-MW-1 show no trend and remain consistently detected at trace concentrations (J) or below laboratory PQLs.


Table 3. Arsenic	Concentrations in	Well GN-GSA-MW-1
Well	Date	Arsenic (mg/L)
GN-GSA-MW-1	03-24-2016	0.0444
GN-GSA-MW-1	05-10-2016	0.041
GN-GSA-MW-1	07-05-2016	0.0333
GN-GSA-MW-1	09-06-2016	0.0289
GN-GSA-MW-1	11-08-2016	0.0241
GN-GSA-MW-1	02-22-2017	0.0192
GN-GSA-MW-1	05-31-2017	0.0154
GN-GSA-MW-1	07-05-2017	0.0155
GN-GSA-MW-1	02-05-2018	0.014
GN-GSA-MW-1	06-12-2018	0.011
GN-GSA-MW-1	10-23-2018	0.00829


Table 3. Arsenic concentrations show a consistent, steady decrease in well GN-GSA-MW-1. The most recent result below the promulgated MCL.

Figures

2,000

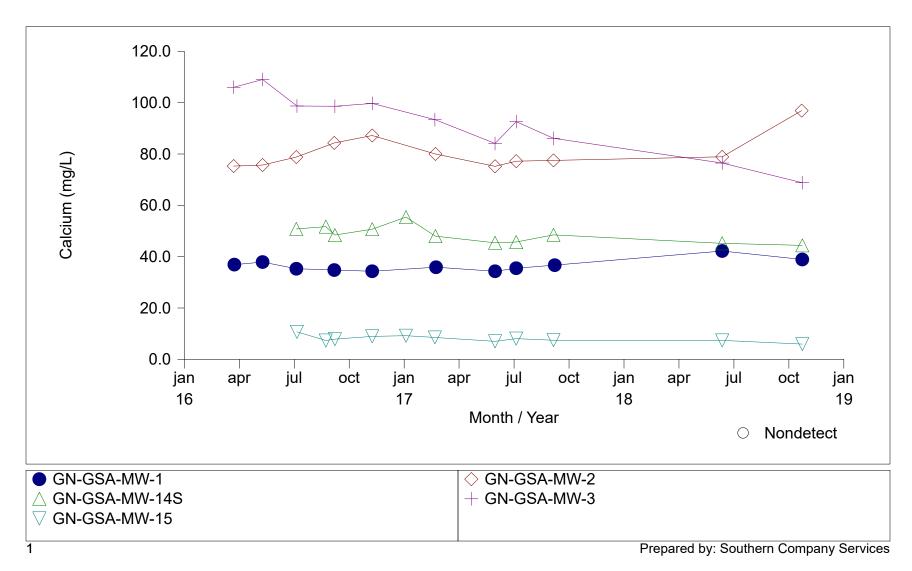

Copyright © 2018 Southern Company Services, Inc. All Rights Reserved. This document contains proprietary, confidental, and/or trade secret information of the subsidiaries of The Southern Company or of third parties. It is intended for use only by employees of, or authorized contractors of, the subsidiaries of the Southern Company. Unauthorized possession, use, distribution, copying, dissemination, or disclosure of any portion is prohibited.

FOR

FIGURE 2 SITE PLAN MAP PLANT GASTON GYPSUM POND

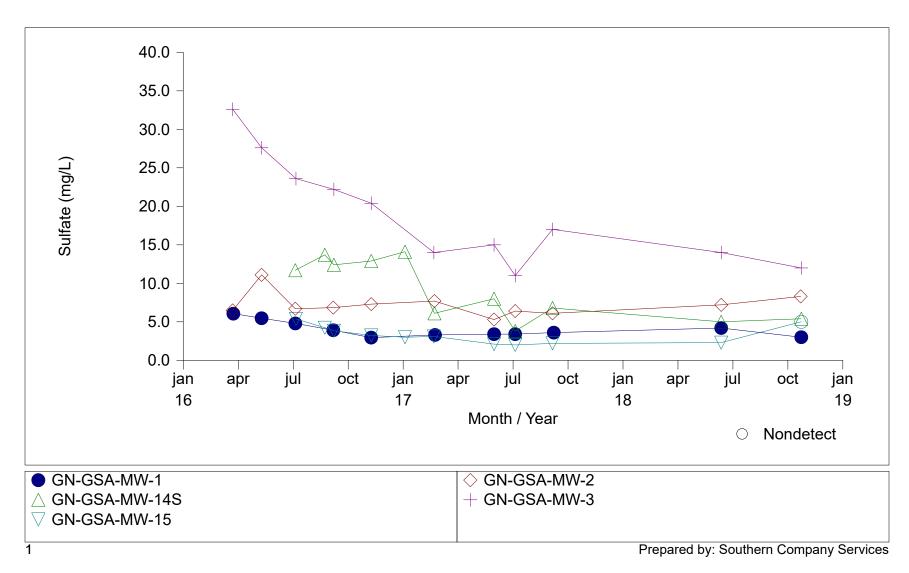
Alabama	Power	Company
---------	-------	---------

SCALE	PROJ I.D.	DRAWING NUMBER	SHEET	CONT'D	REV
1:6k		FIGURE 2	1		

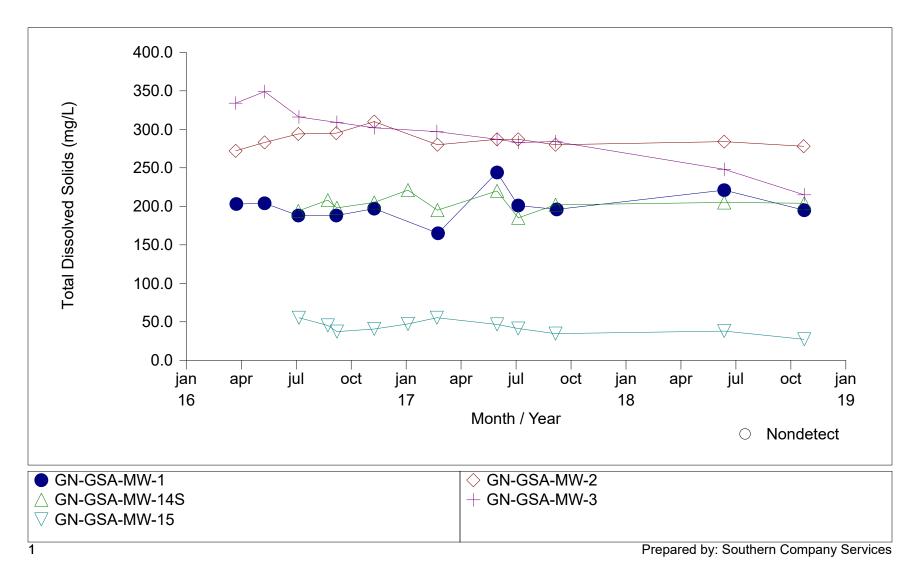


1:6k

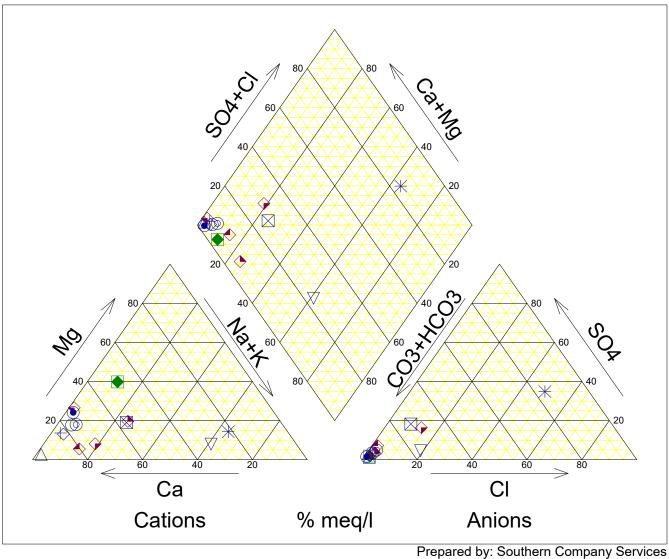
FIGURE 3


Gaston GP

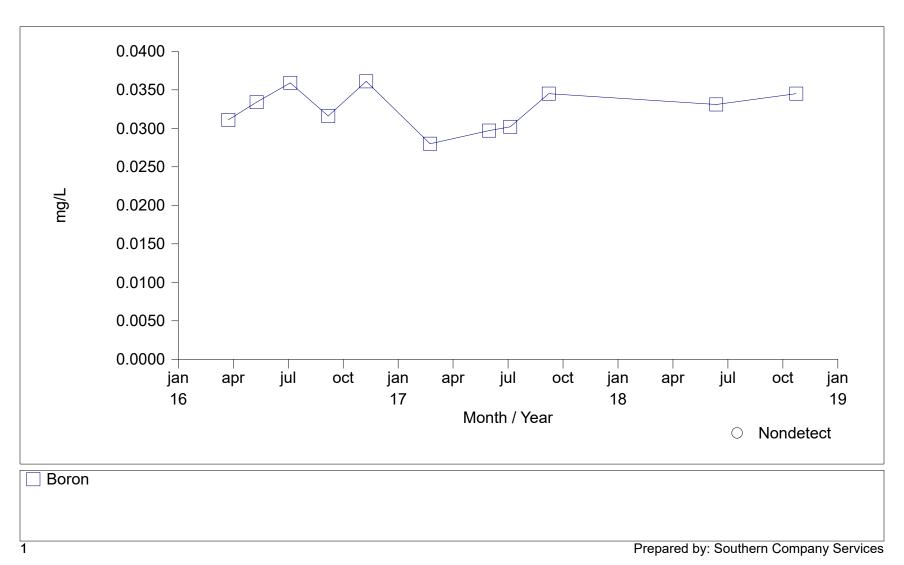
Time Series Plot for Calcium


Gaston GP

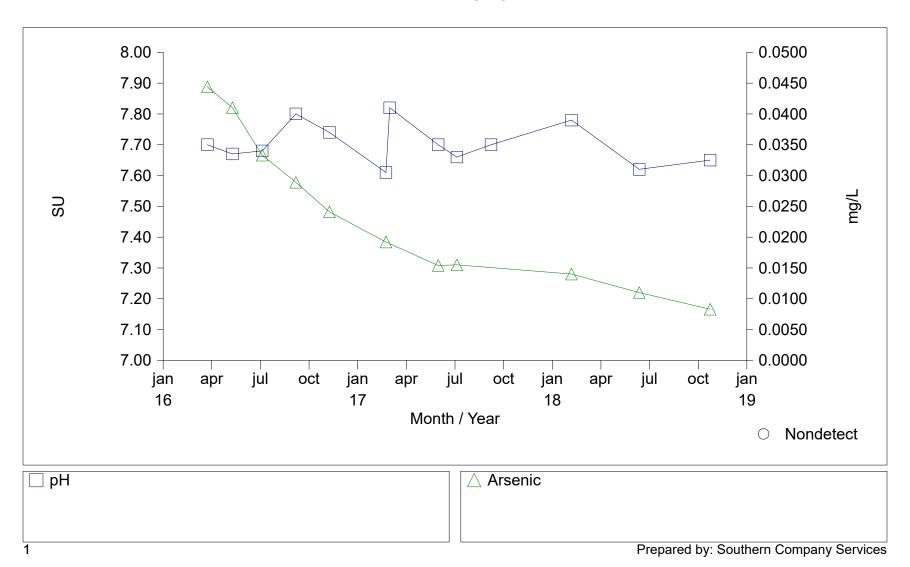
Time Series Plot for Sulfate


Gaston GP

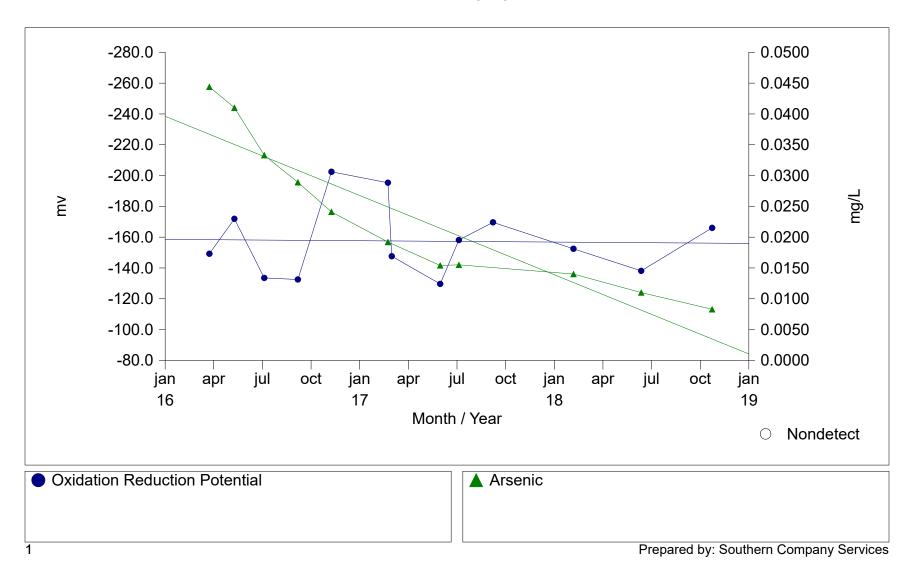
Time Series Plot for Total Dissolved Solids

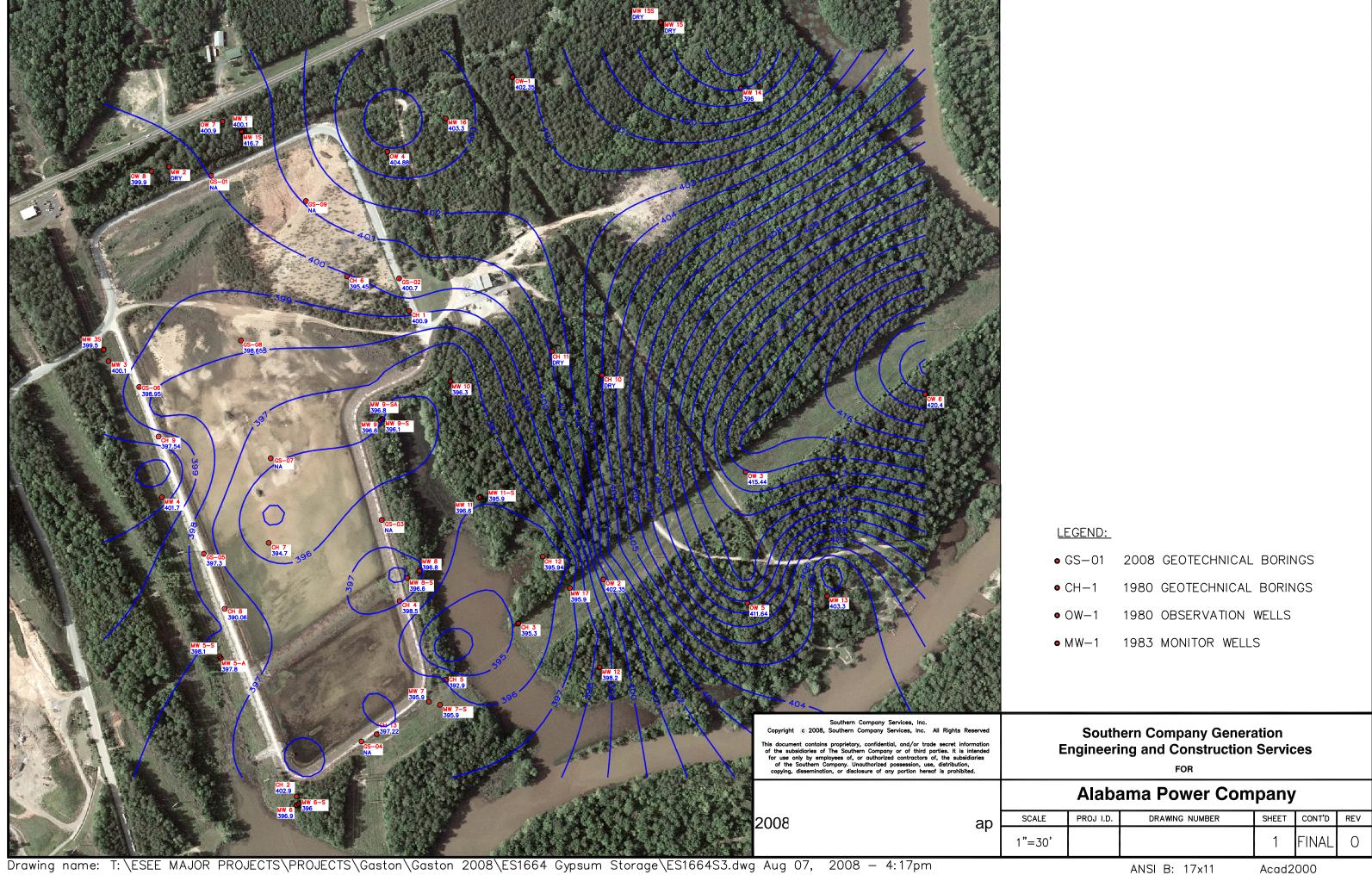

Gaston GP

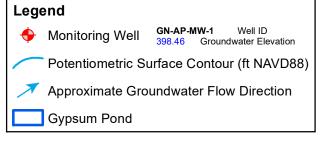
GN-GSA-MW-1	10/22/2018 -10/24/2018 (8.54%,267.92ppm)
∆ GN-GSA-MW-10 ▼ GN-GSA-MW-11	10/22/2018 -10/24/2018 (13.6%,356.921ppm) 10/22/2018 -10/24/2018 (7.34%,86.068ppm)
GN-GSA-MW-12 GN-GSA-MW-13	10/22/2018 -10/24/2018 (10%,266.22ppm) 10/22/2018 -10/24/2018 (13%,383ppm)
SH-GSA-MW-14S	10/22/2018 -10/24/2018 (8.69%,276.867ppm)
	10/22/2018 -10/24/2018 (12.2%,25.819ppm) 10/22/2018 -10/24/2018 (13.6%,430.328ppm)
♦ GN-GSA-MW-3 ▼ GN-GSA-MW-5	10/22/2018 -10/24/2018 (10.2%,297.83ppm) 10/22/2018 -10/24/2018 (8%,361.734ppm)
¥ GN-GSA-MW-6	10/22/2018 -10/24/2018 (9.98%,10.445ppm)
	10/22/2018 -10/24/2018 (11.1%,310.8ppm) 10/22/2018 -10/24/2018 (10.2%,255.38ppm)
GN-GSA-MW-9	10/22/2018 -10/24/2018 (6.93%,241.605ppm)

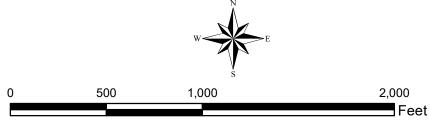

Gaston GP

Time Series Plot for GN-GSA-MW-1


Gaston GP

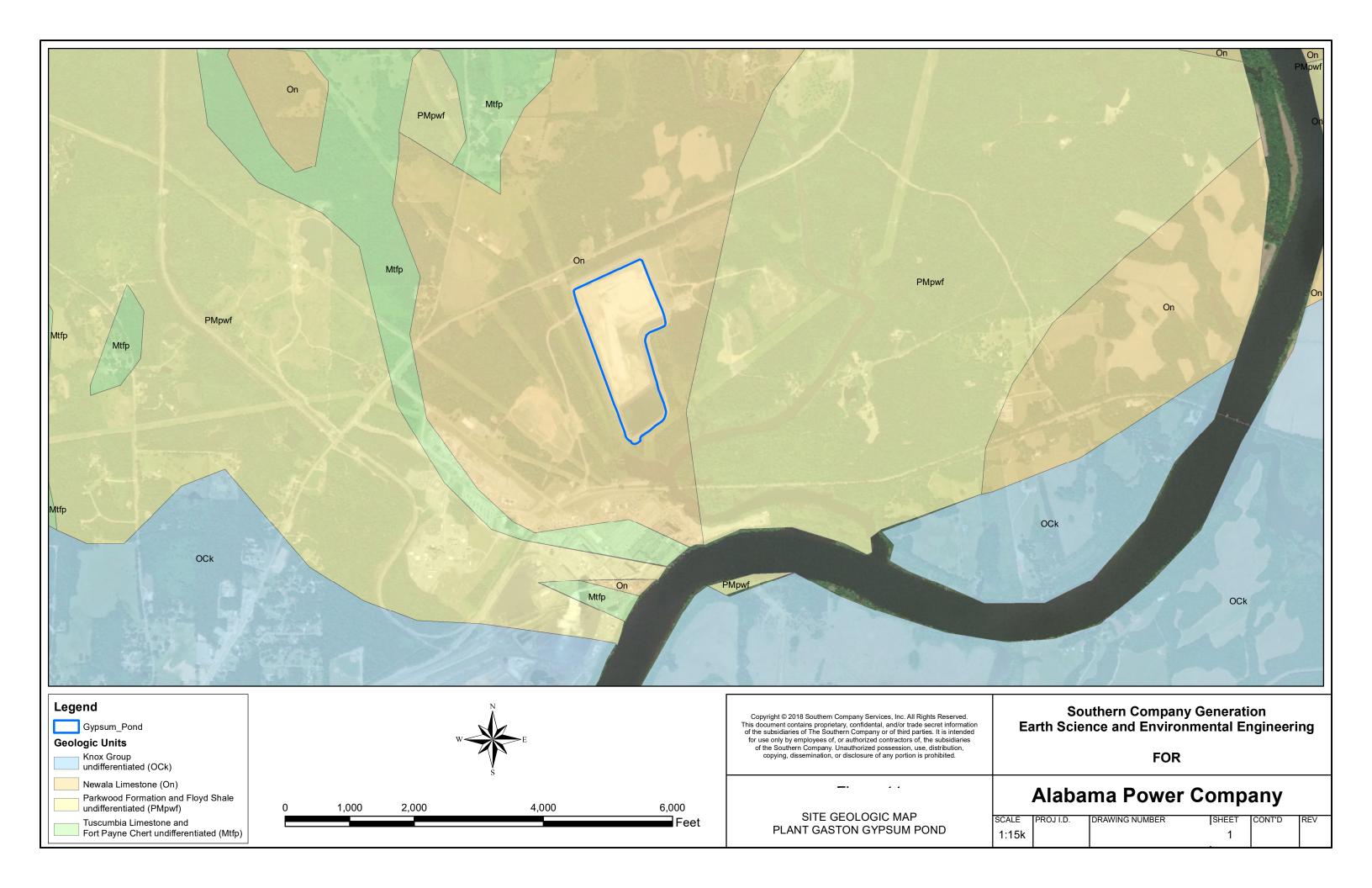

Time Series Plot for GN-GSA-MW-1


Gaston GP


Time Series Plot for GN-GSA-MW-1

NOTE: NAVD88 indicates North American Vertical Datum of 1988.

for use only by employees of, or authorized contractors of, the subsidiaries of the Southern Company. Unauthorized possession, use, distribution, copying, dissemination, or disclosure of any portion is prohibited.

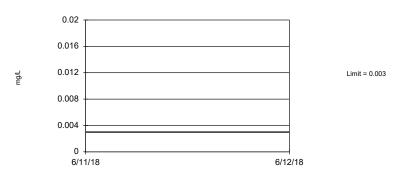

Figure 10

POTENTIOMETRIC SURFACE MAP JUNE 12, 2018 PLANT GASTON GYPSUM POND

FOR

Alabama Power Company

	2 11 0110		о о р	J. 1. J	
SCALE	PROJ I.D.	DRAWING NUMBER	SHEET	CONT'D	-
1:6k			1		

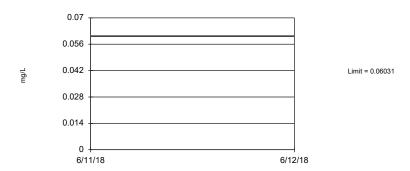


Appendix A

1st Semi-Annual

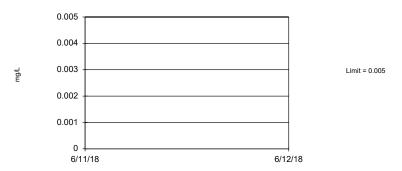
Upper Tolerance Limits - App IV

	P	Plant Gaston	Client: Southerr	n Company Da	ta: Gaston GSA	Printed 1/1	4/2019, 9:26 AM		
Constituent	Upper Lim.	<u>Bg N</u>	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	0.003	40	n/a	n/a	95	n/a	n/a	0.1285	NP Inter(NDs)
Arsenic (mg/L)	0.005	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Barium (mg/L)	0.06031	40	0.02996	0.01428	0	None	No	0.05	Inter
Beryllium (mg/L)	0.003	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Boron (mg/L)	0.1	40	n/a	n/a	97.5	n/a	n/a	0.1285	NP Inter(NDs)
Cadmium (mg/L)	0.001	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Chromium (mg/L)	0.01	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Cobalt (mg/L)	0.01	40	n/a	n/a	95	n/a	n/a	0.1285	NP Inter(NDs)
Combined Radium 226 + 228 (pCi/L)	1.6	40	n/a	n/a	5	n/a	n/a	0.1285	NP Inter(normal
Fluoride (mg/L)	0.3	44	n/a	n/a	29.55	n/a	n/a	0.1047	NP Inter(normal
Lead (mg/L)	0.005	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Lithium (mg/L)	0.05	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Mercury (mg/L)	0.0005	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Molybdenum (mg/L)	0.01	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Selenium (mg/L)	0.01	40	n/a	n/a	100	n/a	n/a	0.1285	NP Inter(NDs)
Thallium (mg/L)	0.001	40	n/a	n/a	97.5	n/a	n/a	0.1285	NP Inter(NDs)



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 40 background values. 95% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

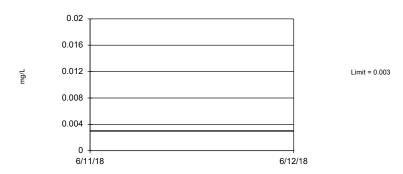
Constituent: Antimony Analysis Run 1/14/2019 9:24 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

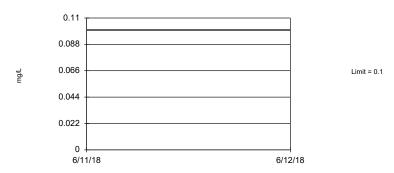
Tolerance Limit Interwell Parametric

95% coverage. Background Data Summary: Mean=0.02996, Std. Dev.=0.01428, n=40. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9196, critical = 0.919. Report alpha = 0.05.

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05. Report alpha=0.01.285.

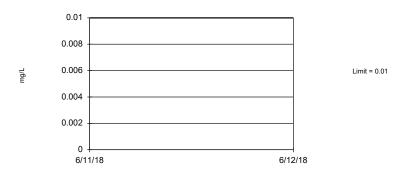
Constituent: Arsenic Analysis Run 1/14/2019 9:24 AM View: Tolerance Limits


Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

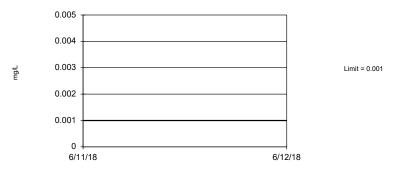
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 40 background values. 97.5% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

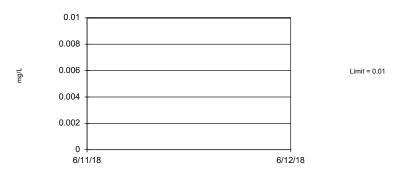
Constituent: Boron Analysis Run 1/14/2019 9:24 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

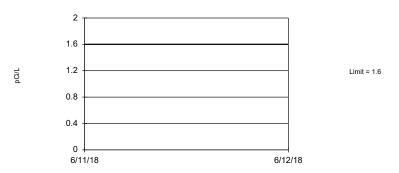
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05. Report alpha=0.01.285.


Constituent: Cadmium Analysis Run 1/14/2019 9:24 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

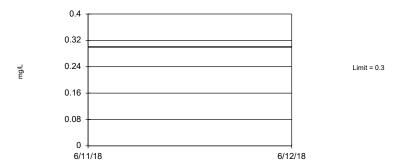
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 40 background values. 95% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 40 background values. 5% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05, Report alpha=0.01285.

Constituent: Combined Radium 226 + 228 Analysis Run 1/14/2019 9:24 AM View: Tolerance Limits

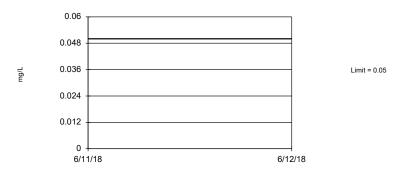
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

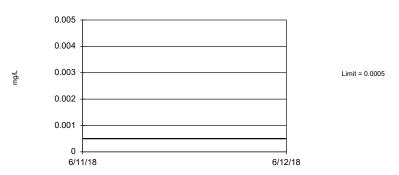
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

Tolerance Limit Interwell Non-parametric



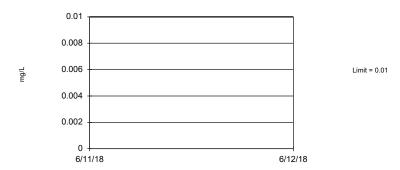
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 44 background values. 29.55% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.01; 93.55% coverage at alpha=0.01.


Constituent: Fluoride Analysis Run 1/14/2019 9:24 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

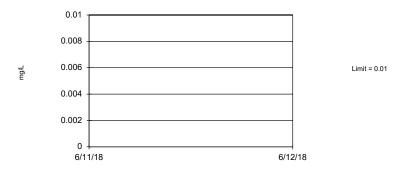
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.5 Report alpha = 0.01285.

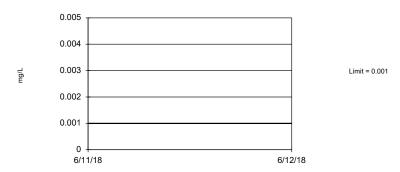
Constituent: Mercury Analysis Run 1/14/2019 9:25 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05. Report alpha=0.01.285.

Constituent: Molybdenum Analysis Run 1/14/2019 9:25 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 40 background values. 97.5% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

Confidence Intervals - Significant Results

Plant Gaston Client: Southern Company Data: Gaston GSA Printed 1/31/2019, 11:33 AM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Arsenic (mg/L)	GN-GSA-MW-1	0.02573	0.01087	0.01	Yes	7	0	No	0.01	Param

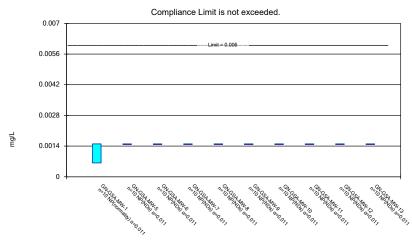
Confidence Intervals - All Results

Plant Gaston Client: Southern Company Data: Gaston GSA Printed 1/31/2019, 11:33 AM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	GN-GSA-MW-1	0.0015	0.000629	0.006	No	10	60	No	0.011	NP (normality)
Antimony (mg/L)	GN-GSA-MW-5	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	GN-GSA-MW-6	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	GN-GSA-MW-7	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	GN-GSA-MW-8	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	GN-GSA-MW-9	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	GN-GSA-MW-10	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	GN-GSA-MW-11	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	GN-GSA-MW-12	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	GN-GSA-MW-13	0.0015	0.0015	0.006	No	10	100	No	0.011	NP (NDs)
Arsenic (mg/L)	GN-GSA-MW-1	0.02573	0.01087	0.01	Yes	7	0	No	0.01	Param.
Arsenic (mg/L)	GN-GSA-MW-5	0.0025	0.00119	0.01	No	10	90	No	0.011	NP (NDs)
Arsenic (mg/L)	GN-GSA-MW-6	0.0025	0.0025	0.01	No	10	100	No	0.011	NP (NDs)
Arsenic (mg/L)	GN-GSA-MW-7	0.0025	0.0025	0.01	No	10	100	No	0.011	NP (NDs)
Arsenic (mg/L)	GN-GSA-MW-8	0.00162	0.00112	0.01	No	10	10	No	0.011	NP (normality)
Arsenic (mg/L)	GN-GSA-MW-9	0.0025	0.00101	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	GN-GSA-MW-10		0.0025	0.01	No	10	100	No	0.011	NP (NDs)
Arsenic (mg/L)	GN-GSA-MW-11		0.0025	0.01	No	10	100	No	0.011	NP (NDs)
Arsenic (mg/L)	GN-GSA-MW-12		0.00102	0.01	No	10	20	No	0.011	NP (Cohens/xfrm)
Arsenic (mg/L)	GN-GSA-MW-13		0.00102	0.01	No	10	50	No	0.011	NP (normality)
	GN-GSA-WW-13	1.924	1.512	2	No	10	0		0.011	, ,,
Barium (mg/L)								sqrt(x)		Param.
Barium (mg/L)	GN-GSA-MW-5	0.04553	0.03411	2	No	10	0	sqrt(x)	0.01	Param.
Barium (mg/L)	GN-GSA-MW-6	0.01611	0.01395	2	No	10	0	No	0.01	Param.
Barium (mg/L)	GN-GSA-MW-7	0.02145	0.01883	2	No	10	0	No	0.01	Param.
Barium (mg/L)	GN-GSA-MW-8	0.03156	0.02532	2	No	10	0	No	0.01	Param.
Barium (mg/L)	GN-GSA-MW-9	0.03049	0.02245	2	No	10	0	No	0.01	Param.
Barium (mg/L)	GN-GSA-MW-10		0.03244	2	No	10	0	No	0.01	Param.
Barium (mg/L)	GN-GSA-MW-11	0.009051	0.006197	2	No	10	0	No	0.01	Param.
Barium (mg/L)	GN-GSA-MW-12	0.02369	0.01953	2	No	10	0	No	0.01	Param.
Barium (mg/L)	GN-GSA-MW-13	0.05498	0.04514	2	No	10	0	No	0.01	Param.
Beryllium (mg/L)	GN-GSA-MW-1	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	GN-GSA-MW-5	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	GN-GSA-MW-6	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	GN-GSA-MW-7	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	GN-GSA-MW-8	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	GN-GSA-MW-9	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	GN-GSA-MW-10	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	GN-GSA-MW-11	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	GN-GSA-MW-12	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	GN-GSA-MW-13	0.0015	0.0015	0.004	No	10	100	No	0.011	NP (NDs)
Boron (mg/L)	GN-GSA-MW-1	0.03477	0.02995	4	No	10	0	No	0.01	Param.
Boron (mg/L)	GN-GSA-MW-5	0.05	0.022	4	No	10	80	No	0.011	NP (NDs)
Boron (mg/L)	GN-GSA-MW-6	0.05	0.05	4	No	10	100	No	0.011	NP (NDs)
Boron (mg/L)	GN-GSA-MW-7	0.05	0.05	4	No	10	100	No	0.011	NP (NDs)
Boron (mg/L)	GN-GSA-MW-8	0.05	0.05	4	No	10	100	No	0.011	NP (NDs)
Boron (mg/L)	GN-GSA-MW-9	0.05	0.05	4	No	10	100	No	0.011	NP (NDs)
Boron (mg/L)	GN-GSA-MW-10		0.05	4	No	10	100	No	0.011	NP (NDs)
Boron (mg/L)	GN-GSA-MW-11		0.0295	4	No	10	0	No	0.011	NP (normality)
Boron (mg/L)	GN-GSA-MW-12		0.02952	4	No	10	0	No	0.01	Param.
Boron (mg/L)	GN-GSA-MW-13		0.02332	4	No	10	100	No	0.011	NP (NDs)
, ,	GN-GSA-MW-1	0.0005	0.0005		No					
Cadmium (mg/L)				0.005		10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	GN-GSA-MW-5	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	GN-GSA-MW-6	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	GN-GSA-MW-7	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	GN-GSA-MW-8	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	GN-GSA-MW-9	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	GN-GSA-MW-10		0.0005	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	GN-GSA-MW-11	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	GN-GSA-MW-12		0.0005	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	GN-GSA-MW-13	0.0005	0.0005	0.005	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	GN-GSA-MW-1	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	GN-GSA-MW-5	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	GN-GSA-MW-6	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	GN-GSA-MW-7	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	GN-GSA-MW-8	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	GN-GSA-MW-9	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	GN-GSA-MW-10	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	GN-GSA-MW-11	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)

Confidence Intervals - All Results

Plant Gaston Client: Southern Company Data: Gaston GSA Printed 1/31/2019, 11:33 AM

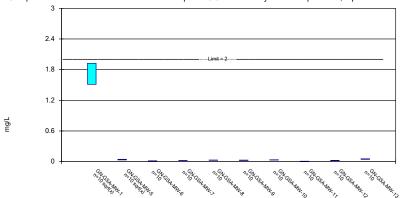

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Chromium (mg/L)	GN-GSA-MW-12	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	GN-GSA-MW-13	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-1	0.005	0.005	0.01	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-5	0.005	0.00274	0.01	No	10	30	No	0.011	NP (normality)
Cobalt (mg/L)	GN-GSA-MW-6	0.005	0.005	0.01	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-7	0.01017	0.003095	0.01	No	10	30	No	0.01	Param.
Cobalt (mg/L)	GN-GSA-MW-8	0.005	0.005	0.01	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-9	0.005	0.005	0.01	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-10	0.005	0.005	0.01	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-11	0.006162	0.002652	0.01	No	10	0	No	0.01	Param.
Cobalt (mg/L)	GN-GSA-MW-12	0.005	0.005	0.01	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	GN-GSA-MW-13	0.01159	0.004651	0.01	No	10	40	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-1	1.206	0.7692	5	No	10	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-5	0.8718	0.1009	5	No	10	10	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-6	0.9984	0.03359	5	No	10	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-7	0.8456	0.0362	5	No	10	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-8	0.368	-0.0526	5	No	10	10	No	0.011	NP (normality)
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-9	1.029	0.2135	5	No	10	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-10	0.8933	0.04601	5	No	10	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-11	1.289	-0.02995	5	No	10	10	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-12	0.9233	0.1044	5	No	10	10	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GN-GSA-MW-13	0.8321	-0.03163	5	No	10	10	No	0.01	Param.
Fluoride (mg/L)	GN-GSA-MW-1	0.3525	0.2879	4	No	11	0	No	0.01	Param.
Fluoride (mg/L)	GN-GSA-MW-5	0.1	0.028	4	No	11	36.36	No	0.006	NP (Cohens/xfrm)
Fluoride (mg/L)	GN-GSA-MW-6	0.15	0.036	4	No	11	54.55	No	0.006	NP (normality)
Fluoride (mg/L)	GN-GSA-MW-7	0.1066	0.07434	4	No	11	9.091	ln(x)	0.01	Param.
Fluoride (mg/L)	GN-GSA-MW-8	0.1613	0.1158	4	No	11	0	x^2	0.01	Param.
Fluoride (mg/L)	GN-GSA-MW-9	0.1	0.035	4	No	11	18.18	No	0.006	NP (Cohens/xfrm)
Fluoride (mg/L)	GN-GSA-MW-10	0.1	0.02	4	No	11	36.36	No	0.006	NP (Cohens/xfrm)
Fluoride (mg/L)	GN-GSA-MW-11		0.03871	4	No	11	36.36	No	0.01	Param.
Fluoride (mg/L)	GN-GSA-MW-12		0.05	4	No	11	9.091	No	0.006	NP (normality)
Fluoride (mg/L)	GN-GSA-MW-13		0.039	4	No	11	0	No	0.006	NP (normality)
Lead (mg/L)	GN-GSA-MW-1	0.0025	0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-5	0.0025	0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-6	0.0025	0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-7	0.0025	0.00229	0.015	No	10	90	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-8	0.0025	0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-9	0.0025	0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-10		0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-11		0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-12		0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	GN-GSA-MW-13		0.0025	0.015	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-1	0.025	0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-5	0.025	0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-6	0.025	0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-7	0.025	0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-8	0.025	0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-9	0.025	0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-10		0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-11		0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-12		0.025	0.05	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	GN-GSA-MW-13		0.025	0.05	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-1	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-5	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-6	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-7	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-8	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-9	0.00025	0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-MW-10		0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-WW-10		0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-WW-11		0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	GN-GSA-WW-12 GN-GSA-MW-13		0.00025	0.002	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	GN-GSA-WW-13	0.01852	0.00025	0.002	No	10	0	sqrt(x)	0.011	Param.
Molybdenum (mg/L)	GN-GSA-WW-1	0.005	0.007824	0.1	No	10	100	No	0.01	NP (NDs)
Molybdenum (mg/L)	GN-GSA-WW-5	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	GN-GSA-WW-7	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L) Molybdenum (mg/L)	GN-GSA-WW-7 GN-GSA-MW-8	0.005	0.003	0.1	No	10	0	No	0.011	Param.
Molybdenum (mg/L) Molybdenum (mg/L)	GN-GSA-WW-9	0.00446	0.005	0.1	No	10	100	No	0.01	NP (NDs)
	314 30A-10104-9	3.000	5.000	0.1	140	10	100	.10	0.011	(1403)

Confidence Intervals - All Results

Plant Gaston Client: Southern Company Data: Gaston GSA Printed 1/31/2019, 11:33 AM

	Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
	Molybdenum (mg/L)	GN-GSA-MW-10	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Molybdenum (mg/L)	GN-GSA-MW-11	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Molybdenum (mg/L)	GN-GSA-MW-12	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Molybdenum (mg/L)	GN-GSA-MW-13	0.005	0.005	0.1	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-1	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-5	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-6	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-7	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-8	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-9	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-10	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-11	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-12	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Selenium (mg/L)	GN-GSA-MW-13	0.005	0.005	0.05	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-1	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-5	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-6	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-7	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-8	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-9	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-10	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-11	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-12	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
	Thallium (mg/L)	GN-GSA-MW-13	0.0005	0.0005	0.002	No	10	100	No	0.011	NP (NDs)
1											

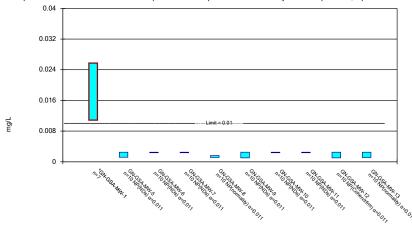
Non-Parametric Confidence Interval



Constituent: Antimony Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

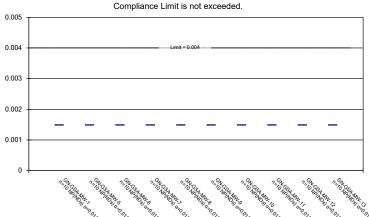
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Parametric Confidence Interval

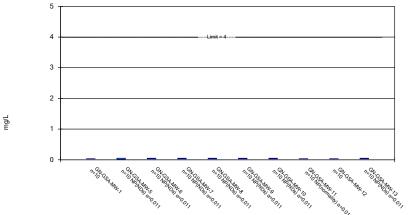

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

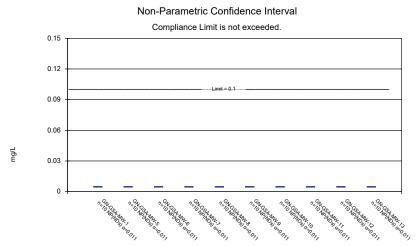
Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

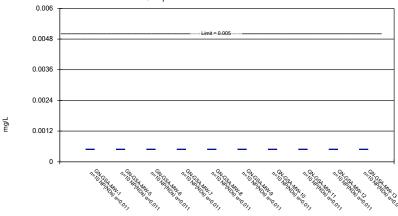

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

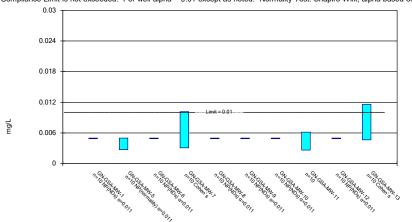
Constituent: Boron Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Constituent: Chromium Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Non-Parametric Confidence Interval

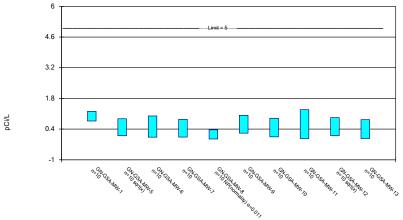
Compliance Limit is not exceeded.



Constituent: Cadmium Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

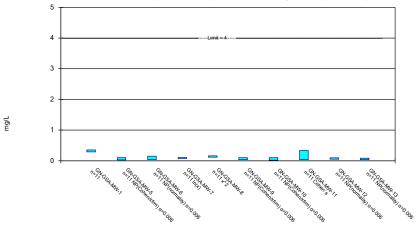
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals

Plant Gaston Client: Southern Company Data: Gaston GSA

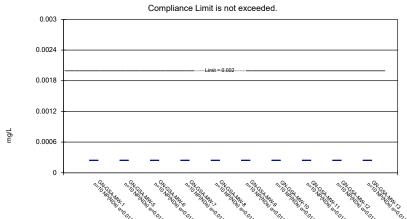

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded. 0.02 0.016 0.012 0.008 0.004 0.008

Constituent: Lead Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals Plant Gaston Client: Southern Company Data: Gaston GSA

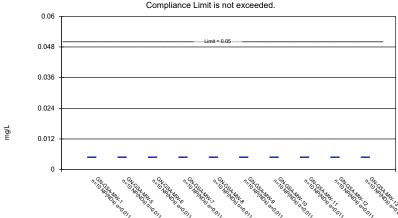
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Fluoride Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

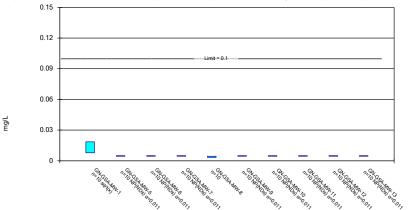
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded.



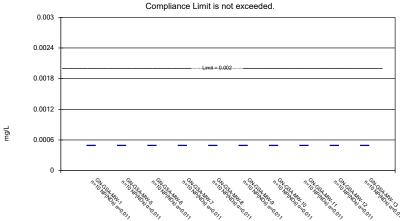
Constituent: Mercury Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG


Non-Parametric Confidence Interval

Constituent: Selenium Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 1/31/2019 11:32 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval

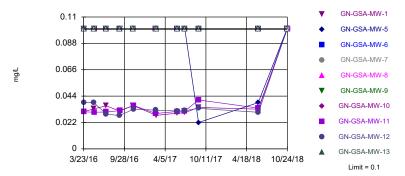
2nd Semi-Annual

Interwell Prediction Limit Summary Table - Significant Results

Plant Gaston Client: Southern Company Data: Gaston GSA Printed 12/18/2018, 1:38 PM

Constituent	<u>Well</u>	Upper Lin	n. Lower Lim	n. Date	Observ.	Sig. Bg N	Bg Mea	n Std. Dev.	%NDsND Adj.	Transfo	rm Alpha Method
Fluoride (mg/L)	GN-GSA-MW-1	0.111	n/a	10/23/2018	0.39	Yes 48	n/a	n/a	35.42 n/a	n/a	0.0008027 NP Inter (normality) 1 of 2
Fluoride (mg/L)	GN-GSA-MW-8	0.111	n/a	10/22/2018	0.15	Yes 48	n/a	n/a	35.42 n/a	n/a	0.0008027 NP Inter (normality) 1 of 2
рН (рН)	GN-GSA-MW-1	7.53	5.84	10/23/2018	7.65	Yes 48	n/a	n/a	0 n/a	n/a	0.001605 NP Inter (normality) 1 of 2
pH (pH)	GN-GSA-MW-6	7.53	5.84	10/22/2018	4.68	Yes 48	n/a	n/a	0 n/a	n/a	0.001605 NP Inter (normality) 1 of 2

Interwell Prediction Limit Summary Table - All Results

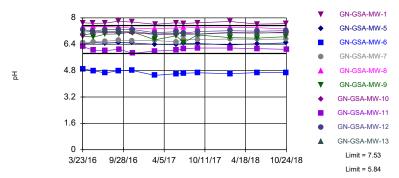

Plant Gaston Client: Southern Company Data: Gaston GSA Printed 12/18/2018, 1:38 PM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig	Bg N	Bg Mean	Std. Dev.	%NDs	sND Adj.	Transform	<u>Alpha</u>	Method		
Boron (mg/L)	GN-GSA-MW-1	0.1	n/a	10/23/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-5	0.1	n/a	10/22/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-6	0.1	n/a	10/22/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-7	0.1	n/a	10/22/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-8	0.1	n/a	10/22/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-9	0.1	n/a	10/22/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-10	0.1	n/a	10/24/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-11	0.1	n/a	10/24/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-12	0.1	n/a	10/23/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Boron (mg/L)	GN-GSA-MW-13	0.1	n/a	10/23/2018	0.1ND	No	44	n/a	n/a	97.73	n/a	n/a	0.0009524	NP Inter	(NDs) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-1	0.111	n/a	10/23/2018	0.39	Yes	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-5	0.111	n/a	10/22/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-6	0.111	n/a	10/22/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-7	0.111	n/a	10/22/2018	0.1	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-8	0.111	n/a	10/22/2018	0.15	Yes	s 48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-9	0.111	n/a	10/22/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-10	0.111	n/a	10/24/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-11	0.111	n/a	10/24/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-12	0.111	n/a	10/23/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
Fluoride (mg/L)	GN-GSA-MW-13	0.111	n/a	10/23/2018	0.1ND	No	48	n/a	n/a	35.42	n/a	n/a	0.0008027	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-1	7.53	5.84	10/23/2018	7.65	Yes	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-5	7.53	5.84	10/22/2018	6.48	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-6	7.53	5.84	10/22/2018	4.68	Yes	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-7	7.53	5.84	10/22/2018	6.71	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-8	7.53	5.84	10/22/2018	7.33	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-9	7.53	5.84	10/22/2018	6.86	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-10	7.53	5.84	10/24/2018	7.14	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-11	7.53	5.84	10/24/2018	6.09	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-12	7.53	5.84	10/23/2018	7.22	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	
pH (pH)	GN-GSA-MW-13	7.53	5.84	10/23/2018	7.09	No	48	n/a	n/a	0	n/a	n/a	0.001605	NP Inter	(normality) 1 of 2	

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Interwell Non-parametric

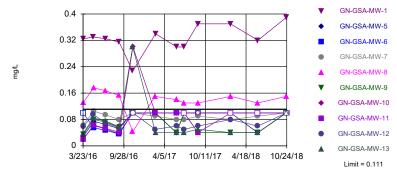

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 4 background values. 97.73% NDs. Annual per-constituent alpha = 0.02075. Individual comparison alpha = 0.009524 (1 of 2). Comparing 10 points to limit. Assumes 1 future value.

Constituent: Boron Analysis Run 12/18/2018 1:35 PM View: PLs - Interwell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Exceeds Limits: GN-GSA-MW-1, GN-GSA-MW-6

Prediction Limit
Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 48 background values. Annual perconstituent alpha = 0.03502. Individual comparison alpha = 0.001605 (1 of 2). Comparing 10 points to limit. Assumes 1 future value.

Constituent: pH Analysis Run 12/18/2018 1:35 PM View: PLs - Interwell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Exceeds Limit: GN-GSA-MW-1, GN-GSA-MW-8

Prediction Limit
Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 48 background values. 35.42% NDs. Annual perconstituent alpha = 0.01751. Individual comparison alpha = 0.008027 (1 of 2). Comparing 10 points to limit. Assumes 1 future value.

Constituent: Boron (mg/L) Analysis Run 12/18/2018 1:38 PM View: PLs - Interwell

Plant Gaston Client: Southern Company Data: Gaston GSA

	GN-GSA-MW-2 (t	og)GN-GSA-MW-9	GN-GSA-MW-7	GN-GSA-MW-11	GN-GSA-MW-6	GN-GSA-MW-12	GN-GSA-MW-3 (b	g)GN-GSA-MW-5	GN-GSA-MW-1
3/23/2016	<0.1	<0.1	<0.1	0.0309 (J)	<0.1	0.0387 (J)	<0.1	<0.1	
3/24/2016									0.0311 (J)
5/10/2016	<0.1					0.0384 (J)	<0.1		0.0334 (J)
5/11/2016		<0.1	<0.1	0.0306 (J)	<0.1			<0.1	
7/5/2016	<0.1								0.0359 (J)
7/6/2016		<0.1	<0.1	0.0307 (J)	<0.1	0.029 (J)	<0.1	<0.1	
8/23/2016									
9/6/2016	<0.1		<0.1		<0.1	0.0278 (J)		<0.1	0.0316 (J)
9/7/2016		<0.1		0.0319 (J)			<0.1		
11/8/2016	<0.1	<0.1	<0.1		<0.1		<0.1	<0.1	0.0361 (J)
11/9/2016				0.0362 (J)		0.0331 (J)			
1/3/2017									
2/20/2017			<0.1		<0.1		<0.1	<0.1	
2/21/2017	<0.1	<0.1		0.0295 (J)		0.0323 (J)			
2/22/2017									0.028 (J)
5/30/2017		<0.1			<0.1			<0.1	
5/31/2017	<0.1		<0.1	0.0312 (J)		0.0316 (J)	<0.1		0.0297 (J)
7/5/2017	<0.1	<0.1	<0.1	0.0315 (J)	<0.1	0.0318 (J)	<0.1	<0.1	0.0302 (J)
9/5/2017	<0.1						<0.1		
9/7/2017		<0.1	<0.1	0.0408 (J)	<0.1	0.0338 (J)		0.022 (J)	0.0345 (J)
6/11/2018			<0.1		<0.1			0.0386 (J)	
6/12/2018	<0.1	<0.1		0.034 (J)		0.0305 (J)	<0.1		0.0331 (J)
10/22/2018	<0.1	<0.1	<0.1		<0.1			<0.1 (J)	
10/23/2018						<0.1 (J)	<0.1		<0.1 (J)
10/24/2018				<0.1 (J)					

	GN-GSA-MW-8	GN-GSA-MW-10	GN-GSA-MW-13	GN-GSA-MW-14S	GN-GSA-MW-15
3/23/2016					
3/24/2016	<0.1	<0.1	<0.1		
5/10/2016			<0.1		
5/11/2016	<0.1	<0.1			
7/5/2016				<0.1	
7/6/2016	<0.1	<0.1	<0.1		<0.1
8/23/2016				<0.1	<0.1
9/6/2016	<0.1	<0.1	<0.1		
9/7/2016				<0.1	<0.1
11/8/2016	<0.1		<0.1	<0.1	<0.1
11/9/2016		<0.1			
1/3/2017				0.0211 (J)	<0.1
2/20/2017	<0.1				<0.1
2/21/2017		<0.1		<0.1	
2/22/2017			<0.1		
5/30/2017	<0.1				
5/31/2017		<0.1	<0.1	<0.1	<0.1
7/5/2017	<0.1	<0.1	<0.1	<0.1	<0.1
9/5/2017				<0.1	<0.1
9/7/2017	<0.1	<0.1	<0.1		
6/11/2018					
6/12/2018	<0.1	<0.1	<0.1	<0.1	<0.1
10/22/2018	<0.1				
10/23/2018			<0.1	<0.1	<0.1
10/24/2018		<0.1			

2/22/2016	GN-GSA-MW-2 (bg	•	GN-GSA-MW-7		,	GN-GSA-MW-12	GN-GSA-MW-9	GN-GSA-MW-5	GN-GSA-MW-8
3/23/2016	0.022 (J)	<0.1	0.063 (J)	0.06 (J)	0.02 (J)	0.058 (J)	0.035 (J)	0.028 (J)	0.122 (1)
3/24/2016	0.000 (1)			0.444 (1)		0.005 (1)			0.132 (J)
5/10/2016	0.068 (J)	0.055 (1)	0.405 (1)	0.111 (J)	0.000 (1)	0.095 (J)	0.00 (1)	0.074 (1)	0.470 (1)
5/11/2016	0.050 (1)	0.055 (J)	0.105 (J)		0.063 (J)		0.08 (J)	0.074 (J)	0.176 (J)
7/5/2016	0.052 (J)								
7/6/2016		0.047 (J)	0.094 (J)	0.089 (J)	0.053 (J)	0.069 (J)	0.072 (J)	0.065 (J)	0.167 (J)
8/23/2016									
9/6/2016	0.038 (J)	0.036 (J)	0.08 (J)			0.055 (J)		0.052 (J)	0.153 (J)
9/7/2016				0.073 (J)	0.041 (J)		0.057 (J)		
11/8/2016	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	0.043 (J)
11/9/2016					<0.1	<0.1			
1/3/2017									
2/20/2017		0.1	0.09 (J)	0.05 (J)				0.1	0.15
2/21/2017	0.1				0.1	0.05 (J)	0.1		
2/22/2017									
5/30/2017		0.1					0.04 (J)	0.04 (J)	0.14
5/31/2017	0.1		0.08 (J)	0.06 (J)	0.1	0.06 (J)			
7/5/2017	<0.1	<0.1	0.08 (J)	0.05 (J)	<0.1	0.05 (J)	<0.1	<0.1	0.13
9/5/2017	<0.1			0.06 (J)					
9/7/2017		<0.1	0.09 (J)		0.04 (J)	0.06 (J)	0.04 (J)	<0.1	0.13
2/5/2018	0.04 (J)					0.08 (J)			
2/6/2018		<0.1	0.08 (J)	0.06 (J)	<0.1		0.04 (J)	<0.1	0.15
2/7/2018									
6/11/2018		<0.1	0.09 (J)					0.04 (J)	
6/12/2018	<0.1			0.05 (J)	<0.1	0.06 (J)	0.04 (J)		0.13
10/22/2018	<0.1	<0.1	0.1				<0.1 (J)	<0.1 (J)	0.15
10/23/2018				<0.1 (J)		<0.1 (J)			
10/24/2018					<0.1				

	GN-GSA-MW-10	GN-GSA-MW-13	GN-GSA-MW-1	GN-GSA-MW-14S	GN-GSA-MW-15
3/23/2016					
3/24/2016	0.02 (J)	0.039 (J)	0.325		
5/10/2016		0.085 (J)	0.33		
5/11/2016	0.062 (J)				
7/5/2016			0.325	0.072 (J)	
7/6/2016	0.051 (J)	0.075 (J)			0.062 (J)
8/23/2016				0.066 (J)	0.045 (J)
9/6/2016	0.037 (J)	0.058 (J)	0.315		
9/7/2016				0.062 (J)	0.042 (J)
11/8/2016		0.3 (U)	0.227 (J)	<0.1	<0.1
11/9/2016	0.3 (U)				
1/3/2017				<0.1	<0.1
2/20/2017					0.1
2/21/2017	0.1			0.1	
2/22/2017		0.04 (J)	0.34		
5/30/2017					
5/31/2017	0.1	0.04 (J)	0.3	0.06 (J)	0.1
7/5/2017	<0.1	0.04 (J)	0.3	0.04 (J)	<0.1
9/5/2017				0.06 (J)	<0.1
9/7/2017	<0.1	0.05 (J)	0.37		
2/5/2018		0.04 (J)	0.37		
2/6/2018	<0.1			0.06 (J)	
2/7/2018					<0.1
6/11/2018					
6/12/2018	<0.1	0.04 (J)	0.32	0.05 (J)	<0.1
10/22/2018					
10/23/2018		<0.1 (J)	0.39	<0.1 (J)	<0.1
10/24/2018	<0.1				

	GN-GSA-MW-2 (b	og)GN-GSA-MW-6	GN-GSA-MW-7	GN-GSA-MW-3 (bg)GN-GSA-MW-11 G		GN-GSA-MW-12 GN-GSA-MW-9 GN-GSA-MW-5			GN-GSA-MW-8
3/23/2016	7.18	4.91	6.5	6.83	6.26	7.28	6.88	6.41	
3/24/2016									7.45
5/10/2016	7.2			6.84		7.19			
5/11/2016		4.79	6.54		6.04		6.84	6.5	7.48
7/5/2016	7.15								
7/6/2016		4.66	6.58	6.94	6	7.29	7.01	6.47	7.46
8/23/2016									
9/6/2016	7.17	4.8	6.64			7.29		6.51	7.44
9/7/2016				6.84	6.1		7.03		
11/8/2016	7.12	4.81	6.61	6.84			7.15	6.48	7.37
11/9/2016					5.85	7.29			
1/3/2017									
2/20/2017		4.51	6.63	7.04				6.39	7.36
2/21/2017	7.12				5.99	7.1	6.67		
2/22/2017									
5/30/2017		4.61					6.91	6.38	7.38
5/31/2017	7.17		6.54	6.91	6.03	7.16			
7/5/2017	7.18	4.64	6.67	7.02	6.13	7.08	6.51	6.44	7.44
9/5/2017	7.17			6.78					
9/7/2017		4.67	6.69		6.17	7.17	6.96	6.44	7.41
2/5/2018	7.12					7.22			
2/6/2018		4.61	6.71	6.96	6.17		6.8	6.36	7.41
2/7/2018									
6/11/2018		4.68	6.7					6.43	
6/12/2018	7.19			6.76	6.13	7.19	6.77		7.4
10/22/2018	7.06	4.68	6.71				6.86	6.48	7.33
10/23/2018				6.59		7.22			
10/24/2018					6.09				

	GN-GSA-MW-10	GN-GSA-MW-13	GN-GSA-MW-1	GN-GSA-MW-148	SGN-GSA-MW-15
3/23/2016					
3/24/2016	6.95	7.14	7.7		
5/10/2016		7.17	7.67		
5/11/2016	7.07				
7/5/2016			7.68	7.44	
7/6/2016	7.13	7.19			6.1
8/23/2016				7.47	5.87
9/6/2016	7.1	7.18	7.8		
9/7/2016				7.51	5.92
11/8/2016		7.18	7.74	7.37	5.91
11/9/2016	7.1				
1/3/2017				7.37	5.93
2/20/2017					5.91
2/21/2017	7			7.41	
2/22/2017		7.02	7.61		
5/30/2017					
5/31/2017	7.01	7.07	7.7	7.47	6
7/5/2017	7.07	7	7.66	7.5	6
9/5/2017				7.39	5.9
9/7/2017	7.01	7.02	7.7		
2/5/2018		7.12	7.78		
2/6/2018	7.09			7.47	
2/7/2018					5.86
6/11/2018					
6/12/2018	7.07	7.09	7.62	7.53	6.05
10/22/2018					
10/23/2018		7.09	7.65	7.4	5.84
10/24/2018	7.14				

Intrawell Prediction Limit Summary Table - Significant Results

Plant Gaston Client: Southern Company Data: Gaston GSA Printed 12/18/2018, 2:05 PM

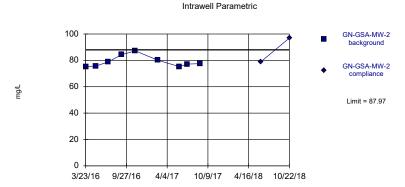
Constituent	Well	Upper Lim	. Lower Lim	. Date	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	<u>%ND</u>	SND Adj.	Transform	Alpha Method
Calcium (mg/L)	GN-GSA-MW-1	38.37	n/a	10/23/2018	38.9	Yes 9	35.73	1.237	0	None	No	0.0006839 Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-10	99.41	n/a	10/24/2018	104	Yes 9	92.19	3.387	0	None	No	0.0006839 Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-13	96.63	n/a	10/23/2018	97.6	Yes 9	83.12	6.337	0	None	No	0.0006839 Param 1 of 3
Calcium (mg/L)	GN-GSA-MW-2	87.97	n/a	10/22/2018	96.9	Yes 9	79.02	4.196	0	None	No	0.0006839 Param 1 of 3
Chloride (mg/L)	GN-GSA-MW-11	6.745	n/a	10/24/2018	7.2	Yes 9	4.269	1.162	0	None	No	0.0006839 Param 1 of 3
Sulfate (mg/L)	GN-GSA-MW-5	31.02	n/a	10/22/2018	40	Yes 9	15.51	7.278	0	None	No	0.0006839 Param 1 of 3
TDS (mg/L)	GN-GSA-MW-5	269.4	n/a	10/22/2018	292	Yes 9	203.3	30.98	0	None	No	0.0006839 Param 1 of 3

Intrawell Prediction Limit Summary Table - All Results

Plant Gaston Client: Southern Company Data: Gaston GSA Printed 12/18/2018, 2:05 PM

Column C	Catanormy	Constituent	<u>Well</u>	Upper Lim	Lower Lim	<u>Date</u>	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%ND	sND Adj.	Transform	<u>Alpha</u>	Method
Cacions	Contemingright OKISSAMEN 15.6 10. 10.022009 18.0 10	Calcium (mg/L)	GN-GSA-MW-1	38.37	n/a	10/23/2018	38.9	Yes 9	35.73	1.237	0	None	No	0.0006839	Param 1 of 3
Cacium (mg/L)	Calcium (mpl) Calcium (mp	Calcium (mg/L)	GN-GSA-MW-10	99.41	n/a	10/24/2018	104	Yes 9	92.19	3.387	0	None	No	0.0006839	Param 1 of 3
Cachemings	Catumongsign	Calcium (mg/L)	GN-GSA-MW-11	15.57	n/a	10/24/2018	7.73	No 9	10.82	2.23	0	None	No	0.0006839	Param 1 of 3
Cachumingnity Cach	Cacionimips	Calcium (mg/L)	GN-GSA-MW-12	75.87	n/a	10/23/2018	64.3	No 9	66.13	4.568	0	None	No	0.0006839	Param 1 of 3
Calcium (mgl) Calcium (mgl	Cacion (regign)	Calcium (mg/L)	GN-GSA-MW-13	96.63	n/a	10/23/2018	97.6	Yes 9	83.12	6.337	0	None	No	0.0006839	Param 1 of 3
Cachium (mmg/l)	Calcumoning	Calcium (mg/L)	GN-GSA-MW-14S	56.07	n/a	10/23/2018	44.4	No 9	49.4	3.13	0	None	No	0.0006839	Param 1 of 3
Calcium (mgl)	Cacher Improfile Chicago Marco Chicago M	Calcium (mg/L)	GN-GSA-MW-15	10.8	n/a	10/23/2018	5.94	No 9	8.347	1.15	0	None	No	0.0006839	Param 1 of 3
Calcium (right) Chicks (AMAN)	Chaim (mgl) CHASSAMANS 6.71 mgl 10220018 0.94 10.72 0.	Calcium (mg/L)	GN-GSA-MW-2	87.97	n/a	10/22/2018	96.9	Yes 9	79.02	4.196	0	None	No	0.0006839	Param 1 of 3
Cacium (mghl)	Calcium (right) Calcium (r	Calcium (mg/L)	GN-GSA-MW-3	114.2	n/a	10/23/2018	68.8	No 9	96.47	8.312	0	None	No	0.0006839	Param 1 of 3
Cacium (mgl)	Calcium (mpl) Calcium (mpl)	Calcium (mg/L)	GN-GSA-MW-5	65.71	n/a	10/22/2018	60.6	No 9	52.77	6.075	0	None	No	0.0006839	Param 1 of 3
Calcium (mght)	Calcium (myl)	Calcium (mg/L)	GN-GSA-MW-6	1.54	n/a	10/22/2018	0.79	No 9	1.013	0.2472	0	None	No	0.0006839	Param 1 of 3
Calcum(mpl) CRSANMP4 010 val 01022018 2.4 No 9 10.9 0.9 No 0.00 No 0.0000839 Param 1 of 3 Chloride (mpl) CRSANMP14 4.01 no 1022018 2.7 8.0 2.40 1.11 ™ mem No 0.0006389 Param 1 of 3 Chloride (mpl) CRSANMP14 6.78 no 1022018 7.2 9.9 4.90 1.61 1.11 ™ mem No 0.0006389 Param 1 of 3 Chloride (mpl) CRSANMP14 5.22 no 102302018 3.4 No 4.80 0.1 0.0006389 Param 1 of 3 Chloride (mpl) CRSANMP14 5.62 no 102302018 3.4 0.0 2.33 0.1 No 0.0 0.0006389 Param 1 of 3 Chloride (mpl) CRSANMP4 4.66 no 102202018 3.4 0.0 2.3 0.0 No 0.0 0.0006389 Param 1 of 3 Chloride (mpl) CRSASAMP4 3.6 102202018 3.4 0.0 2.3	Contine (mgl)	Calcium (mg/L)	GN-GSA-MW-7	72.45	n/a	10/22/2018	70.3	No 9	63.62	4.141	0	None	No	0.0006839	Param 1 of 3
Chloride (mgll) Clays As Market 4 197 Nel 02042018 2.1 No. 9 2.85 0.85 0.8142 1.11 → Image No. 0006399 Param 1 of 3 Chloride (mgll) Clays As Market 1.72 nel 10242018 2.2 No. 9 2.64 0.72 1.11 → Image No. 0006399 Param 1 of 3 Chloride (mgll) Clays As Market 5.62 nel 0.022018 2.1 0.9 3.14 1.14 1.11 → Image No. 0.0006399 Param 1 of 3 Chloride (mgll) Clays As Market 3.02 nel 0.0253018 3.1 0.9 3.84 0.11 → Image No. 0.0006399 Param 1 of 3 Chloride (mgll) Clays As Market 4.00 1.022018 1.00 0.2 2.00 0.80 0.0 0.0006399 Param 1 of 3 Chloride (mgll) Clays As Market 1.0 0.022018 1.0 0.0 0.0 0.0 0.0 0.0006399 Param 1 of 3 Chloride (mgll) Clays As Market 1.0 0.0 0.0 0.0 0.0 <t< td=""><td>Chooke (mgl) Chookes /td><td>Calcium (mg/L)</td><td>GN-GSA-MW-8</td><td>61.65</td><td>n/a</td><td>10/22/2018</td><td>55.4</td><td>No 9</td><td>56.57</td><td>2.387</td><td>0</td><td>None</td><td>No</td><td>0.0006839</td><td>Param 1 of 3</td></t<>	Chooke (mgl) Chookes	Calcium (mg/L)	GN-GSA-MW-8	61.65	n/a	10/22/2018	55.4	No 9	56.57	2.387	0	None	No	0.0006839	Param 1 of 3
Chloride (mgh)	Chicke (mg/L) GR-GSA-MWH 4.194 1.694 10.242018 2.99 4.296 1.024 1.11 ± long 0.000 00000000000000000000000000000000	Calcium (mg/L)	GN-GSA-MW-9	67.03	n/a	10/22/2018	52.4	No 9	50.08	7.955	0	None	No	0.0006839	Param 1 of 3
Choide (mgl) GH-GSA-MW-1 6.5 in 20/2018 7.2 ve 3 1.46 1.11 long 0000689 Param 1 of 3 Choide (mgl) GH-SSA-MW-1 5.2 in 20/202018 2.1 No 9 3.64 1.14 1.11 long 0000689 Param 1 of 3 Choide (mgl) GH-SSA-MW-1 5.2 in 20/202018 3.4 No 9 4.88 0.83 1.1 long 0000689 Param 1 of 3 Choide (mgl) GH-SSA-MW-1 2.5 in 20/202018 1.0 No 9 2.82 0.881 1.1 long 0000689 Param 1 of 3 Choide (mgl) GH-SSA-MW-1 3.60 in 20/202018 1.0 No 9 3.84 0.82 0.80 0.0 0000689 Param 1 of 3 Choide (mgl) GH-SSA-MW-1 6.75 in 20/202018 1.0 No 9 8.76 1.82 No 9 0.00689 Param 1 of 3 Choide (mgl) GH-SSA-MW-1 6.75 in 20/202018 1.0 No 9 8.76 0.1 No 9 0.00689 1.1 No 9	Chorde (mgh) GR-GSA-MWH 6.78 no 102402018 2.28 4.89 4.89 1.82 1.89 1.80 0.100 0.100 0.000 0.000 0.000889 Param 1 of 3 Chichide (mgh) GR-GSA-MWH 5.22 na 10222018 3.6 0.00 0.00089 Param 1 of 3 0.000889 Param 1 of 3 Chichide (mgh) GR-GSA-MWH 8.66 na 10222018 3.6 1.80 0.33 0 1.80 0.000889 Param 1 of 3 Chichide (mgh) GR-GSA-MWH 3.66 na 10222018 3.6 1.80 0.3 3.80 1.80 0.000889 Param 1 of 3 Chichide (mgh) GR-GSA-MWH 3.7 na 10222018 2.6 1.80 2.3 1.8 1.0 0.000889 Param 1 of 3 Chichide (mgh) GR-GSA-MWH 4.50 na 10222018 2.6 8.0 9.0 1.8 1.0 0.000689 Param 1 of 3 Chichide (mgh) GR-GSA-MWH 4.50 10222018 2.0 8.0 9.0 0.0006	Chloride (mg/L)	GN-GSA-MW-1	4.011	n/a	10/23/2018	2.1	No 9	2.554	0.6834	11.11	None	No	0.0006839	Param 1 of 3
Choride (mg/l) Chori	Choose (mg1) Choo	Chloride (mg/L)	GN-GSA-MW-10	4.197	n/a	10/24/2018	2.9	No 9	2.646	0.7282	11.11	None	No	0.0006839	Param 1 of 3
Chloride (mgl)	Chorde (mgl)	Chloride (mg/L)	GN-GSA-MW-11	6.745	n/a	10/24/2018	7.2	Yes 9	4.269	1.162	0	None	No	0.0006839	Param 1 of 3
Childide (mg/l) GN-GSA-MW-15 523 b. n/a 10/32/018 b. 1.0 0.0 0.0086839 Param 1 of 3 Childide (mg/l) 0.0 CNGSA-MW-2 4.6 n/a 10/32/018 b. 1.0 0.0 2.78 0.5 1.1 Immort 0.0 0.0086839 Param 1 of 3 Chloride (mg/l) GN-GSA-MW-3 38 n/a 10/32/018 b. 2.0 3.3 0.5 0.0 None 0.0 0.006839 Param 1 of 3 Chloride (mg/l) GN-GSA-MW-3 1.1 n/a 10/22/018 b. 2.0 No.9 8.78 0.0 No.9 0.0 No.9 0.0 0.0 0.006839 Param 1 of 3 Chloride (mg/l) GN-GSA-MW-4 4.38 n/a 10/22/018 b. 2.0 No.9 8.48 0.0 No.9 0.0 0.0 0.006839 Param 1 of 3 Chloride (mg/l) GN-GSA-MW-4 4.38 n/a 10/22/018 b. 2.0 No.9 9.34 0.3 1.1 Image 1 0.006839 Param 1 of 3 Chloride (mg/l) GN-GSA-MW-1 2.3<	Chicride [mg] Chicride [Chloride (mg/L)	GN-GSA-MW-12	5.623	n/a	10/23/2018	2.1	No 9	3.181	1.146	11.11	None	No	0.0006839	Param 1 of 3
Chorde (mg/l) C	Chloride (mg/l)	Chloride (mg/L)	GN-GSA-MW-13	5.021	n/a	10/23/2018	3.5	No 9	3.646	0.6455	0	None	No	0.0006839	Param 1 of 3
Chioride (might) Chior	Chronic (mg/L) Ch	Chloride (mg/L)	GN-GSA-MW-14S	5.523	n/a	10/23/2018	3.4	No 9	4.387	0.5333	0	None	No	0.0006839	Param 1 of 3
Childride (might) GN GSAAWH 1.8 1.0 1023/2018 2.6 No 9 1.8 0.3 No 0.0008389 Param I of 3 Chiloride (might) GN GSAAWH 1.7 n² n² 1022/2018 2.6 n² n² <t< td=""><td>Chicride (mg/L) Chicride (mg/</td><td>Chloride (mg/L)</td><td>GN-GSA-MW-15</td><td>4.666</td><td>n/a</td><td>10/23/2018</td><td>1ND</td><td>No 9</td><td>2.783</td><td>0.8834</td><td>11.11</td><td>None</td><td>No</td><td>0.0006839</td><td>Param 1 of 3</td></t<>	Chicride (mg/L) Chicride (mg/	Chloride (mg/L)	GN-GSA-MW-15	4.666	n/a	10/23/2018	1ND	No 9	2.783	0.8834	11.11	None	No	0.0006839	Param 1 of 3
Chioride (mgl.) Chioride (mgl	Chloride (mgl.) Chloride (Chloride (mg/L)	GN-GSA-MW-2	4.891	n/a	10/22/2018	3.6	No 9	3.738	0.5409	0	None	No	0.0006839	Param 1 of 3
Chloride (mgll.) GN-GSA-MW-6	Chiorde (mgl.) Chiorde (mgl.	Chloride (mg/L)	GN-GSA-MW-3	3.86	n/a	10/23/2018	2.6	No 9	3.14	0.3379	0	None	No	0.0006839	Param 1 of 3
Chloride (mg/l)	Choride (mgl.) GN-GSA-MW-7 4538 Na	Chloride (mg/L)	GN-GSA-MW-5	17	n/a	10/22/2018	14	No 9	n/a	n/a	0	n/a	n/a	0.004675	NP (normality) 1 of 3
Chloride (mg/L) GN-GSA-MW-8 GN-GSA-MW-9 GN-GSA-MW-1	Chloride (mg/L)	Chloride (mg/L)	GN-GSA-MW-6	4.015	n/a	10/22/2018	2.6	No 9	8.785	3.44	11.11	None	x^2	0.0006839	Param 1 of 3
Chloride (mgl)L) GN-GSA-MW-1 3.52 n/a 10/22/2018 2. No. 9 2.32 0.567 1.11 more No. 00006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-1 6.41 n/a 10/23/2018 2.5ND No. 9 4.099 1.086 0 None No. 00006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-11 2.582 n/a 10/24/2018 2.5ND No. 9 4.387 0.3 1.11 more No. 00006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-11 1.655 n/a 10/23/2018 2.5ND No. 9 8.382 1.007 None No. 00006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-13 1.647 n/a 10/23/2018 2.5ND No. 9 9.342 3.70 None No. 0 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-13 1.64 n/a 10/23/2018 2.5ND No. 9 9.342 3.73 1.11 No. 0 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-2 1.60 n/a 10/23/2018	Chicride (mg/L)	Chloride (mg/L)	GN-GSA-MW-7	4.538	n/a	10/22/2018	3.7	No 9	3.468	0.502	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/l) GN-GSA-MW-1 6.41 n² 10/23/2018 2.5ND No 9 1.096 0 None NO 0.0006839 Param 1 of 3 Sulfate (mg/l) GN-GSA-MW-11 15.03 n² 10/23/2018 2.5ND No 9 1.887 0.326 11.11 None No 0.0006839 Param 1 of 3 Sulfate (mg/l) GN-GSA-MW-12 16.55 n² 10/23/2018 2.5ND No 9 9.349 3.38 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/l) GN-GSA-MW-14 18.04 n² 10/23/2018 2.5ND No 9 9.349 3.788 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/l) GN-GSA-MW-15 8.60 n² 10/23/2018 2.5ND No 9 9.41 3.788 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/l) GN-GSA-MW-1 5.60 n² 10/22/2018 2.5ND No 9 1.745 1.227 2.22 x plant	Sulfate (mg/L) GN-GSA-MW-12 GN-GSA-MW-12 GN-GSA-MW-11 GN-GSA-MW-11 GN-GSA-MW-11 GN-GSA-MW-11 GN-GSA-MW-11 GN-GSA-MW-11 GN-GSA-MW-11 GN-GSA-MW-12 GN-GSA-MW-12 GN-GSA-MW-13 GN-GSA-MW-13 GN-GSA-MW-13 GN-GSA-MW-13 GN-GSA-MW-13 GN-GSA-MW-13 GN-GSA-MW-14 GN-GSA-MW-15 GN-GSA-MW-15 GN-GSA-MW-14 GN-GSA-MW-15 GN-GSA-MW-15 GN-GSA-MW-15 GN-GSA-MW-15 GN-GSA-MW-15 GN-GSA-MW-16 GN-GSA-MW-16 GN-GSA-MW-17 GN-GSA-MW-18 GN	Chloride (mg/L)	GN-GSA-MW-8	2.587	n/a	10/22/2018	1ND	No 9	1.769	0.3837	11.11	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L) GN-GSA-HW-10 2.582 r/a 1024/2018 2.5ND no. 9 1.887 0.326 11 - Image: No. 9 0.00000000000000000000000000000000000	Sulfate (mg/L) GN-GSA-MW-11 15.03 A 10242018 25ND No 9 1887 1897 1898 189	Chloride (mg/L)	GN-GSA-MW-9	3.528	n/a	10/22/2018	2	No 9	2.32	0.567	11.11	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L) GN-GSA-MW-11 GN-GSA-MW-12 GN-GSA-MW-12 GN-GSA-MW-12 GN-GSA-MW-13 GN-GSA-MW-13 GN-GSA-MW-13 GN-GSA-MW-13 GN-GSA-MW-13 GN-GSA-MW-14 GN-GSA-MW-15 GN-GSA-MW-16 GN-	Sulfate (mgl.) GN-GSA-MW-11 15.03 n/a 1024/2018 2.5ND No. 9 7.499 3.36 0 None No. 0.0006839 Param 1 of 3 Sulfate (mgl.) GN-GSA-MW-13 10.47 n/a 10/23/2018 2.5ND No. 9 9.349 3.38 0 None No. 0.0006839 Param 1 of 3 Sulfate (mgl.) GN-GSA-MW-14 10.47 n/a 10/23/2018 2.5ND No. 9 9.94 3.788 0 None No. 0.0006839 Param 1 of 3 Sulfate (mgl.) GN-GSA-MW-14 5.604 n/a 10/22/2018 2.5ND No. 9 7.103 1.113 0.0 None No. 0.0006839 Param 1 of 3 Sulfate (mgl.) GN-GSA-MW-2 10.42 n/a 10/22/2018 12 No. 9 7.131 1.51 None No. 0 0.0006839 Param 1 of 3 Sulfate (mgl.) GN-GSA-MW-3 3.102 n/a 10/22/2018 2.5ND No. 9 1.51 1.521 1.722 1.724 1.724 No. 9	Sulfate (mg/L)	GN-GSA-MW-1	6.414	n/a	10/23/2018	2.5ND	No 9	4.099	1.086	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L) GN-GSA-MW-12 16.55 n/a 1023/2018 2.5ND n/a 9.349 3.38 0 None NO 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-13 18.04 n/a 1023/2018 6.7 n/a 9.8388 1.007 0 None NO 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-13 18.04 n/a 10/23/2018 5.4 n/a 9.944 3.788 0 None NO 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-13 5.604 n/a 10/23/2018 2.5ND n/a 2.7103 1.648 0 No 0.006639 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-3 31.02 n/a 10/22/2018 2.5ND n/a 1.518 2.718 2.718 0 No No 0.006639 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-3 31.02 n/a 10/22/2018 2.5ND n/a 1.528 0 No No 0.006639 Param 1 of 3	Sulfate (mg/L)	Sulfate (mg/L)	GN-GSA-MW-10	2.582	n/a	10/24/2018	2.5ND	No 9	1.887	0.326	11.11	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	Sulfate (mg/L) GN-GSA-MW-13 10.47 n/a 10/23/2018 6.7 No.9 8.328 1.007 No.9 No.9 0.000839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-148 18.04 n/a 10/23/2018 5.4 No.9 9.944 3.798 0.9 No.9 No.9 No.9 9.944 3.798 0.9 No.9 No.9 No.9 9.944 3.798 0.9 No.9 No.9 <t< td=""><td>Sulfate (mg/L)</td><td>GN-GSA-MW-11</td><td>15.03</td><td>n/a</td><td>10/24/2018</td><td>2.5ND</td><td>No 9</td><td>7.499</td><td>3.536</td><td>0</td><td>None</td><td>No</td><td>0.0006839</td><td>Param 1 of 3</td></t<>	Sulfate (mg/L)	GN-GSA-MW-11	15.03	n/a	10/24/2018	2.5ND	No 9	7.499	3.536	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L) GN-GSA-MW-145 18 0.0 n/a 10/23/2018 5.4 No 9 9.94 3.788 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-2 10.62 n/a 10/23/2018 2.5ND No 9 3.231 1.113 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-3 35.15 n/a 10/23/2018 12 No 9 2.038 6.93 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-5 31.02 n/a 10/23/2018 4 Yes 9 15.51 7.278 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-6 43.69 n/a 10/22/2018 2.5ND No 9 1.51 1.272 2.222 Kaplan-Mere No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-7 4.51 n/a 10/22/2018 2.5ND No 9 1.54 1.227	Sulfate (mg/L)	Sulfate (mg/L)	GN-GSA-MW-12	16.55	n/a	10/23/2018	2.5ND	No 9	9.349	3.38	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L)	Sulfate (mg/L) GN-GSA-MW-15 5.604 n/a 10/23/2018 2.5ND No 9 3.231 1.113 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-2 10.62 n/a 10/23/2018 12 No 9 7.103 1.648 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-5 31.02 n/a 10/23/2018 12 No 9 1.51 7.278 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-6 4.369 n/a 10/22/2018 2.5ND No 9 1.745 1.227 22.22 Kaplan-Mere No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-7 4.369 n/a 10/22/2018 2.5ND No 9 1.745 1.222 Kaplan-Mere No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-8 2.629 n/a 10/22/2018 8.1 No 9 10.745 0.222 N	Sulfate (mg/L)	GN-GSA-MW-13	10.47	n/a	10/23/2018	6.7	No 9	8.328	1.007	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L) GN-GSA-MW-2 10.62 n/a 10/22/2018 8.3 No 9 7.103 1.648 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-3 35.15 n/a 10/22/2018 12 No 9 20.38 6.93 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-6 1.02 n/a 10/22/2018 12 No 9 1.754 1.277 22.22 kaplan-Meler No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-6 1.369 n/a 10/22/2018 1.25ND No 9 1.754 1.277 22.22 kaplan-Meler No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-6 1.451 n/a 10/22/2018 1.25ND No 9 1.754 1.277 22.22 kaplan-Meler No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-7 14.51 n/a 10/22/2018 1.25ND No 9 1.754 1.279 22.22 kaplan-Meler No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-8 2.629 n/a 10/22/2018 1.25ND No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-9 6.386 n/a 10/22/2018 1.25ND No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-1 242.9 n/a 10/22/2018 1.25ND No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 242.9 n/a 10/22/2018 1.25ND No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 242.9 n/a 10/22/2018 1.25ND No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 112.4 n/a 10/22/2018 1.25ND No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 242.9 n/a 10/22/2018 1.25ND No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 242.9 n/a 10/22/2018 1.25ND No 9 1.25LD NO 9 1.25LD NO None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 242.9 n/a 10/22/2018 1.25ND No 9 1.25LD NO 9 1.25LD NO None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 228.5 n/a 10/22/2018 1.25ND No 9 1.25LD NO 9 1.25LD NO None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 228.5 n/a 10/22/2018 1.25ND NO 9 1.25LD NO 9 1.25LD NO None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 228.5 n/a 10/22/2018 1.25ND NO 9 1.25LD NO 9 1.25LD NO None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 228.5 n/a 10/22/2018 1.25ND NO 9 1.25LD NO NO None No 0.0006839 Param 1 of 3 TDS (mg/L)	Sulfate (mg/L) GN-GSA-MW-2 10.62 n/a 10/22/2018 8.3 No 9 7.103 1.648 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-3 3.515 n/a 10/23/2018 12 No 9 2.038 6.93 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-6 4.369 n/a 10/22/2018 2.5ND No 9 1.755 1.227 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-6 4.369 n/a 10/22/2018 2.5ND No 9 1.745 1.227 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-1 4.51 n/a 10/22/2018 2.5ND No 9 1.745 0.2 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-1 4.369 n/a 10/22/2018 2.5ND No 9 1.843 0.366 0 None No 0.0006839 Param 1 of 3 <tr< td=""><td>Sulfate (mg/L)</td><td>GN-GSA-MW-14S</td><td>18.04</td><td>n/a</td><td>10/23/2018</td><td>5.4</td><td>No 9</td><td>9.944</td><td>3.798</td><td>0</td><td>None</td><td>No</td><td>0.0006839</td><td>Param 1 of 3</td></tr<>	Sulfate (mg/L)	GN-GSA-MW-14S	18.04	n/a	10/23/2018	5.4	No 9	9.944	3.798	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L) GN-GSA-MW-3 35.15 n/a 10/23/2018 12 No 9 20.38 6.93 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-5 31.02 n/a 10/22/2018 2.5ND No 9 1.751 7.278 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-6 4.369 n/a 10/22/2018 2.5ND No 9 1.754 1.227 22.22 Kaplan-Meier No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-7 14.51 n/a 10/22/2018 2.5ND No 9 1.745 1.227 22.22 Kaplan-Meier No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-8 2.629 n/a 10/22/2018 2.5ND No 9 1.843 0.366 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-9 6.386 n/a 10/22/2018 2.5ND No 9 1.843 0.366 0 None 0 None	Sulfate (mg/L)	Sulfate (mg/L)	GN-GSA-MW-15	5.604	n/a	10/23/2018	2.5ND	No 9	3.231	1.113	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L) GN-GSA-MW-5 31.02 n/a 10/22/2018 40 Yes 9 15.51 7.278 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-6 4.369 n/a 10/22/2018 2.5ND No 9 1.754 1.227 22.22 Kaplan-Meier No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-7 14.51 n/a 10/22/2018 2.5ND No 9 1.745 0.2 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-8 2.629 n/a 10/22/2018 2.5ND No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-9 6.386 n/a 10/22/2018 5.1 No 9 5.281 0.2 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-10 242.9 n/a 10/24/2018 265 No 9 251.8 7.496 0 None No	Sulfate (mg/L) GR-GSA-MW-5 31.02 n/a 10/22/2018 40 Yes 9 15.51 7.278 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GR-GSA-MW-6 4.369 n/a 10/22/2018 2.5ND No 9 1.754 1.227 22.22 kaplan-Meler No 0.0006839 Param 1 of 3 Sulfate (mg/L) GR-GSA-MW-7 14.51 n/a 10/22/2018 2.5ND No 1.745 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GR-GSA-MW-8 2.629 n/a 10/22/2018 5.1 No 9 1.843 0.3686 0 No 0.0006839 Param 1 of 3 Sulfate (mg/L) GR-GSA-MW-1 242.9 n/a 10/22/2018 5.1 No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GR-GSA-MW-1 242.9 n/a 10/22/2018 265 No 9 25.8 1.746 0 None No 0.0006839 Param 1 of 3	Sulfate (mg/L)	GN-GSA-MW-2	10.62	n/a	10/22/2018	8.3	No 9	7.103	1.648	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L) GN-GSA-MW-6 4.369 n/a 10/22/2018 2.5ND No 9 1.754 1.227 22.22 Kaplan-Meier No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-7 14.51 n/a 10/22/2018 8.8 No 9 10.79 1.745 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-8 2.629 n/a 10/22/2018 2.5ND No 9 1.843 0.3686 0 No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-9 6.386 n/a 10/22/2018 5.1 No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 SUfate (mg/L) GN-GSA-MW-1 24.2.9 n/a 10/23/2018 15.5 No 9 18.4 0.528 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-11 112.4 n/a 10/24/2018 68 No 9 25.1 7.43 0 <	Sulfate (mg/L) GN-GSA-MW-6 4.369 n/a 10/22/2018 2.5ND No 9 1.754 1.227 22.22 kaplan-Meier No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-7 14.51 n/a 10/22/2018 2.5ND No 9 10.79 1.745 0 None No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-8 2.629 n/a 10/22/2018 2.5ND No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-9 6.386 n/a 10/22/2018 5.1 No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 242.9 n/a 10/22/2018 195 No 9 188.4 20.85 No No 9 189.4 20.85 No None No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 242.9 n/a 10/22/2018 265 No 9 189.4 20.85 No None No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 242.9 n/a 10/24/2018 265 No 9 189.4 20.85 No None No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 242.9 n/a 10/24/2018 265 No 9 189.4 20.85 No None No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 242.9 n/a 10/24/2018 201 No 9 222.9 24.89 No None No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 242.9 n/a 10/23/2018 201 No 9 255.8 36.67 No None No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 228.5 n/a 10/23/2018 273 No 9 255.8 36.67 No None No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 228.5 n/a 10/23/2018 273 No 9 244.88 7.227 No None No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 242.9 131.1 n/a 10/23/2018 278 No 9 287.6 11.06 No None No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 242.9 131.1 n/a 10/23/2018 278 No 9 287.6 11.06 None No No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 242.9 131.1 n/a 10/23/2018 292 Yes 9 203.3 30.98 None No No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 252.9 n/a 10/23/2018 292 Yes 9 203.3 30.98 None No No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 252.9 n/a 10/23/2018 292 Yes 9 203.3 30.98 None No No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 252.9 n/a 10/23/2018 292 Yes 9 203.3 30.98 None No No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 252.9 n/a 10/23/2018 292 Yes 9 203.3 30.98 None No No 0.0006839 Param 1 of 3 Culfate (mg/L) GN-GSA-MW-1 2	Sulfate (mg/L)	GN-GSA-MW-3	35.15	n/a	10/23/2018	12	No 9	20.38	6.93	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L) GN-GSA-MW-7 14.51 n/a 10/22/2018 8.8 No 9 10.79 1.745 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-8 2.629 n/a 10/22/2018 2.5ND No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-9 6.386 n/a 10/22/2018 5.1 No 9 1.843 0.3686 0 No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 242.9 n/a 10/23/2018 195 No 9 198.4 20.85 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-10 267.8 n/a 10/24/2018 265 No 9 251.8 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-12 275.9 n/a 10/23/2018 201 No 9 255.8 36.67 0 <t< td=""><td>Sulfate (mg/L) GN-GSA-MW-7 14.51 n/a 10/22/2018 8.8 No 9 10.79 1.745 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-8 2.629 n/a 10/22/2018 5.1 No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-9 6.386 n/a 10/22/2018 5.1 No 9 5.261 0.528 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 242.9 n/a 10/23/2018 195 No 9 198.4 20.85 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 11.2 n/a 10/24/2018 265 No 9 251.8 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 11.2 n/a 10/24/2018 265 No 9 251.8 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 11.2 n/a 10/24/2018 261 No 9 251.8 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 11.2 n/a 10/24/2018 261 No 9 251.8 17.43 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 11.2 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 228.5 n/a 10/23/2018 273 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 11.1 n/a 10/23/2018 273 No 9 231.1 11.2 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 11.1 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 35.7 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 35.7 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 275 No 9 287.6 11.06 No None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 275 No 9 287.6 11.06 No None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 275 No 9 287.6 11.06 No None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 275 No 9 287.6 11.06 No None No 0.0006839 Param 1</td><td>Sulfate (mg/L)</td><td>GN-GSA-MW-5</td><td>31.02</td><td>n/a</td><td>10/22/2018</td><td>40</td><td>Yes 9</td><td>15.51</td><td>7.278</td><td>0</td><td>None</td><td>No</td><td>0.0006839</td><td>Param 1 of 3</td></t<>	Sulfate (mg/L) GN-GSA-MW-7 14.51 n/a 10/22/2018 8.8 No 9 10.79 1.745 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-8 2.629 n/a 10/22/2018 5.1 No 9 1.843 0.3686 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-9 6.386 n/a 10/22/2018 5.1 No 9 5.261 0.528 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 242.9 n/a 10/23/2018 195 No 9 198.4 20.85 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 11.2 n/a 10/24/2018 265 No 9 251.8 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 11.2 n/a 10/24/2018 265 No 9 251.8 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 11.2 n/a 10/24/2018 261 No 9 251.8 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 11.2 n/a 10/24/2018 261 No 9 251.8 17.43 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 11.2 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 228.5 n/a 10/23/2018 273 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 11.1 n/a 10/23/2018 273 No 9 231.1 11.2 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 11.1 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 35.7 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 35.7 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 275 No 9 287.6 11.06 No None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 275 No 9 287.6 11.06 No None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 275 No 9 287.6 11.06 No None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 264 n/a 10/23/2018 275 No 9 287.6 11.06 No None No 0.0006839 Param 1	Sulfate (mg/L)	GN-GSA-MW-5	31.02	n/a	10/22/2018	40	Yes 9	15.51	7.278	0	None	No	0.0006839	Param 1 of 3
Sulfate (mg/L) GN-GSA-MW-8 2.629 n/a 10/22/2018 2.5ND No 9 1.843 0.3686 0 No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-9 6.386 n/a 10/22/2018 5.1 No 9 5.261 0.528 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-10 242.9 n/a 10/23/2018 195 No 9 25.81 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-11 242.9 n/a 10/24/2018 265 No 9 25.18 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-11 112.4 n/a 10/23/2018 201 No 9 25.8 17.43 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-12 275.9 n/a 10/23/2018 279 No 9 25.8 3.67 0 None	Sulfate (mg/L) GN-GSA-MW-8 2.629 n/a 10/22/2018 5.1 No 9 1.843 3.686 0 None No 0.0006839 Param 1 of 3 Sulfate (mg/L) GN-GSA-MW-9 6.386 n/a 10/22/2018 5.1 No 9 5.261 0.528 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 242.9 n/a 10/23/2018 10/23/2018 195 No 9 198.4 20.85 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-10 267.8 n/a 10/24/2018 68 No 9 75.3 17.43 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-11 112.4 n/a 10/24/2018 68 No 9 75.3 17.43 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-12 275.9 n/a 10/23/2018 201 No 9 222.9 24.89 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14 275.9 n/a 10/23/2018 279 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14 228.5 n/a 10/23/2018 279 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/23/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 278 No 9 287.6 10.0 No None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 278 No 9 288.6 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 279 No 9 288.6 No 9 287.6 11.06 No None No 0.0006839 Param 1 of 3 TDS (mg/L) TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 279 No 9 288.6 No 9 287.6 10.0 None No 0.0006839 Param 1 of 3 0 None No 0	Sulfate (mg/L)	GN-GSA-MW-6	4.369	n/a	10/22/2018	2.5ND	No 9	1.754	1.227	22.22	Kaplan-Meier	No	0.0006839	Param 1 of 3
Sulfate (mg/L) GN-GSA-MW-9 6.386 n/a 10/22/2018 5.1 No 9 5.261 0.528 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 242.9 n/a 10/23/2018 195 No 9 198.4 20.85 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-10 267.8 n/a 10/24/2018 265 No 9 251.8 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-11 112.4 n/a 10/24/2018 68 No 9 75.3 17.43 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-12 275.9 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14 228.5 n/a 10/23/2018 273 No 9 231.1 11.92 0	Sulfate (mg/L) GN-GSA-MW-9 6.386 n/a 10/22/2018 5.1 No 9 5.261 0.528 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-1 242.9 n/a 10/23/2018 195 No 9 198.4 20.85 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-10 267.8 n/a 10/24/2018 265 No 9 251.8 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-11 112.4 n/a 10/24/2018 68 No 9 75.3 17.43 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-12 275.9 n/a 10/23/2018 201 No 9 222.9 24.89 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-13 33.9 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14 228.5 n/a 10/23/2018 204 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 204 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/23/2018 273 No 9 44.88 7.227 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 35.7 n/a 10/22/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 35.7 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 NO 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 NO NO NO 0.00068	Sulfate (mg/L)	GN-GSA-MW-7	14.51	n/a	10/22/2018	8.8	No 9	10.79	1.745	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L) GN-GSA-MW-10 242.9 n/a 10/23/2018 195 No 9 198.4 20.85 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-10 267.8 n/a 10/24/2018 265 No 9 251.8 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-11 112.4 n/a 10/24/2018 68 No 9 75.3 17.43 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-12 275.9 n/a 10/23/2018 201 No 9 222.9 24.89 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-13 333.9 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14 228.5 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/23/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 36.8 22.93 0 None No 0.0006839 Param 1 of 3	TDS (mg/L) GN-GSA-MW-1	Sulfate (mg/L)	GN-GSA-MW-8	2.629	n/a	10/22/2018	2.5ND	No 9	1.843	0.3686	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L) GN-GSA-MW-10 267.8 n/a 10/24/2018 265 No 9 251.8 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-11 112.4 n/a 10/24/2018 268 No 9 75.3 17.43 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-12 275.9 n/a 10/23/2018 201 No 9 222.9 24.89 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-13 333.9 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14S 228.5 n/a 10/23/2018 204 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 273 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/22/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 36.8 22.93 0 None No 0.0006839 Param 1 of 3	TDS (mg/L) GN-GSA-MW-10 267.8 n/a 10/24/2018 265 No 9 251.8 7.496 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-11 112.4 n/a 10/24/2018 68 No 9 75.3 17.43 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-12 275.9 n/a 10/23/2018 201 No 9 222.9 24.89 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-13 333.9 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14S 228.5 n/a 10/23/2018 204 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 273 No 9 44.88 7.227 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/23/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 306.8 22.93 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/23/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 25ND No 9 n/a n/a 66.67 n/a n/a 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 25ND No 9 n/a n/a 66.67 n/a n/a 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 255.2 n/a 10/22/2018 200 No 9 No	Sulfate (mg/L)	GN-GSA-MW-9	6.386	n/a	10/22/2018	5.1	No 9	5.261	0.528	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L) GN-GSA-MW-11 112.4 n/a 10/24/2018 68 No 9 75.3 17.43 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-12 275.9 n/a 10/23/2018 201 No 9 222.9 24.89 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-13 333.9 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14 228.5 n/a 10/23/2018 204 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 273 No 9 44.88 7.227 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/23/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 36.8 22.93 0 None No 0.0006839 Param 1 of 3	TDS (mg/L) GN-GSA-MW-11 112.4 n/a 10/24/2018 68 No 9 75.3 17.43 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-12 275.9 n/a 10/23/2018 201 No 9 222.9 24.89 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14 228.5 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14 228.5 n/a 10/23/2018 204 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 27.3 No 9 44.88 7.227 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/23/2018 27.3 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 27.5 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 27.5 No 9 306.8 22.93 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 25ND No 9 n/a n/a 66.67 n/a n/a 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 255.2 n/a 10/22/2018 209 No 9 18.4 17.24 0 None No 0.0006839 Param 1 of 3	TDS (mg/L)	GN-GSA-MW-1	242.9	n/a	10/23/2018	195	No 9	198.4	20.85	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L) GN-GSA-MW-12 275.9 n/a 10/23/2018 201 No 9 222.9 24.89 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-13 333.9 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14 228.5 n/a 10/23/2018 204 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 273 No 9 44.88 7.227 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/23/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 306.8 22.93 0 None No 0.0006839 Param 1 of 3	TDS (mg/L) GN-GSA-MW-12 275.9 n/a 10/23/2018 201 No 9 222.9 24.89 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-13 333.9 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14S 228.5 n/a 10/23/2018 204 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 273.3 No 9 44.88 7.227 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/22/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/22/2018 215 No 9 306.8 22.93 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 255.2 n/a 10/22/2018 209 No 9 1/a n/a 66.67 n/a n/a 0.004675 NP (NDS) 1 of 3 TDS (mg/L) GN-GSA-MW-7 255.2 n/a 10/22/2018 209 No 9 218.4 17.24 0 None No 0.0006839 Param 1 of 3	TDS (mg/L)	GN-GSA-MW-10	267.8	n/a	10/24/2018	265	No 9	251.8	7.496	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L) GN-GSA-MW-13 333.9 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14 228.5 n/a 10/23/2018 204 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 27.3 No 9 44.88 7.227 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/22/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3	TDS (mg/L) GN-GSA-MW-13 333.9 n/a 10/23/2018 279 No 9 255.8 36.67 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-14S 228.5 n/a 10/23/2018 204 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 27.3 No 9 44.88 7.227 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/22/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/22/2018 278 No 9 306.8 22.93 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 25ND No 9 n/a n/a 66.67 n/a n/a 0.004675 NP (NDs) 1 of 3 TDS (mg/L) GN-GSA-MW-7 255.2 n/a 10/22/2018 209 No 9 218.4 17.24 0 None No 0.0006839 Param 1 of 3	TDS (mg/L)	GN-GSA-MW-11	112.4	n/a	10/24/2018	68	No 9	75.3	17.43	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L) GN-GSA-MW-14S 228.5 n/a 10/23/2018 204 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 27.3 No 9 248.8 7.227 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/23/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 30.8 22.93 0 None No 0.0006839 Param 1 of 3	TDS (mg/L) GN-GSA-MW-14S 228.5 n/a 10/23/2018 204 No 9 203.1 11.92 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 27.3 No 9 44.88 7.227 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/22/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 306.8 22.93 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 29 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 25ND No 9 n/a n/a 66.67 n/a n/a 0.004675 NP (NDs) 1 of 3 TDS (mg	TDS (mg/L)	GN-GSA-MW-12	275.9	n/a	10/23/2018	201	No 9	222.9	24.89	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 27.3 No 9 44.88 7.227 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/22/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 306.8 22.93 0 None No 0.0006839 Param 1 of 3	TDS (mg/L) GN-GSA-MW-15 60.28 n/a 10/23/2018 27.3 No 9 44.88 7.227 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/22/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 306.8 22.93 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 25ND No 9 n/a n/a 66.67 n/a n/a 0.004675 NP (NDs) 1 of 3 TDS (mg/L) GN-GSA-MW-7 255.2 n/a 10/22/2018 209 No 9 218.4 17.24 0 None No 0.0006839 Param 1 of 3	TDS (mg/L)	GN-GSA-MW-13	333.9	n/a	10/23/2018	279	No 9	255.8	36.67	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/22/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 306.8 22.93 0 None No 0.0006839 Param 1 of 3	TDS (mg/L) GN-GSA-MW-2 311.1 n/a 10/22/2018 278 No 9 287.6 11.06 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 306.8 22.93 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 25ND No 9 n/a n/a 66.67 n/a n/a 0.004675 NP (NDs) 1 of 3 TDS (mg/L) GN-GSA-MW-7 255.2 n/a 10/22/2018 209 No 9 218.4 17.24 0 None No 0.0006839 Param 1 of 3	TDS (mg/L)	GN-GSA-MW-14S	228.5	n/a	10/23/2018	204	No 9	203.1	11.92	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 306.8 22.93 0 None No 0.0006839 Param 1 of 3	TDS (mg/L) GN-GSA-MW-3 355.7 n/a 10/23/2018 215 No 9 306.8 22.93 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 25ND No 9 n/a n/a 66.67 n/a 0.004675 NP (NDs) 1 of 3 TDS (mg/L) GN-GSA-MW-7 255.2 n/a 10/22/2018 209 No 9 218.4 17.24 0 None No 0.0006839 Param 1 of 3	TDS (mg/L)	GN-GSA-MW-15	60.28	n/a	10/23/2018	27.3	No 9	44.88	7.227	0	None	No	0.0006839	Param 1 of 3
	TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3 TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 25ND No 9 n/a n/a 66.67 n/a n/a 0.004675 NP (NDs) 1 of 3 TDS (mg/L) GN-GSA-MW-7 255.2 n/a 10/22/2018 209 No 9 218.4 17.24 0 None No 0.0006839 Param 1 of 3	TDS (mg/L)	GN-GSA-MW-2	311.1	n/a	10/22/2018	278	No 9	287.6	11.06	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L) GN-GSA-MW-5 269.4 n/a 10/22/2018 292 Yes 9 203.3 30.98 0 None No 0.0006839 Param 1 of 3	TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 25ND No 9 n/a n/a 66.67 n/a n/a 0.004675 NP (NDs) 1 of 3 TDS (mg/L) GN-GSA-MW-7 255.2 n/a 10/22/2018 209 No 9 218.4 17.24 0 None No 0.0006839 Param 1 of 3	TDS (mg/L)	GN-GSA-MW-3	355.7	n/a	10/23/2018	215	No 9	306.8	22.93	0	None	No	0.0006839	Param 1 of 3
	TDS (mg/L) GN-GSA-MW-7 255.2 n/a 10/22/2018 209 No 9 218.4 17.24 0 None No 0.0006839 Param 1 of 3	TDS (mg/L)	GN-GSA-MW-5	269.4	n/a	10/22/2018	292	Yes 9	203.3	30.98	0	None	No	0.0006839	Param 1 of 3
TDS (mg/L) GN-GSA-MW-6 30 n/a 10/22/2018 25ND No 9 n/a n/a 66.67 n/a n/a 0.004675 NP (NDs) 1 of 3		TDS (mg/L)	GN-GSA-MW-6	30	n/a	10/22/2018	25ND	No 9	n/a	n/a	66.67	n/a	n/a	0.004675	NP (NDs) 1 of 3
TDS (mg/L) GN-GSA-MW-7 255.2 n/a 10/22/2018 209 No 9 218.4 17.24 0 None No 0.0006839 Param 1 of 3	TDS (mg/L) GN-GSA-MW-8 204.3 n/a 10/22/2018 184 No 9 191.4 6.023 0 None No 0.0006839 Param 1 of 3	TDS (mg/L)	GN-GSA-MW-7	255.2	n/a	10/22/2018	209	No 9	218.4	17.24	0	None	No	0.000683	Param 1 of 3
TDS (mg/l) GN-GSA-MW-8 204.3 p/a 10/22/2018 184 No. 9 191.4 6.022 0 None No. 0.0006820 Param 1 of 2	, , , , , , , , , , , , , , , , , , ,	TDS (mg/L)	GN-GSA-MW-8	204.3	n/a	10/22/2018	184	No 9	191.4	6.023	0	None	No	0.0006839	Param 1 of 3

Page 2


Intrawell Prediction Limit Summary Table - All Results

Plant Gaston Client: Southern Company Data: Gaston GSA Printed 12/18/2018, 2:05 PM

 Constituent
 Well
 Upper Lim. Lower Lim. Date
 Observ.
 Sig. Bg N
 Bg Mean
 Std. Dev.
 %NDsND Adj.
 Transform Alpha
 Method

 TDS (mg/L)
 GN-GSA-MW-9
 212.4
 n/a
 10/22/2018
 177
 No
 9
 167.9
 20.88
 0
 None
 No
 0.0006839 Param 1 of 3

Exceeds Limit Prediction Limit

Background Data Summary: Mean=79.02, Std. Dev.=4.196, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8568, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

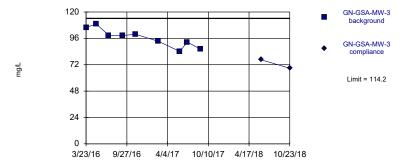
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Within Limit Prediction Limit Intrawell Parametric

60

60

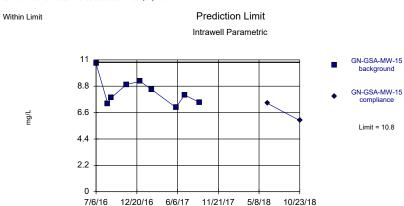
6N-GSA-MW-14S background


GN-GSA-MW-14S compliance

Limit = 56.07

Background Data Summary: Mean=49.4, Std. Dev.=3.13, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9446, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

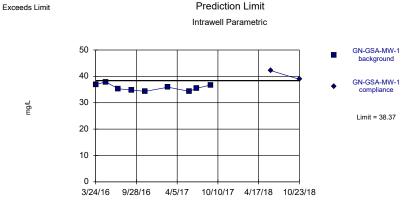


Background Data Summary: Mean=96.47, Std. Dev.=8.312, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9589, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

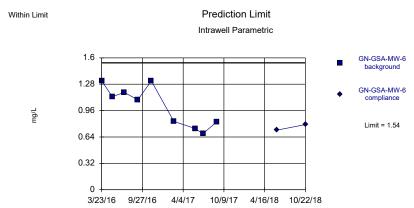
Background Data Summary: Mean=8.347, Std. Dev.=1.15, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9286, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.


	GN-GSA-MW-2	GN-GSA-MW-2
3/23/2016	75.3	
5/10/2016	75.7	
7/5/2016	78.8	
9/6/2016	84.3	
11/8/2016	87.2	
2/21/2017	80	
5/31/2017	75.2	
7/5/2017	77.2	
9/5/2017	77.5	
6/12/2018		78.9
10/22/2018		96.9

	GN-GSA-MW-3	GN-GSA-MW-3
3/23/2016	106	
5/10/2016	109	
7/6/2016	98.7	
9/7/2016	98.6	
11/8/2016	99.7	
2/20/2017	93.4	
5/31/2017	84.1	
7/5/2017	92.6	
9/5/2017	86.1	
6/12/2018		76.5
10/23/2018		68.8

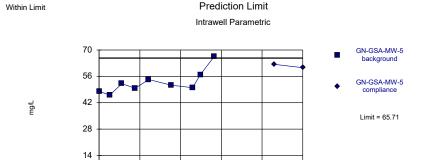
	GN-GSA-MW-14S	GN-GSA-MW-14S
7/5/2016	50.8	
8/23/2016	51.7	
9/7/2016	48.4	
11/8/2016	50.7	
1/3/2017	55.4	
2/21/2017	48	
5/31/2017	45.4	
7/5/2017	45.7	
9/5/2017	48.5	
6/12/2018		45.2
10/23/2018		44.4

	GN-GSA-MW-15	GN-GSA-MW-15
7/6/2016	10.7	
8/23/2016	7.34	
9/7/2016	7.86	
11/8/2016	8.94	
1/3/2017	9.21	
2/20/2017	8.53	
5/31/2017	7.02	
7/5/2017	8.08	
9/5/2017	7.44	
6/12/2018		7.37
10/23/2018		5.94


s 1.3.0.0/ Salitas solivana exercises to Solution (Company, Co.)

Background Data Summary: Mean=35.73, Std. Dev.=1.237, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9419, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.005132).

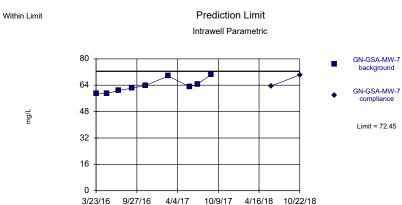
Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=1.013, Std. Dev.=0.2472, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.898, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

3/23/16 9/27/16



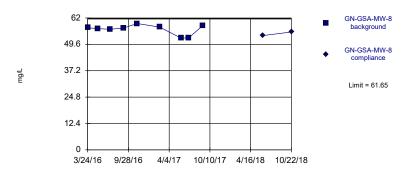
Background Data Summary: Mean=52.77, Std. Dev.=6.075, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8706, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

4/4/17 10/9/17 4/16/18 10/22/18

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=63.62, Std. Dev.=4.141, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9059, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.


	GN-GSA-MW-1	GN-GSA-MW-1
3/24/2016	36.9	
5/10/2016	37.9	
7/5/2016	35.3	
9/6/2016	34.8	
11/8/2016	34.3	
2/22/2017	35.9	
5/31/2017	34.3	
7/5/2017	35.5	
9/7/2017	36.7	
6/12/2018		42.2
10/23/2018		38.9

	GN-GSA-MW-5	GN-GSA-MW-5
3/23/2016	48.1	
5/11/2016	46	
7/6/2016	52.1	
9/6/2016	49.7	
11/8/2016	54.3	
2/20/2017	51.3	
5/30/2017	50	
7/5/2017	56.9	
9/7/2017	66.5	
6/11/2018		62.4
10/22/2018		60.6

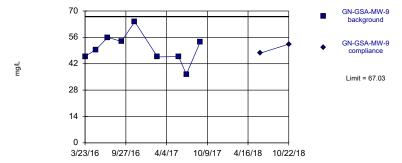
	GN-GSA-MW-6	GN-GSA-MW-6
3/23/2016	1.32	
5/11/2016	1.13	
7/6/2016	1.18	
9/6/2016	1.09	
11/8/2016	1.32	
2/20/2017	0.829	
5/30/2017	0.743	
7/5/2017	0.68	
9/7/2017	0.825	
6/11/2018		0.722
10/22/2018		0.79

	GN-GSA-MW-7	GN-GSA-MW-7
3/23/2016	59.1	
5/11/2016	58.9	
7/6/2016	60.8	
9/6/2016	62.2	
11/8/2016	63.9	
2/20/2017	69.6	
5/31/2017	63	
7/5/2017	64.6	
9/7/2017	70.5	
6/11/2018		63.5
10/22/2018		70.3

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=56.57, Std. Dev.=2.387, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8287, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=92.19, Std. Dev.=3.387, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9444, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

3/24/16 9/28/16 4/5/17 10/11/17 4/18/18 10/24/18

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=50.08, Std. Dev.=7.955, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9649, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839 (0.0006839).

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Within Limit Prediction Limit Intrawell Parametric

GN-GSA-MW-11 background

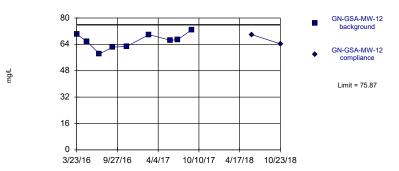
GN-GSA-MW-11 compliance

Limit = 15.57

Background Data Summary: Mean=10.82, Std. Dev.=2.23, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9564, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

	GN-GSA-MW-8	GN-GSA-MW-8
3/24/2016	57.4	
5/11/2016	57	
7/6/2016	56.7	
9/6/2016	57.3	
11/8/2016	59.4	
2/20/2017	57.7	
5/30/2017	52.5	
7/5/2017	52.7	
9/7/2017	58.4	
6/12/2018		53.7
10/22/2018		55.4

	GN-GSA-MW-9	GN-GSA-MW-9
3/23/2016	45.9	
5/11/2016	49.4	
7/6/2016	56	
9/7/2016	53.8	
11/8/2016	64.3	
2/21/2017	45.6	
5/30/2017	45.8	
7/5/2017	36.4	
9/7/2017	53.5	
6/12/2018		47.6
10/22/2018		52.4


	GN-GSA-MW-10	GN-GSA-MW-10
3/24/2016	90.3	
5/11/2016	91.1	
7/6/2016	90.7	
9/6/2016	94.5	
11/9/2016	92.9	
2/21/2017	93.1	
5/31/2017	86.6	
7/5/2017	91.5	
9/7/2017	99	
6/12/2018		101
10/24/2018		104

GN-GSA-MW-11	GN-GSA-MW-11
14.8	
11.5	
10.4	
9.73	
8.07	
13.2	
8.56	
11.9	
9.2	
	11.5
	7.73
	14.8 11.5 10.4 9.73 8.07 13.2 8.56 11.9

Sanitas** v.9.6.07 Sanitas software licensed to Southern Company. UG

Within Limit

Background Data Summary: Mean=66.13, Std. Dev.=4.568, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9759, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Within Limit

Intrawell Parametric

GN-GSA-MW-2
background

GN-GSA-MW-2
compliance

Limit = 4.891

Background Data Summary: Mean=3.738, Std. Dev.=0.5409, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9147, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.006132

3/23/16 9/27/16 4/4/17

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=83.12, Std. Dev.=6.337, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9932, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Constituent: Calcium Analysis Run 12/18/2018 1:39 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Within Limit Prediction Limit Intrawell Parametric

GN-GSA-MW-3 background

GN-GSA-MW-3 compliance

Limit = 3.86

Background Data Summary: Mean=3.14, Std. Dev.=0.3379, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.969, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006339.

10/9/17 4/16/18 10/22/18

	GN-GSA-MW-12	GN-GSA-MW-12
3/23/2016	70.2	
5/10/2016	65.6	
7/6/2016	58.2	
9/6/2016	62.3	
11/9/2016	62.7	
2/21/2017	69.9	
5/31/2017	66.5	
7/5/2017	66.9	
9/7/2017	72.9	
6/12/2018		69.9
10/23/2018		64.3

	GN-GSA-MW-13	GN-GSA-MW-13
3/24/2016	79.9	
5/10/2016	77.6	
7/6/2016	72	
9/6/2016	81.6	
11/8/2016	83.8	
2/22/2017	86.4	
5/31/2017	84.1	
7/5/2017	89.5	
9/7/2017	93.2	
6/12/2018		101
10/23/2018		97.6

	GN-GSA-MW-2	GN-GSA-MW-2
3/23/2016	3.6	
5/10/2016	4.18	
7/5/2016	3.12	
9/6/2016	3.21	
11/8/2016	3.33	
2/21/2017	4.6	
5/31/2017	3.8	
7/5/2017	3.4	
9/5/2017	4.4	
6/12/2018		3.4
10/22/2018		3.6

	GN-GSA-MW-3	GN-GSA-MW-3
3/23/2016	3.67	
5/10/2016	3.34	
7/6/2016	3.08	
9/7/2016	2.95	
11/8/2016	2.92	
2/20/2017	3.3	
5/31/2017	2.9	
7/5/2017	2.6	
9/5/2017	3.5	
6/12/2018		3.1
10/23/2018		2.6

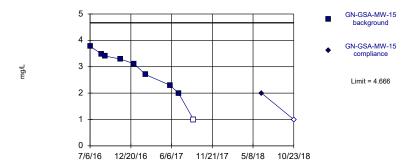
Within Limit Prediction Limit
Intrawell Parametric

Constituent: Chloride Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas^{tu} v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Parametric


GN-GSA-MW-1
background
GN-GSA-MW-1
compliance
Limit = 4.011

3/24/16 9/28/16 4/5/17 10/10/17 4/17/18 10/23/18

Background Data Summary: Mean=2.554, Std. Dev.=0.6834, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8742, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=2.783, Std. Dev.=0.8834, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9126, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Constituent: Chloride Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

3/23/16 9/27/16

Within Limit

Prediction Limit
Intrawell Non-parametric

GN-GSA-MW-5
background

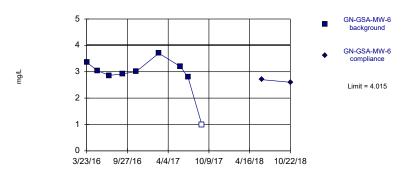
GN-GSA-MW-5
compliance

Limit = 17

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 9 background values. Well-constituent pair annual alpha = 0.009329. Individual comparison alpha = 0.004675 (1 of 3).

4/4/17 10/9/17 4/16/18 10/22/18

	GN-GSA-MW-14S	GN-GSA-MW-14S
7/5/2016	3.86	
8/23/2016	4.69	
9/7/2016	4.6	
11/8/2016	4.68	
1/3/2017	5.25	
2/21/2017	4.3	
5/31/2017	4.2	
7/5/2017	3.4	
9/5/2017	4.5	
6/12/2018		3.6
10/23/2018		3.4

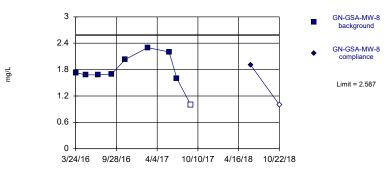

	GN-GSA-MW-15	GN-GSA-MW-15
7/6/2016	3.78	
8/23/2016	3.47	
9/7/2016	3.4	
11/8/2016	3.29	
1/3/2017	3.11	
2/20/2017	2.7	
5/31/2017	2.3	
7/5/2017	2	
9/5/2017	<2 (U*)	
6/12/2018		2
10/23/2018		<2 (J)

	GN-GSA-MW-1	GN-GSA-MW-1
3/24/2016	3.35	
5/10/2016	3.06	
7/5/2016	2.9	
9/6/2016	2.54	
11/8/2016	2.34	
2/22/2017	2.9	
5/31/2017	2.7	
7/5/2017	2.2	
9/7/2017	<2 (U*)	
6/12/2018		2.4
10/23/2018		2.1

	GN-GSA-MW-5	GN-GSA-MW-5
3/23/2016	4.84	
5/11/2016	4.19	
7/6/2016	4.67	
9/6/2016	4.23	
11/8/2016	4.51	
2/20/2017	5.8	
5/30/2017	13	
7/5/2017	17	
9/7/2017	17	
6/11/2018		14
10/22/2018		14

Hollow symbols indicate censored values.

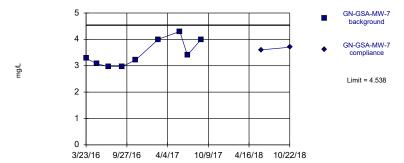
Prediction Limit Within Limit Intrawell Parametric


Background Data Summary (based on square transformation): Mean=8.785, Std. Dev.=3.44, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8682, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: Chloride Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

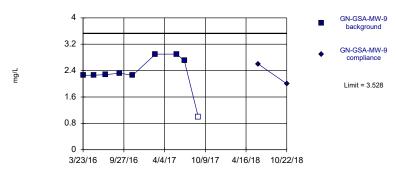
Within Limit



Background Data Summary: Mean=1.769, Std. Dev.=0.3837, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9076, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Prediction Limit Within Limit Intrawell Parametric



Background Data Summary: Mean=3.468, Std. Dev.=0.502, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8667, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

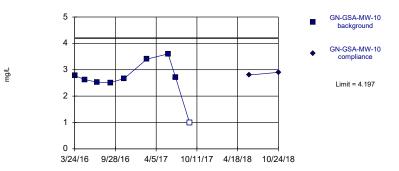
> Constituent: Chloride Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=2.32, Std. Dev.=0.567, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7828, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha

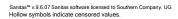
	GN-GSA-MW-6	GN-GSA-MW-6
3/23/2016	3.36	
5/11/2016	3.04	
7/6/2016	2.86	
9/6/2016	2.92	
11/8/2016	3.01	
2/20/2017	3.7	
5/30/2017	3.2	
7/5/2017	2.8	
9/7/2017	<2 (U*)	
6/11/2018		2.7
10/22/2018		2.6


	GN-GSA-MW-7	GN-GSA-MW-7
3/23/2016	3.28	
5/11/2016	3.08	
7/6/2016	2.96	
9/6/2016	2.97	
11/8/2016	3.22	
2/20/2017	4	
5/31/2017	4.3	
7/5/2017	3.4	
9/7/2017	4	
6/11/2018		3.6
10/22/2018		3.7

	GN-GSA-MW-8	GN-GSA-MW-8
3/24/2016	1.73	
5/11/2016	1.68	
7/6/2016	1.68	
9/6/2016	1.7	
11/8/2016	2.03	
2/20/2017	2.3	
5/30/2017	2.2	
7/5/2017	1.6 (J)	
9/7/2017	<2 (U*)	
6/12/2018		1.9 (J)
10/22/2018		<2

	GN-GSA-MW-9	GN-GSA-MW-9
3/23/2016	2.26	
5/11/2016	2.26	
7/6/2016	2.28	
9/7/2016	2.32	
11/8/2016	2.26	
2/21/2017	2.9	
5/30/2017	2.9	
7/5/2017	2.7	
9/7/2017	<2 (U*)	
6/12/2018		2.6
10/22/2018		2

Hollow symbols indicate censored values.

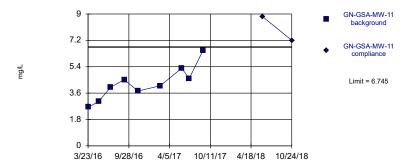

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=2.646, Std. Dev.=0.7282, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8302, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: Chloride Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

> > **Prediction Limit**

Within Limit


Intrawell Parametric 6 GN-GSA-MW-12 background 4.8 GN-GSA-MW-12 compliance 3.6 Limit = 5.623 2.4 1.2

3/23/16 9/27/16 4/4/17 10/10/17 4/17/18 10/23/18

Background Data Summary: Mean=3.181, Std. Dev.=1.146, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9447, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

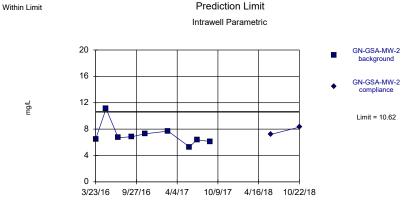
Background Data Summary: Mean=4.269, Std. Dev.=1.162, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9661, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: Chloride Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Prediction Limit Within Limit Intrawell Parametric GN-GSA-MW-13 background 48 GN-GSA-MW-13 compliance 3.6 Limit = 5.021 2.4 1.2 3/24/16 9/28/16 4/5/17 10/10/17 4/17/18 10/23/18

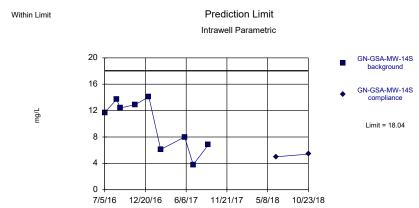
Background Data Summary: Mean=3.646, Std. Dev.=0.6455, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8625, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

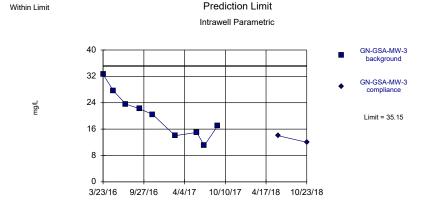

	GN-GSA-MW-10	GN-GSA-MW-10
3/24/2016	2.78	
5/11/2016	2.62	
7/6/2016	2.53	
9/6/2016	2.51	
11/9/2016	2.67	
2/21/2017	3.4	
5/31/2017	3.6	
7/5/2017	2.7	
9/7/2017	<2 (U*)	
6/12/2018		2.8
10/24/2018		2.9

	GN-GSA-MW-11	GN-GSA-MW-11
3/23/2016	2.64	
5/11/2016	3.02	
7/6/2016	4.01	
9/7/2016	4.51	
11/9/2016	3.74	
2/21/2017	4.1	
5/31/2017	5.3	
7/5/2017	4.6	
9/7/2017	6.5	
6/12/2018		8.8
10/24/2018		7.2

	GN-GSA-MW-12	GN-GSA-MW-12
3/23/2016	4.43	
5/10/2016	3.38	
7/6/2016	2.62	
9/6/2016	2.65	
11/9/2016	2.55	
2/21/2017	4.7	
5/31/2017	4.1	
7/5/2017	3.2	
9/7/2017	<2 (U*)	
6/12/2018		3.1
10/23/2018		2.1

	GN-GSA-MW-13	GN-GSA-MW-13
3/24/2016	3.16	
5/10/2016	3.02	
7/6/2016	3.1	
9/6/2016	3.31	
11/8/2016	3.32	
2/22/2017	4.8	
5/31/2017	4	
7/5/2017	3.6	
9/7/2017	4.5	
6/12/2018		3.5
10/23/2018		3.5


Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG


Background Data Summary: Mean=7.103, Std. Dev.=1.648, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7912, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha =

> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=9.944, Std. Dev.=3.798, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8929, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha =

Background Data Summary: Mean=20.38, Std. Dev.=6.93, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9717, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Background Data Summary: Mean=3.231, Std. Dev.=1.113, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9241, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

7/6/16

	GN-GSA-MW-2	GN-GSA-MW-2
3/23/2016	6.48	
5/10/2016	11.1	
7/5/2016	6.7	
9/6/2016	6.85	
11/8/2016	7.3	
2/21/2017	7.7	
5/31/2017	5.3	
7/5/2017	6.4	
9/5/2017	6.1	
6/12/2018		7.2
10/22/2018		8.3

	GN-GSA-MW-3	GN-GSA-MW-3
3/23/2016	32.6	
5/10/2016	27.6	
7/6/2016	23.6	
9/7/2016	22.2	
11/8/2016	20.4	
2/20/2017	14	
5/31/2017	15	
7/5/2017	11	
9/5/2017	17	
6/12/2018		14
10/23/2018		12

	GN-GSA-MW-14S	GN-GSA-MW-14S
7/5/2016	11.7	
8/23/2016	13.7	
9/7/2016	12.4	
11/8/2016	12.9	
1/3/2017	14.1	
2/21/2017	6.1	
5/31/2017	8	
7/5/2017	3.8 (J)	
9/5/2017	6.8	
6/12/2018		5
10/23/2018		5.4

	GN-GSA-MW-15	GN-GSA-MW-15
7/6/2016	5.38	
8/23/2016	4.23	
9/7/2016	3.84	
11/8/2016	3.23	
1/3/2017	3	
2/20/2017	3.1 (J)	
5/31/2017	2.1 (J)	
7/5/2017	2 (J)	
9/5/2017	2.2 (J)	
6/12/2018		2.3 (J)
10/23/2018		<5

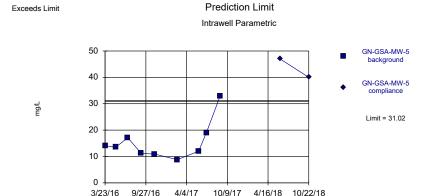
Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=4.099, Std. Dev.=1.086, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8668, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha =

> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

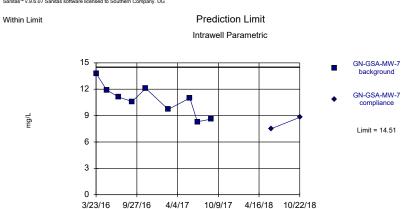
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.


Prediction Limit Within Limit Intrawell Parametric GN-GSA-MW-6 background GN-GSA-MW-6 compliance 3 Limit = 4.369

3/23/16 9/27/16 4/4/17

Background Data Summary (after Kaplan-Meier Adjustment): Mean=1.754, Std. Dev.=1.227, n=9, 22.22% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7711, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

10/9/17 4/16/18 10/22/18


Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=15.51, Std. Dev.=7.278, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7851, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=10.79, Std. Dev.=1.745, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9676, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

	GN-GSA-MW-1	GN-GSA-MW-1
3/24/2016	6.06	
5/10/2016	5.47	
7/5/2016	4.8	
9/6/2016	3.91	
11/8/2016	2.95	
2/22/2017	3.3 (J)	
5/31/2017	3.4 (J)	
7/5/2017	3.4 (J)	
9/7/2017	3.6 (J)	
6/12/2018		4.2 (J)
10/23/2018		<5 (J)

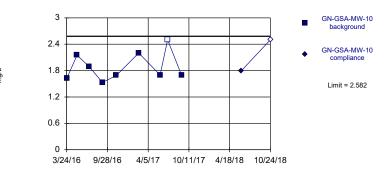
	GN-GSA-MW-5	GN-GSA-MW-5
3/23/2016	14.1	
5/11/2016	13.5	
7/6/2016	17.1	
9/6/2016	11.2	
11/8/2016	10.9	
2/20/2017	8.8	
5/30/2017	12	
7/5/2017	19	
9/7/2017	33	
6/11/2018		47
10/22/2018		40

	GN-GSA-MW-6	GN-GSA-MW-6
3/23/2016	1.89	
5/11/2016	1.79	
7/6/2016	1.3	
9/6/2016	1.14	
11/8/2016	0.622 (J)	
2/20/2017	5	
5/30/2017	5	
7/5/2017	<5	
9/7/2017	<5	
6/11/2018		<5
10/22/2018		<5

	GN-GSA-MW-7	GN-GSA-MW-7
3/23/2016	13.8	
5/11/2016	11.9	
7/6/2016	11.1	
9/6/2016	10.6	
11/8/2016	12.1	
2/20/2017	9.7	
5/31/2017	11	
7/5/2017	8.3	
9/7/2017	8.6	
6/11/2018		7.5
10/22/2018		8.8

Hollow symbols indicate censored values.

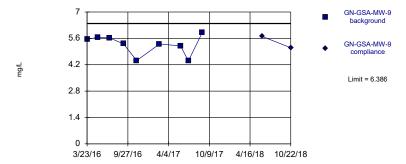
Prediction Limit Within Limit Intrawell Parametric


Background Data Summary: Mean=1.843, Std. Dev.=0.3686, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9707, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha =

> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

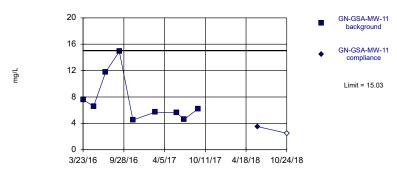
Within Limit



Background Data Summary: Mean=1.887, Std. Dev.=0.326, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8863, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Prediction Limit Within Limit Intrawell Parametric



Background Data Summary: Mean=5.261, Std. Dev.=0.528, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8677, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

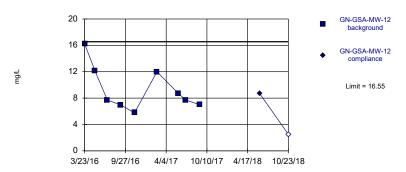
> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=7.499, Std. Dev.=3.536, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7987, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

	GN-GSA-MW-8	GN-GSA-MW-8
3/24/2016	2.42	
5/11/2016	2.16	
7/6/2016	1.7	
9/6/2016	1.31	
11/8/2016	1.4	
2/20/2017	2 (J)	
5/30/2017	1.6 (J)	
7/5/2017	1.9 (J)	
9/7/2017	2.1 (J)	
6/12/2018		2.7 (J)
10/22/2018		<5 (J)


	GN-GSA-MW-9	GN-GSA-MW-9
3/23/2016	5.54	
5/11/2016	5.66	
7/6/2016	5.62	
9/7/2016	5.31	
11/8/2016	4.42	
2/21/2017	5.3	
5/30/2017	5.2	
7/5/2017	4.4 (J)	
9/7/2017	5.9	
6/12/2018		5.7
10/22/2018		5.1

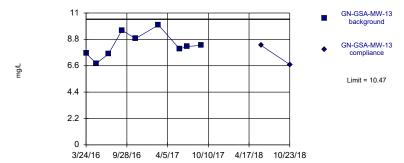
	GN-GSA-MW-10	GN-GSA-MW-10
3/24/2016	1.62	
5/11/2016	2.15	
7/6/2016	1.89	
9/6/2016	1.53	
11/9/2016	1.69	
2/21/2017	2.2 (J)	
5/31/2017	1.7 (J)	
7/5/2017	<5	
9/7/2017	1.7 (J)	
6/12/2018		1.8 (J)
10/24/2018		<5

	GN-GSA-MW-11	GN-GSA-MW-11
3/23/2016	7.59	
5/11/2016	6.6	
7/6/2016	11.8	
9/7/2016	14.9	
11/9/2016	4.5	
2/21/2017	5.7	
5/31/2017	5.6	
7/5/2017	4.6 (J)	
9/7/2017	6.2	
6/12/2018		3.5 (J)
10/24/2018		<5 (J)

Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric

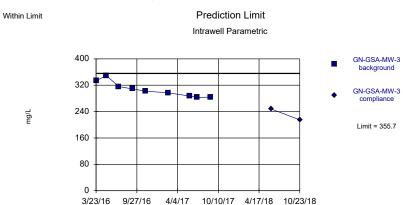
Background Data Summary: Mean=9.349, Std. Dev.=3.38, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8645, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha =


> Constituent: Sulfate Analysis Run 12/18/2018 1:40 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Prediction Limit Within Limit Intrawell Parametric 320 GN-GSA-MW-2 background 256 GN-GSA-MW-2 compliance 192 Limit = 311.1 128 64 3/23/16 9/27/16 4/4/17 10/9/17 4/16/18 10/22/18

Background Data Summary: Mean=287.6, Std. Dev.=11.06, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9438, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

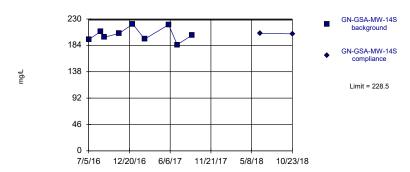

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=8.328, Std. Dev.=1.007, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9665, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: Sulfate Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=306.8, Std. Dev.=22.93, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9121, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.


	GN-GSA-MW-12	GN-GSA-MW-12
3/23/2016	16.2	
5/10/2016	12.1	
7/6/2016	7.7	
9/6/2016	6.97	
11/9/2016	5.77	
2/21/2017	12	
5/31/2017	8.7	
7/5/2017	7.7	
9/7/2017	7	
6/12/2018		8.7
10/23/2018		<5 (J)

	GN-GSA-MW-13	GN-GSA-MW-13
3/24/2016	7.64	
5/10/2016	6.79	
7/6/2016	7.59	
9/6/2016	9.56	
11/8/2016	8.87	
2/22/2017	10	
5/31/2017	8	
7/5/2017	8.2	
9/7/2017	8.3	
6/12/2018		8.3
10/23/2018		6.7

		GN-GSA-MW-2	GN-GSA-MW-2
3/23/2	2016	272	
5/10/2	2016	283	
7/5/20	016	294	
9/6/20	016	295	
11/8/2	2016	310	
2/21/2	2017	280	
5/31/2	2017	287	
7/5/20	017	287	
9/5/20	017	280	
6/12/2	2018		284
10/22	/2018		278

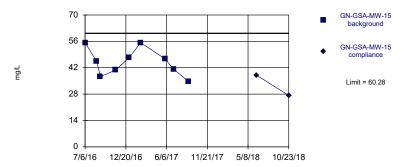
	GN-GSA-MW-3	GN-GSA-MW-3
3/23/2016	334	
5/10/2016	349	
7/6/2016	316	
9/7/2016	309	
11/8/2016	302	
2/20/2017	297	
5/31/2017	287	
7/5/2017	283	
9/5/2017	284	
6/12/2018		248
10/23/2018		215

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=203.1, Std. Dev.=11.92, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9499, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: TDS Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

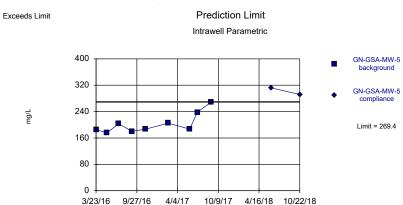
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG


Within Limit Prediction Limit Intrawell Parametric

300
240
300
GN-GSA-MW-1 background
SN-GSA-MW-1 compliance
Limit = 242.9

Background Data Summary: Mean=198.4, Std. Dev.=20.85, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8742, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG



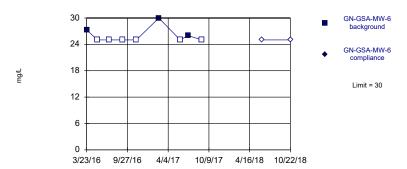
Background Data Summary: Mean=44.88, Std. Dev.=7.227, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9367, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839 (0.0006839).

Constituent: TDS Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=203.3, Std. Dev.=30.98, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8137, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

	GN-GSA-MW-14S	GN-GSA-MW-14S
7/5/2016	194	
8/23/2016	208	
9/7/2016	198	
11/8/2016	205	
1/3/2017	221	
2/21/2017	195	
5/31/2017	220	
7/5/2017	185	
9/5/2017	202	
6/12/2018		205
10/23/2018		204


	GN-GSA-MW-15	GN-GSA-MW-15
7/6/2016	55.3	
8/23/2016	45.3	
9/7/2016	37.3	
11/8/2016	40.7	
1/3/2017	47.3	
2/20/2017	55.3	
5/31/2017	46.7	
7/5/2017	41.3	
9/5/2017	34.7	
6/12/2018		38
10/23/2018		27.3

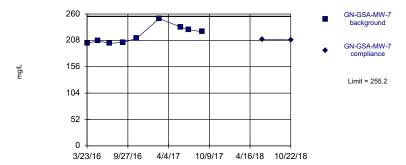
	GN-GSA-MW-1	GN-GSA-MW-1
3/24/2016	203	
5/10/2016	204	
7/5/2016	188	
9/6/2016	188	
11/8/2016	197	
2/22/2017	165	
5/31/2017	244	
7/5/2017	201	
9/7/2017	196	
6/12/2018		221
10/23/2018		195

	GN-GSA-MW-5	GN-GSA-MW-5
3/23/2016	185	
5/11/2016	176	
7/6/2016	203	
9/6/2016	180	
11/8/2016	187	
2/20/2017	205	
5/30/2017	187	
7/5/2017	238	
9/7/2017	269	
6/11/2018		312
10/22/2018		292

Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric

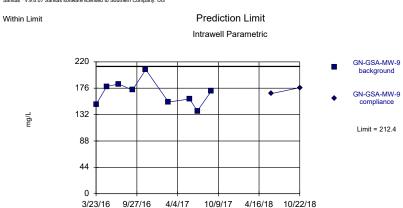
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 9 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.009329. Individual comparison alpha =


> Constituent: TDS Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Prediction Limit Within Limit Intrawell Parametric 210 GN-GSA-MW-8 background 168 GN-GSA-MW-8 compliance 126 Limit = 204.3 84 42 3/24/16 9/28/16 4/4/17 10/10/17 4/16/18 10/22/18

Background Data Summary: Mean=191.4, Std. Dev.=6.023, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8217, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG



Background Data Summary: Mean=218.4, Std. Dev.=17.24, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.885, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

> Constituent: TDS Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Background Data Summary: Mean=167.9, Std. Dev.=20.88, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9719, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

	GN-GSA-MW-6	GN-GSA-MW-6
3/23/2016	27.3	
5/11/2016	<25	
7/6/2016	<25	
9/6/2016	<25	
11/8/2016	<25	
2/20/2017	30	
5/30/2017	<25	
7/5/2017	26	
9/7/2017	<25	
6/11/2018		<25
10/22/2018		<25

	GN-GSA-MW-7	GN-GSA-MW-7
3/23/2016	202	
5/11/2016	207	
7/6/2016	202	
9/6/2016	204	
11/8/2016	212	
2/20/2017	251	
5/31/2017	234	
7/5/2017	229	
9/7/2017	225	
6/11/2018		210
10/22/2018		209

	GN-GSA-MW-8	GN-GSA-MW-8
3/24/2016	179	
5/11/2016	195	
7/6/2016	192	
9/6/2016	193	
11/8/2016	198	
2/20/2017	195	
5/30/2017	184	
7/5/2017	194	
9/7/2017	193	
6/12/2018		186
10/22/2018		184

	GN-GSA-MW-9	GN-GSA-MW-9
3/23/2016	149	
5/11/2016	179	
7/6/2016	183	
9/7/2016	173	
11/8/2016	207	
2/21/2017	153	
5/30/2017	158	
7/5/2017	138	
9/7/2017	171	
6/12/2018		167
10/22/2018		177

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=251.8, Std. Dev.=7.496, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8447, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: TDS Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

Within Limit

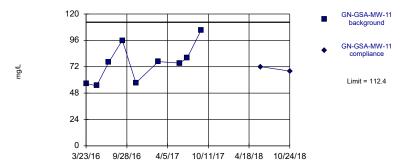
Intrawell Parametric

280

280

224

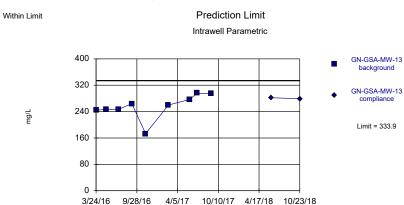
GN-GSA-MW-12


compliance

Limit = 275.9

Background Data Summary: Mean=222.9, Std. Dev.=24.89, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9327, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG



Background Data Summary: Mean=75.3, Std. Dev.=17.43, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9086, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

Constituent: TDS Analysis Run 12/18/2018 1:41 PM View: PLs - Intrawell Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG

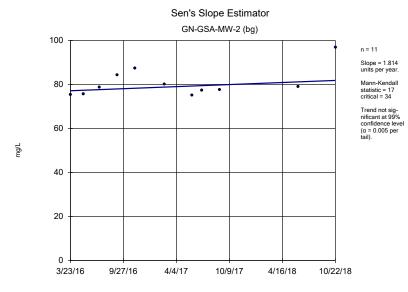
Background Data Summary: Mean=255.8, Std. Dev.=36.67, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8598, critical = 0.764. Kappa = 2.131 (c=7, w=11, 1 of 3, event alpha = 0.05132). Report alpha = 0.0006839.

	GN-GSA-MW-10	GN-GSA-MW-10
3/24/2016	239	
5/11/2016	257	
7/6/2016	256	
9/6/2016	245	
11/9/2016	258	
2/21/2017	243	
5/31/2017	252	
7/5/2017	257	
9/7/2017	259	
6/12/2018		266
10/24/2018		265

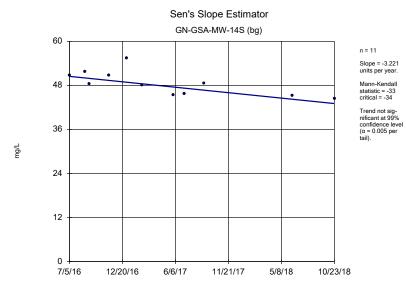
	GN-GSA-MW-11	GN-GSA-MW-11
3/23/2016	56.7	
5/11/2016	54.7	
7/6/2016	76	
9/7/2016	96	
11/9/2016	57.3	
2/21/2017	76.7	
5/31/2017	75.3	
7/5/2017	80	
9/7/2017	105	
6/12/2018		72
10/24/2018		68

	GN-GSA-MW-12	GN-GSA-MW-12
3/23/2016	237	
5/10/2016	226	
7/6/2016	191	
9/6/2016	200	
11/9/2016	190	
2/21/2017	264	
5/31/2017	242	
7/5/2017	231	
9/7/2017	225	
6/12/2018		230
10/23/2018		201

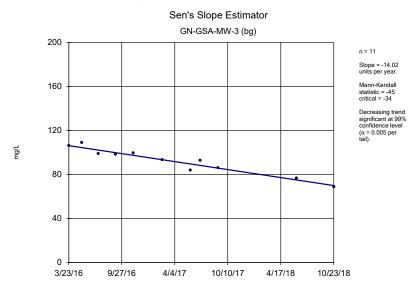
	GN-GSA-MW-13	GN-GSA-MW-13
3/24/2016	244	
5/10/2016	247	
7/6/2016	247	
9/6/2016	264	
11/8/2016	173	
2/22/2017	260	
5/31/2017	277	
7/5/2017	296	
9/7/2017	294	
6/12/2018		282
10/23/2018		279

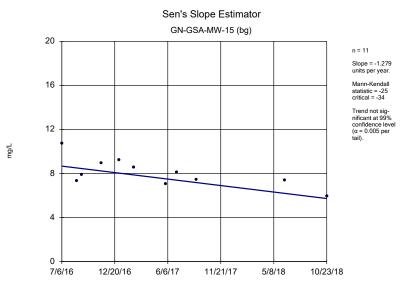

Trend Test Summary Table - Significant Results Plant Gaston Client: Southern Company Data: Gaston GSA Printed 12/18/2018, 2:15 PM

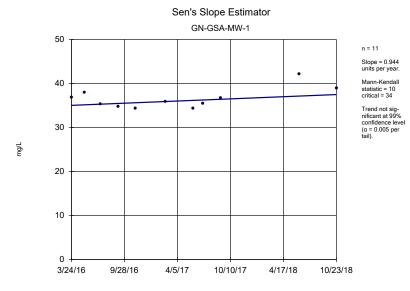
	Plant Gaston Client: S	Plant Gaston Client: Southern Company				2/18/20	18, 2:15 1	PIM			
Constituent	Well	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GN-GSA-MW-3 (bg)	-14.02	-45	-34	Yes	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-13	10.24	45	34	Yes	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-15 (bg)	-1.52	-51	-34	Yes	11	18.18	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-11	1.99	45	34	Yes	11	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-3 (bg)	-8.111	-42	-34	Yes	11	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-15 (bg)	-1.627	-35	-34	Yes	11	9.091	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-3 (bg)	-39.69	-51	-34	Yes	11	0	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-5	53.75	40	34	Yes	11	0	n/a	n/a	0.01	NP

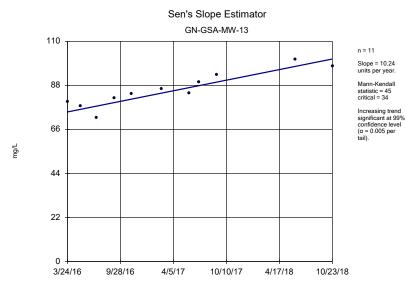

Trend Test Summary Table - All Results

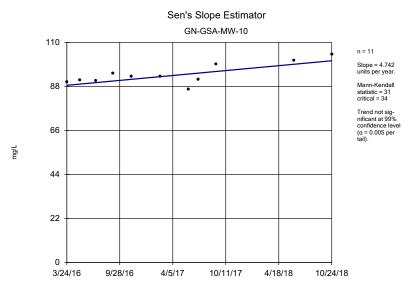
Plant Gaston Client: Southern Company Data: Gaston GSA Printed 12/18/2018, 2:15 PM

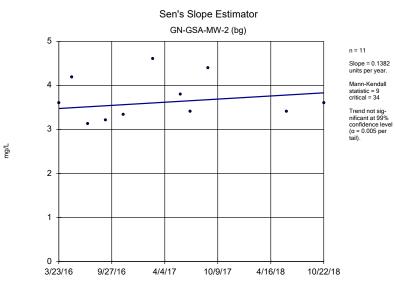

		,					-,				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GN-GSA-MW-2 (bg)	1.814	17	34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-3 (bg)	-14.02	-45	-34	Yes	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-14S (bg)	-3.221	-33	-34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-15 (bg)	-1.279	-25	-34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-1	0.944	10	34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-10	4.742	31	34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GN-GSA-MW-13	10.24	45	34	Yes	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-2 (bg)	0.1382	9	34	No	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-3 (bg)	-0.2147	-24	-34	No	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-14S (bg)	-0.5489	-24	-34	No	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-15 (bg)	-1.52	-51	-34	Yes	11	18.18	n/a	n/a	0.01	NP
Chloride (mg/L)	GN-GSA-MW-11	1.99	45	34	Yes	11	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GN-GSA-MW-2 (bg)	0.01133	25	38	No	12	41.67	n/a	n/a	0.01	NP
Fluoride (mg/L)	GN-GSA-MW-3 (bg)	-0.00848	-15	-38	No	12	16.67	n/a	n/a	0.01	NP
Fluoride (mg/L)	GN-GSA-MW-14S (bg)	-0.008334	-21	-38	No	12	25	n/a	n/a	0.01	NP
Fluoride (mg/L)	GN-GSA-MW-15 (bg)	1.5e-9	24	38	No	12	58.33	n/a	n/a	0.01	NP
Fluoride (mg/L)	GN-GSA-MW-1	0.02215	15	38	No	12	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GN-GSA-MW-8	-0.006981	-18	-38	No	12	0	n/a	n/a	0.01	NP
pH (pH)	GN-GSA-MW-2 (bg)	-0.01811	-15	-38	No	12	0	n/a	n/a	0.01	NP
pH (pH)	GN-GSA-MW-3 (bg)	-0.03383	-9	-38	No	12	0	n/a	n/a	0.01	NP
pH (pH)	GN-GSA-MW-14S (bg)	0.01334	8	38	No	12	0	n/a	n/a	0.01	NP
pH (pH)	GN-GSA-MW-15 (bg)	-0.02105	-12	-38	No	12	0	n/a	n/a	0.01	NP
pH (pH)	GN-GSA-MW-1	-0.01358	-11	-38	No	12	0	n/a	n/a	0.01	NP
pH (pH)	GN-GSA-MW-6	-0.05604	-14	-38	No	12	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-2 (bg)	0.1984	1	34	No	11	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-3 (bg)	-8.111	-42	-34	Yes	11	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-14S (bg)	-4.189	-27	-34	No	11	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-15 (bg)	-1.627	-35	-34	Yes	11	9.091	n/a	n/a	0.01	NP
Sulfate (mg/L)	GN-GSA-MW-5	10.82	21	34	No	11	0	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-2 (bg)	-2.039	-7	-34	No	11	0	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-3 (bg)	-39.69	-51	-34	Yes	11	0	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-14S (bg)	1.58	2	34	No	11	0	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-15 (bg)	-8.306	-24	-34	No	11	0	n/a	n/a	0.01	NP
TDS (mg/L)	GN-GSA-MW-5	53.75	40	34	Yes	11	0	n/a	n/a	0.01	NP


Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

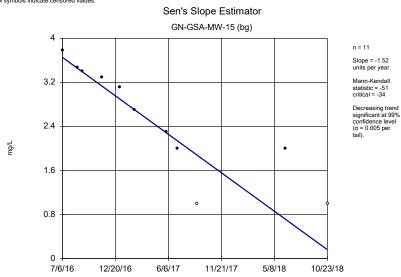

Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

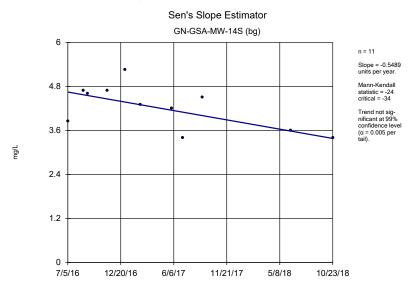

Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

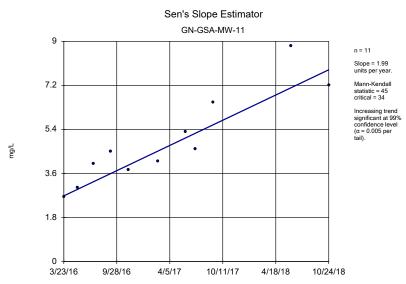
Constituent: Calcium Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA



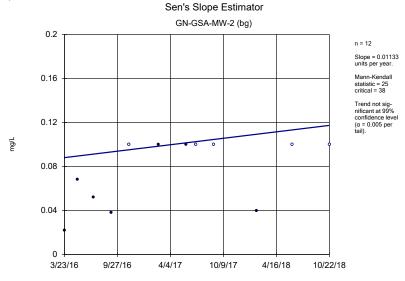
Constituent: Chloride Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA



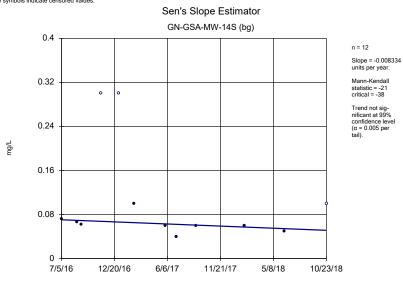
Constituent: Chloride Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA



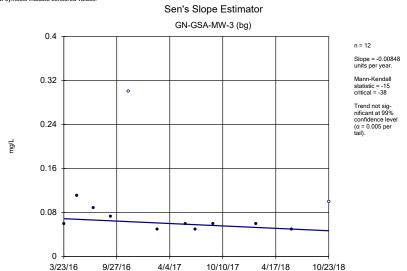
Constituent: Chloride Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Chloride Analysis Run 12/18/2018 2:13 PM View: Trend Tests

Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Chloride Analysis Run 12/18/2018 2:13 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

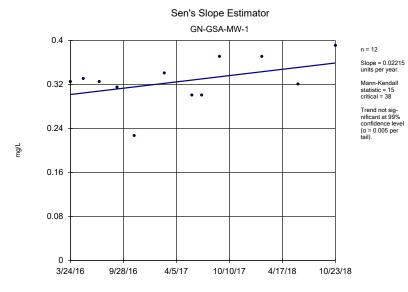
Hollow symbols indicate censored values.

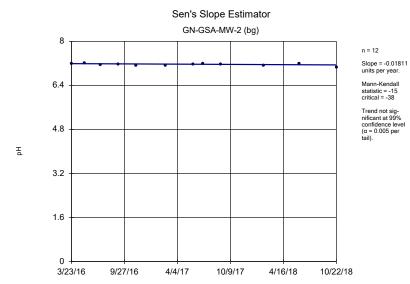

Constituent: Fluoride Analysis Run 12/18/2018 2:14 PM View: Trend Tests Plant Gaston Client: Southern Company Data: Gaston GSA

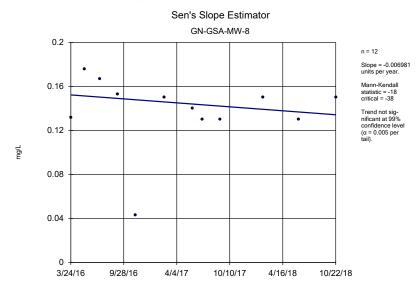
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.



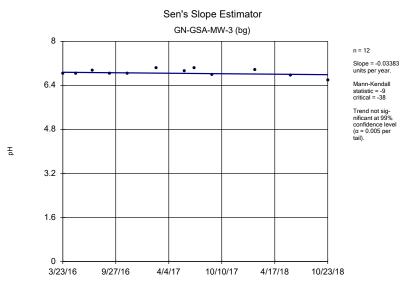
Constituent: Fluoride Analysis Run 12/18/2018 2:14 PM View: Trend Tests Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

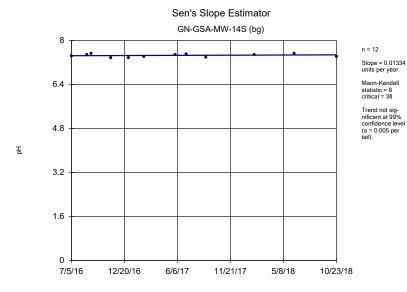

Constituent: Fluoride Analysis Run 12/18/2018 2:14 PM View: Trend Tests Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Fluoride Analysis Run 12/18/2018 2:14 PM View: Trend Tests Plant Gaston Client: Southern Company Data: Gaston GSA

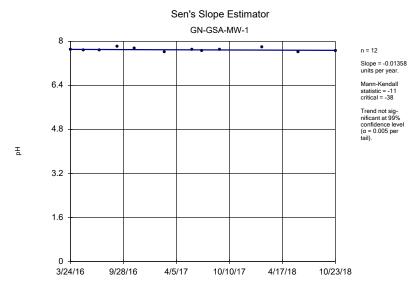
Constituent: Fluoride Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

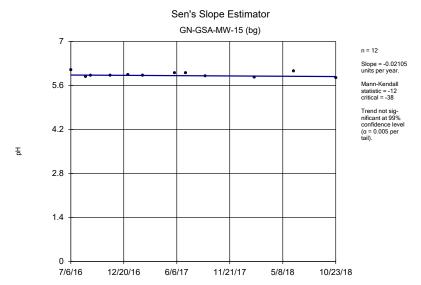


Constituent: pH Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

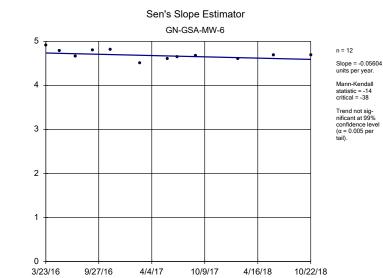


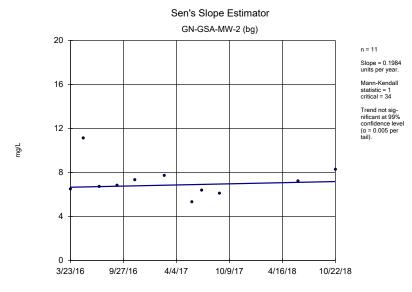
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Fluoride Analysis Run 12/18/2018 2:14 PM View: Trend Tests

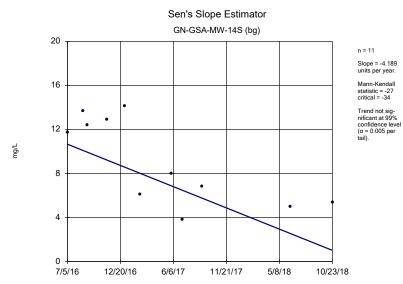

Constituent: pH Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

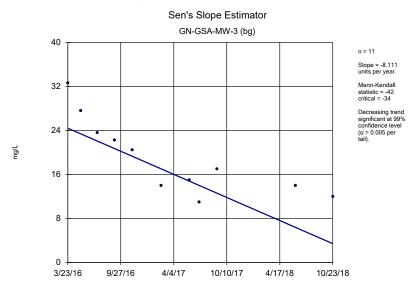
Constituent: pH Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: pH Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: pH Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

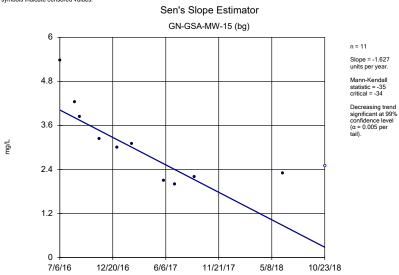
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG


표

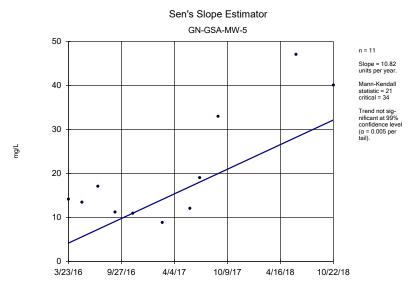

Constituent: pH Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

Constituent: Sulfate Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

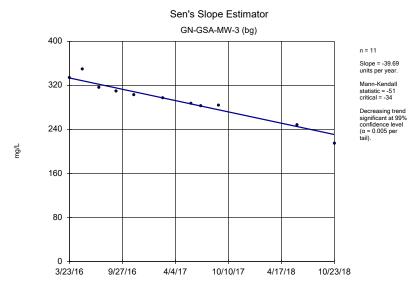
Constituent: Sulfate Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

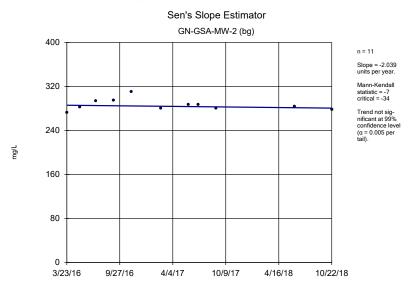


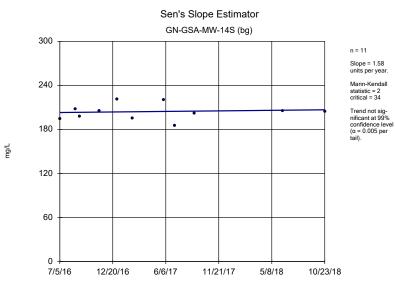
Plant Gaston Client: Southern Company Data: Gaston GSA


Analysis Run 12/18/2018 2:14 PM View: Trend Tests

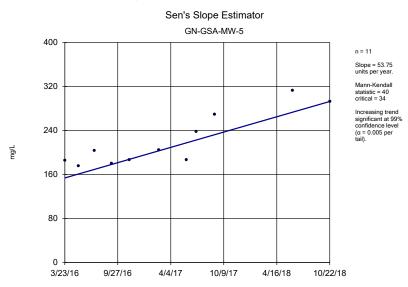
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.


Constituent: Sulfate

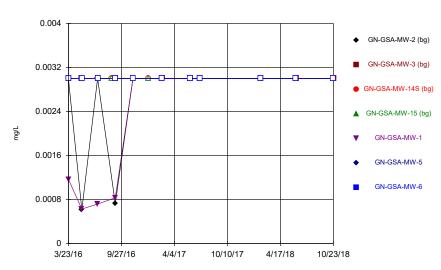

Constituent: Sulfate Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Sulfate Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

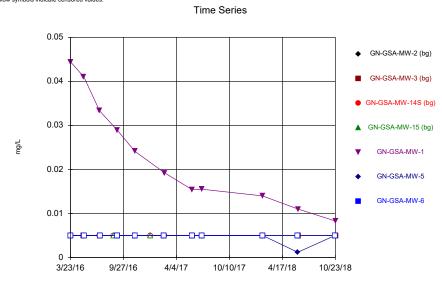

Constituent: TDS Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: TDS Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

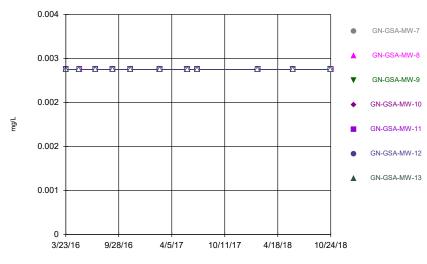
Constituent: TDS Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA



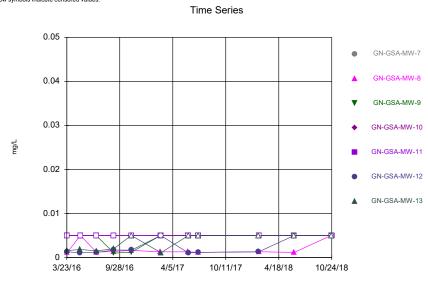
Constituent: TDS Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA



Constituent: TDS Analysis Run 12/18/2018 2:14 PM View: Trend Tests
Plant Gaston Client: Southern Company Data: Gaston GSA

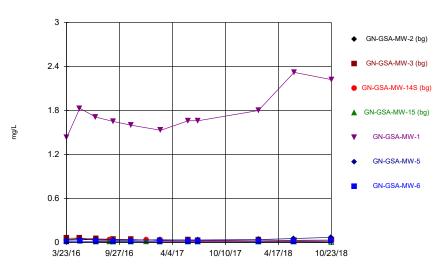


Constituent: Antimony Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

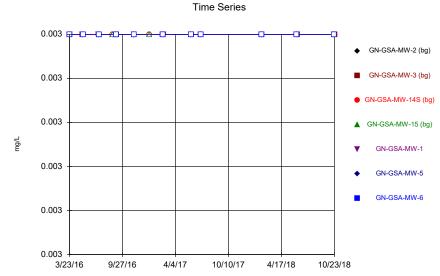


Constituent: Arsenic Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

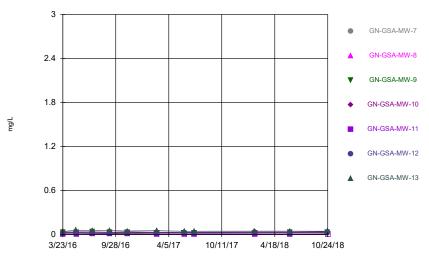
Time Series



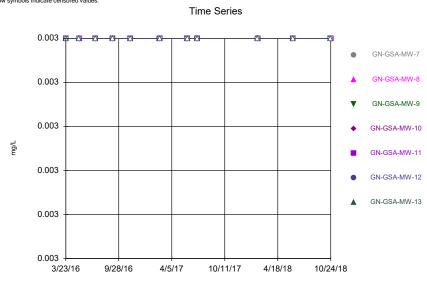
Constituent: Antimony Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Arsenic Analysis Run 12/18/2018 2:11 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

Time Series

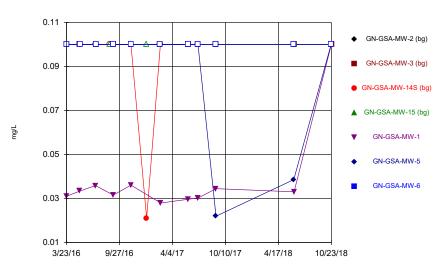

Constituent: Barium Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.

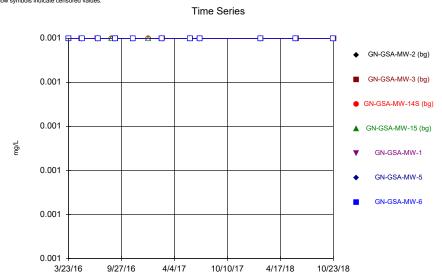


Constituent: Beryllium Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

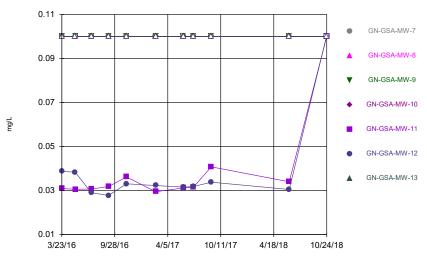
Time Series



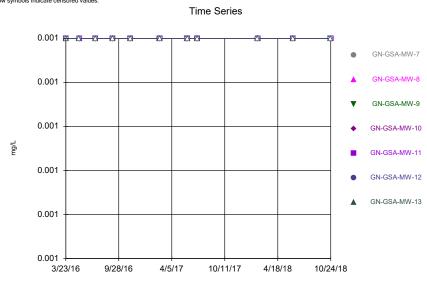
Constituent: Barium Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Beryllium Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

Time Series


Constituent: Boron Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.



Constituent: Cadmium Analysis Run 12/18/2018 2:11 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA


Time Series

Constituent: Boron Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

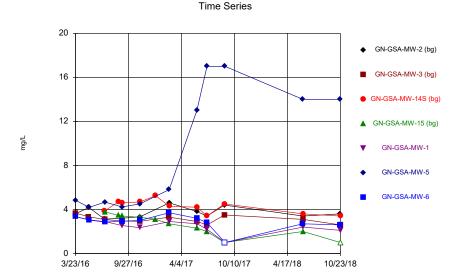
Constituent: Cadmium Analysis Run 12/18/2018 2:11 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

GN-GSA-MW-6

Time Series

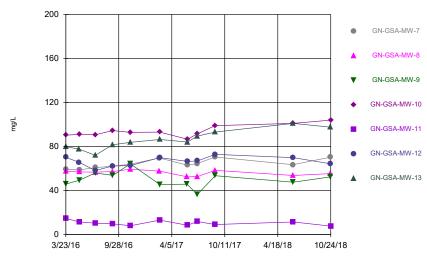
Constituent: Calcium Analysis Run 12/18/2018 2:11 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

10/10/17

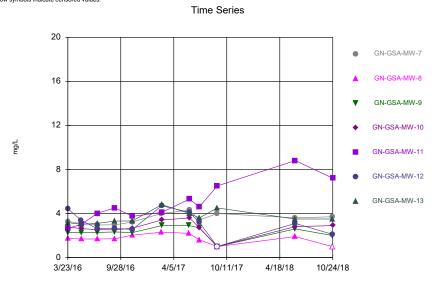

4/17/18

10/23/18

$\mbox{Sanitas} \mbox{\ensuremath{^{\text{NV}}}} \ v. 9.6.07 \ \mbox{Sanitas software licensed to Southern Company. UG} \ \mbox{Hollow symbols indicate censored values}.$

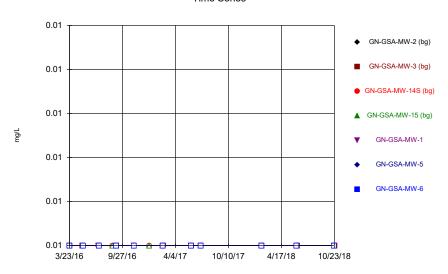

3/23/16

9/27/16

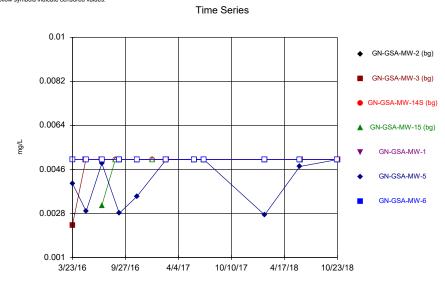


Constituent: Chloride Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

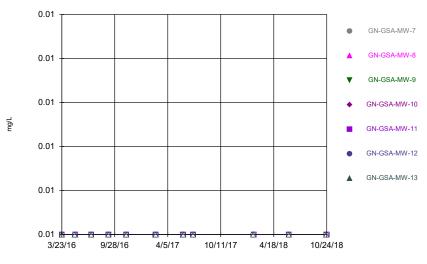
Time Series



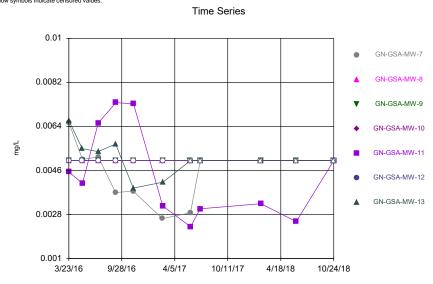
Constituent: Calcium Analysis Run 12/18/2018 2:11 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA



Constituent: Chloride Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

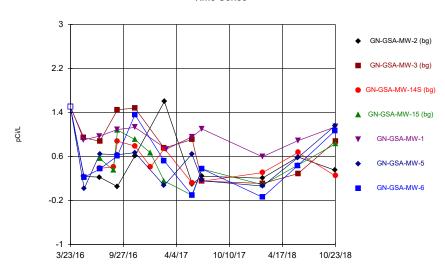


Constituent: Chromium Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

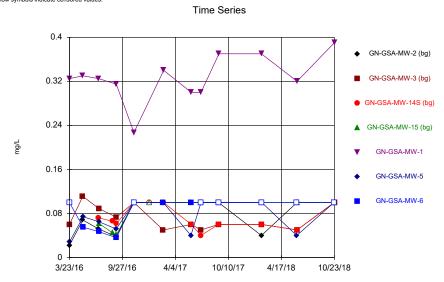


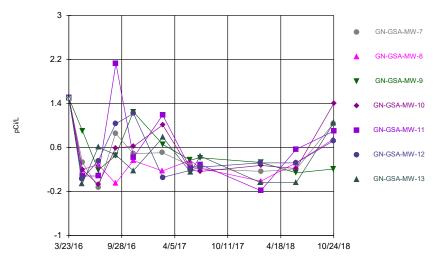
Constituent: Cobalt Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

Time Series

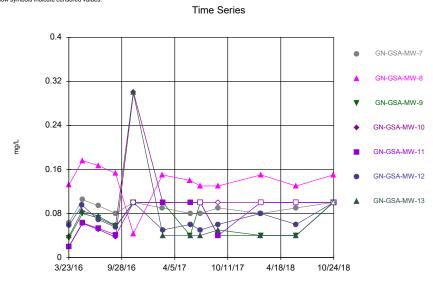


Constituent: Chromium Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

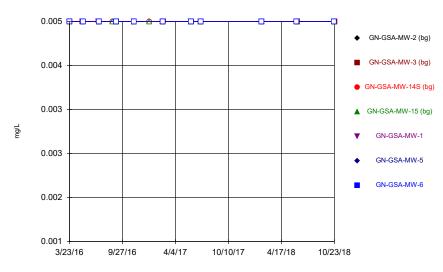

Constituent: Cobalt Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Combined Radium 226 + 228 Analysis Run 12/18/2018 2:12 PM View: Descriptive

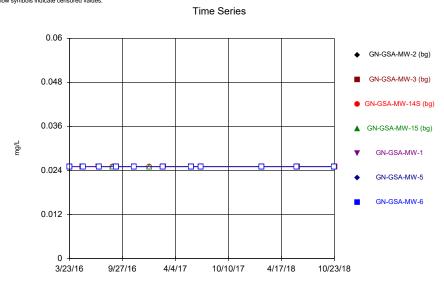
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Fluoride Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

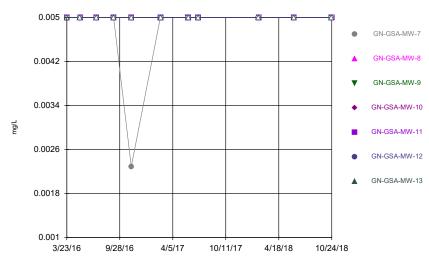
Time Series


Constituent: Combined Radium 226 + 228 Analysis Run 12/18/2018 2:12 PM View: Descriptive

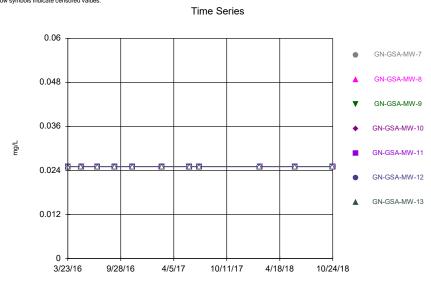
Plant Gaston Client: Southern Company Data: Gaston GSA



Constituent: Fluoride Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA



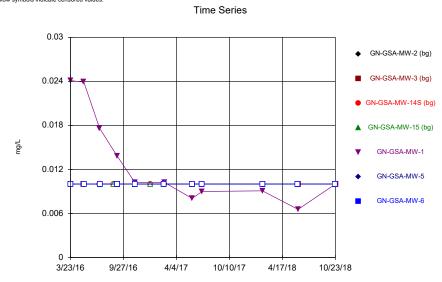
Constituent: Lead Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA



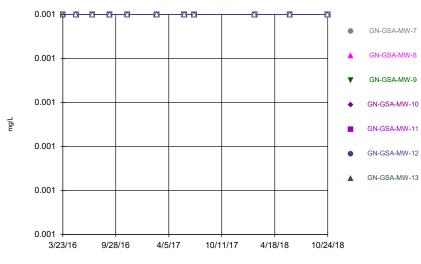
Constituent: Lithium Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

Time Series

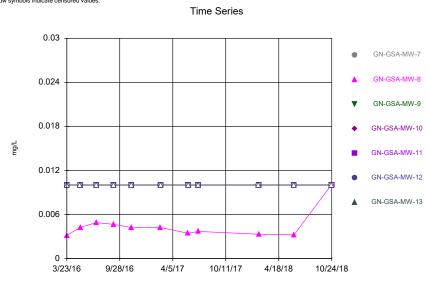
Constituent: Lead Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA



Constituent: Lithium Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

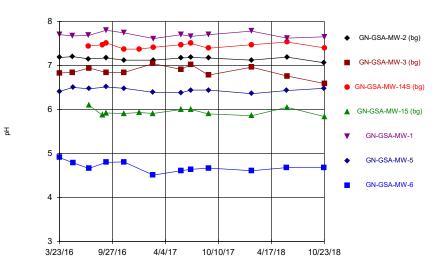


Constituent: Mercury Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

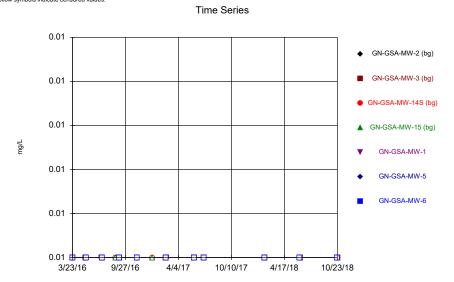


Constituent: Molybdenum Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

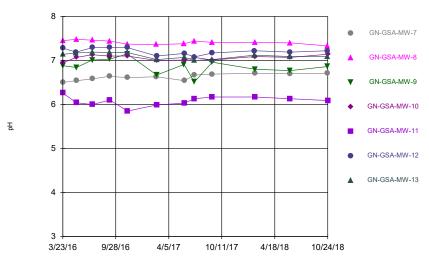
Time Series



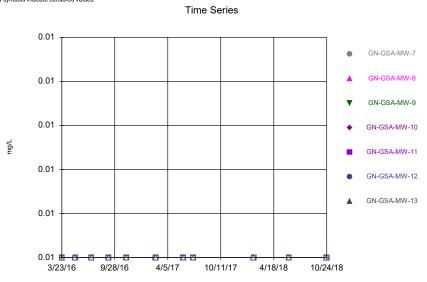
Constituent: Mercury Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA



Constituent: Molybdenum Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

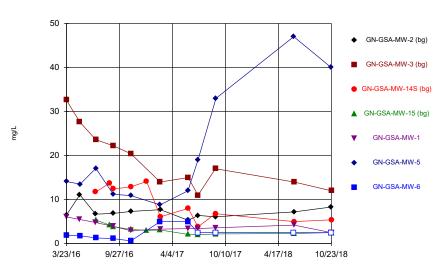


Constituent: pH Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

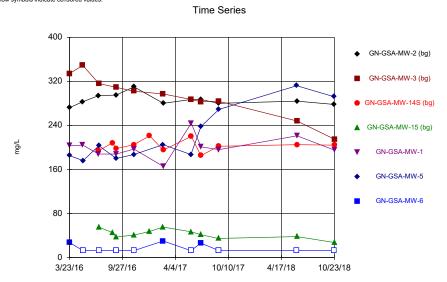


Constituent: Selenium Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

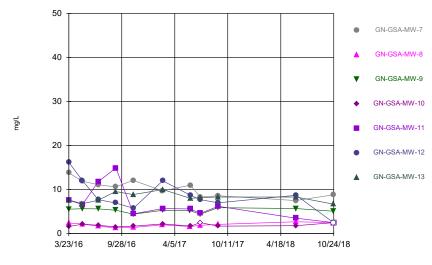
Time Series



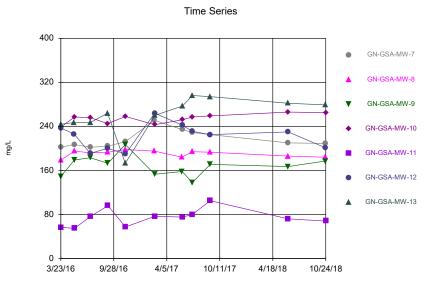
Constituent: pH Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA


Constituent: Selenium Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA

Time Series

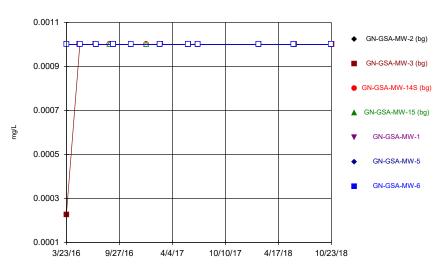

Constituent: Sulfate Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.


Constituent: TDS Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

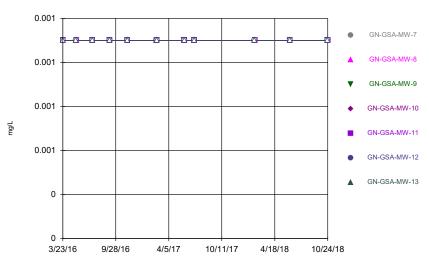
Time Series

Constituent: Sulfate Analysis Run 12/18/2018 2:12 PM View: Descriptive Plant Gaston Client: Southern Company Data: Gaston GSA


$\text{Sanitas}^{\text{\tiny{TM}}} \text{ v.9.6.07 Sanitas software licensed to Southern Company. UG}$

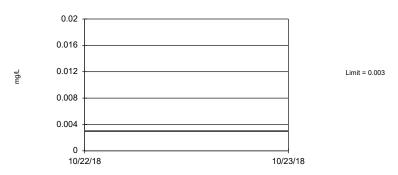
Constituent: TDS Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.



Constituent: Thallium Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

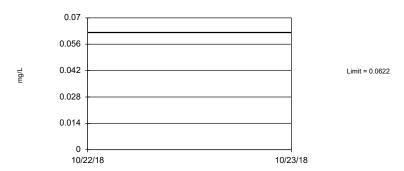
Sanitas™ v.9.6.07 Sanitas software licensed to Southern Company. UG Hollow symbols indicate censored values.


Time Series

Constituent: Thallium Analysis Run 12/18/2018 2:12 PM View: Descriptive
Plant Gaston Client: Southern Company Data: Gaston GSA

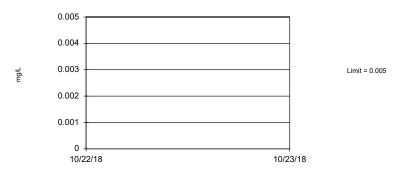
Upper Tolerance Limits - App IV

		Plant Gaston	Client: Southern Company Data: Gaston GSA		Printed 1/14/2019, 8:24 AM				
Constituent	Upper Lim.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	0.003	44	n/a	n/a	95.45	n/a	n/a	0.1047	NP Inter(NDs)
Arsenic (mg/L)	0.005	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Barium (mg/L)	0.0622	44	n/a	n/a	2.273	n/a	n/a	0.1047	NP Inter(normal
Beryllium (mg/L)	0.003	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Boron (mg/L)	0.1	44	n/a	n/a	97.73	n/a	n/a	0.1047	NP Inter(NDs)
Cadmium (mg/L)	0.001	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Chromium (mg/L)	0.01	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Cobalt (mg/L)	0.01	44	n/a	n/a	95.45	n/a	n/a	0.1047	NP Inter(NDs)
Combined Radium 226 + 228 (pCi/L)	1.6	44	n/a	n/a	4.545	n/a	n/a	0.1047	NP Inter(normal
Fluoride (mg/L)	0.3	48	n/a	n/a	35.42	n/a	n/a	0.08526	NP Inter(normal
Lead (mg/L)	0.005	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Lithium (mg/L)	0.02	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Mercury (mg/L)	0.0005	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Molybdenum (mg/L)	0.01	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Selenium (mg/L)	0.01	44	n/a	n/a	100	n/a	n/a	0.1047	NP Inter(NDs)
Thallium (mg/L)	0.001	44	n/a	n/a	97.73	n/a	n/a	0.1047	NP Inter(NDs)



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 44 background values. 95.45% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.105; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

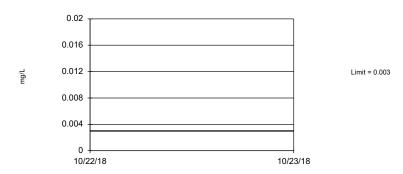
Constituent: Antimony Analysis Run 1/14/2019 8:22 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

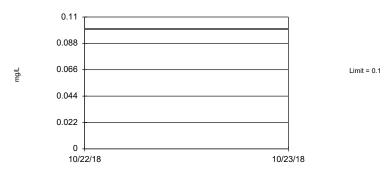
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 44 background values. 2.273% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Tolerance Limit Interwell Non-parametric



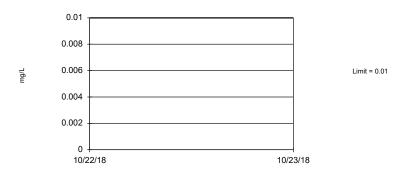
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05. Report alpha = 0.01047.


Constituent: Arsenic Analysis Run 1/14/2019 8:22 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

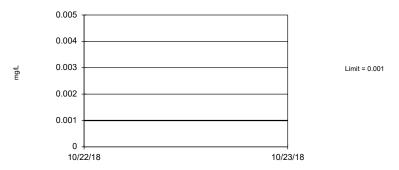
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 44 background values. 97.73% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.105; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Constituent: Boron Analysis Run 1/14/2019 8:23 AM View: Tolerance Limits

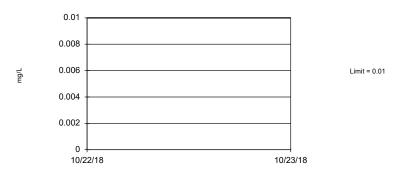
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

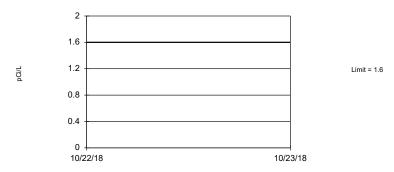
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Tolerance Limit Interwell Non-parametric



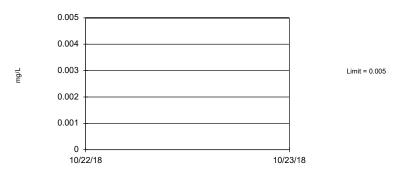
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05. Report alpha = 0.01047.


Constituent: Cadmium Analysis Run 1/14/2019 8:23 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

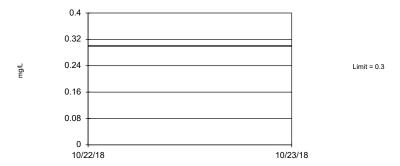
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 44 background values. 95.45% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.


Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 44 background values. 4.545% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Constituent: Combined Radium 226 + 228 Analysis Run 1/14/2019 8:23 AM View: Tolerance Limits

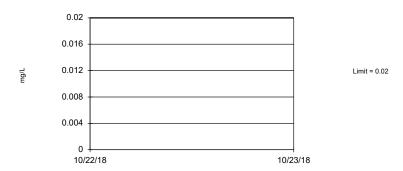
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

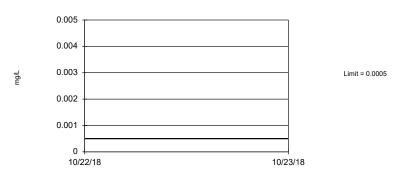
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Tolerance Limit Interwell Non-parametric



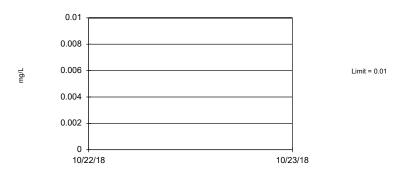
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 48 background values. 35.42% NDs. 90.82% coverage at alpha=0.01; 93.95% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.08526.


Constituent: Fluoride Analysis Run 1/14/2019 8:23 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

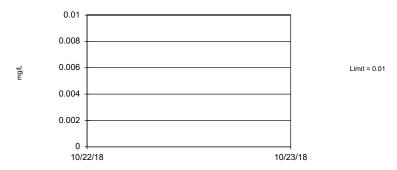
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.5 Report alpha = 0.1047.

Constituent: Mercury Analysis Run 1/14/2019 8:23 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05. Report alpha = 0.01047.

Constituent: Molybdenum Analysis Run 1/14/2019 8:23 AM View: Tolerance Limits
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 44 background values. 97.73% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Confidence Intervals - All Results (No Significant Results)

Client: Southern Company Data: Gaston GSA Printed 1/31/2019, 11:37 AM Sig. Ν Transform Alpha Antimony (mg/L) GN-GSA-MW-1 0.000629 11 0.0015 0.006 Antimony (mg/L) No 11 0.006 NP (NDs) 0.0015 0.006 Antimony (mg/L) No 11 100 No 0.006 Antimony (mg/L) 0.0015 0.006 No 11 100 0.006 Antimony (mg/L) 0.0015 0.006 No 11 100 Antimony (mg/L) GN-GSA-MW-9 0.0015 0.006 No 11 100 Antimony (mg/L) GN-GSA-MW-10 0.0015 0.006 No 11 100 0.006 Antimony (mg/L) 0.006 No 11 100 No 0.006 NP (NDs) Antimony (mg/L) GN-GSA-MW-12 0.0015 0.0015 0.006 No 11 100 No 0.006 NP (NDs) Antimony (mg/L) GN-GSA-MW-13 0.0015 0.006 No 11 100 NP (NDs) Arsenic (mg/L) GN-GSA-MW-1 0.01 No 8 No 0.01 GN-GSA-MW-5 0.01 No 11 90.91 No 0.006 NP (NDs) Arsenic (mg/L) Arsenic (ma/L) 0.01 No 11 100 No 0.006 NP (NDs) Arsenic (mg/L) 0.01 No 11 100 No NP (NDs) GN-GSA-MW-8 0.00112 11 Arsenic (mg/L) 0.0025 0.01 No 18.18 No 0.006 NP (normality) GN-GSA-MW-9 0.00101 0.01 11 Arsenic (mg/L) No 81.82 No 0.006 NP (NDs) Arsenic (mg/L) GN-GSA-MW-10 0.0025 0.0025 0.01 No 11 No 0.006 NP (NDs) 100 GN-GSA-MW-11 0.0025 11 Arsenic (mg/L) 0.0025 0.01 No 100 No 0.006 NP (NDs) GN-GSA-MW-12 0.0025 0.00102 11 27.27 0.01 No 0.006 NP (Cohens/xfrm) Arsenic (mg/L) No GN-GSA-MW-13 0.0025 0.0011 0.01 11 No 54.55 No 0.006 NP (normality) Arsenic (mg/L) GN-GSA-MW-1 11 0 Barium (mg/L) 1.536 No No 0.01 GN-GSA-MW-5 2 11 0 NP (normality) 0.0333 No No 0.006 Barium (mg/L) 2 Barium (mg/L) GN-GSA-MW-6 0.01664 0.01405 No 11 0 No 0.01 Param 2 0 GN-GSA-MW-7 0.02172 0.01904 11 Param. Barium (mg/L) No No 0.01 2 11 0 GN-GSA-MW-8 0.03157 0.02585 No Param. Barium (mg/L) No 0.01 0.02291 2 11 0 GN-GSA-MW-9 0.03003 No 0.01 Param. Barium (mg/L) No 0 GN-GSA-MW-10 0.0369 0.0327 No 11 No 0.01 Param Barium (mg/L) GN-GSA-MW-11 0.008811 0.00596 No 11 9.091 No 0.01 Param. Barium (mg/L) Barium (mg/L) GN-GSA-MW-12 0.02334 0.01915 2 No 11 0 No 0.01 Param. Barium (mg/L) GN-GSA-MW-13 0.05416 0.04517 2 No 11 0 No 0.01 Param. GN-GSA-MW-1 0.0015 0.004 11 Beryllium (mg/L) 0.0015 No 100 No 0.006 NP (NDs) GN-GSA-MW-5 0.0015 0.004 11 Beryllium (mg/L) 0.0015 No 100 No 0.006 NP (NDs) 0.0015 Beryllium (mg/L) GN-GSA-MW-6 0.0015 0.004 No 11 100 No 0.006 NP (NDs) 0.0015 Beryllium (mg/L) GN-GSA-MW-7 0.0015 0.004 No 11 100 No 0.006 NP (NDs) Beryllium (mg/L) GN-GSA-MW-8 0.0015 0.0015 0.004 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-9 0.0015 11 NP (NDs) Beryllium (mg/L) 0.0015 0.004 No 100 No 0.006 0.0015 Beryllium (mg/L) GN-GSA-MW-10 0.0015 0.004 No 11 100 No 0.006 NP (NDs) 0.0015 Beryllium (mg/L) GN-GSA-MW-11 0.0015 0.004 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-12 0.0015 0.0015 Beryllium (mg/L) 0.004 No 11 100 No 0.006 NP (NDs) Beryllium (mg/L) GN-GSA-MW-13 0 0015 0.0015 0.004 No 11 100 Nο 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-1 0.0361 0.028 No 11 9.091 No 0.006 NP (normality) Boron (mg/L) GN-GSA-MW-5 0.05 0.022 No 11 81.82 No 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-6 0.05 0.05 No 11 100 No 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-7 0.05 0.05 No 11 100 No 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-8 0.05 0.05 No 11 100 No 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-9 0.05 0.05 No 11 100 No 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-10 0.05 0.05 No 11 100 No 0.006 NP (NDs) Boron (mg/L) GN-GSA-MW-11 0.0408 0.0295 No 11 9.091 No 0.006 NP (normality) Boron (mg/L) GN-GSA-MW-12 0.03912 0.02932 No 11 9.091 sqrt(x) 0.01 Param. Boron (mg/L) GN-GSA-MW-13 0.05 0.05 No 11 100 Nο 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-1 0.0005 0.0005 0.005 No 11 100 No 0.006 NP (NDs) 0.0005 Cadmium (mg/L) GN-GSA-MW-5 0.0005 0.005 No 11 100 No 0.006 NP (NDs) 0.0005 Cadmium (mg/L) GN-GSA-MW-6 0.0005 0.005 No 11 100 No 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-7 0.0005 0.0005 0.005 No 11 100 No 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-8 0.0005 0.0005 0.005 No 11 100 No 0.006 NP (NDs) 0.0005 Cadmium (mg/L) GN-GSA-MW-9 0.0005 0.005 No 11 100 No 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-10 0.0005 0.0005 0.005 No 11 100 No 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-11 0.0005 0.0005 0.005 No 11 100 No 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-12 0.0005 0.0005 0.005 No 11 100 No 0.006 NP (NDs) Cadmium (mg/L) GN-GSA-MW-13 0.0005 0.005 No 11 100 No 0.0005 0.006 NP (NDs) GN-GSA-MW-1 Chromium (mg/L) 0.005 0.1 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-5 No Chromium (mg/L) 0.005 0.1 11 100 No 0.006 NP (NDs) Chromium (mg/L) GN-GSA-MW-6 0.005 0.1 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-7 No 11 100 Chromium (mg/L) 0.005 0.1 No 0.006 NP (NDs) Chromium (mg/L) GN-GSA-MW-8 0.005 0.1 No 11 100 No 0.006 NP (NDs) Chromium (mg/L) GN-GSA-MW-9 0.005 0.1 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-10 0.005 Chromium (mg/L) 0.005 0.1 No 11 100 No 0.006 NP (NDs) Chromium (mg/L) GN-GSA-MW-11 0.005 0.005 0.1 No 11 100 No 0.006 NP (NDs)

Confidence Intervals - All Results (No Significant Results)

Client: Southern Company Data: Gaston GSA Printed 1/31/2019, 11:37 AM Lower Lim. Sig. Ν Transform Alpha GN-GSA-MW-12 Chromium (mg/L) 0.005 0.1 11 0.006 Chromium (mg/L) GN-GSA-MW-13 0.005 0.1 No 11 No 0.006 NP (NDs) 0.01 Cobalt (mg/L) GN-GSA-MW-1 0.0025 No 11 No 0.006 NP (NDs) Cobalt (mg/L) GN-GSA-MW-5 0.0025 0.01 No 11 36.36 0.006 Cobalt (mg/L) GN-GSA-MW-6 0.0025 0.01 No 11 0.006 NP (NDs) Cobalt (mg/L) GN-GSA-MW-7 0.01104 0.003631 0.01 No 11 36.36 No 0.01 Cobalt (mg/L) GN-GSA-MW-8 0.0025 0.01 No 11 No 0.006 NP (NDs) Cobalt (mg/L) GN-GSA-MW-9 0.01 No 11 100 0.006 Cobalt (mg/L) GN-GSA-MW-10 0.005 0.01 No 11 100 Cobalt (mg/L) GN-GSA-MW-11 0.005716 0.01 No 11 sqrt(x) Cobalt (mg/L) GN-GSA-MW-12 0.005 0.01 No 11 100 No 0.006 NP (NDs) Cobalt (mg/L) GN-GSA-MW-13 0.01227 0.01 No 11 No 0.01 Combined Radium 226 + 228 (pCi/L' GN-GSA-MW-1 0.8042 No 11 Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-5 0.1666 No 11 Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-6 5 11 0.1168 No 9.091 No 0.01 Param. Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-7 0.1065 5 No 11 0.8824 9.091 No 0.01 Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-8 0.748 -0.0526 5 No 11 9.091 No 0.006 NP (normality) Combined Radium 226 + 228 (pCi/L) 11 GN-GSA-MW-9 0.9601 0.2081 No 9.091 No 0.01 Param Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-10 0.9964 11 0.112 No 9.091 0.01 Param. No Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-11 1.242 0.06572 11 No 9.091 No 0.01 Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-12 0.9607 0.1291 11 No 9.091 No 0.01 Combined Radium 226 + 228 (pCi/L) GN-GSA-MW-13 0.8734 0.04335 5 11 Param No 9.091 No 0.01 Fluoride (mg/L) GN-GSA-MW-1 0.359 0.293 No 12 No 0.01 Param 12 Fluoride (mg/L) GN-GSA-MW-5 0.04 No 41.67 No NP (Cohens/xfrm) 0.01 GN-GSA-MW-6 0.047 12 Fluoride (mg/L) 0.15 No 58.33 No NP (normality) 0.01 GN-GSA-MW-7 0.07603 12 Param Fluoride (ma/L) 0.1067 No 8.333 x^(1/3) 0.01 Fluoride (ma/L) GN-GSA-MW-8 0.1601 0.1194 No 12 0 x^2 0.01 Fluoride (ma/L) GN-GSA-MW-9 0.035 No 12 25 No 0.01 NP (Cohens/xfrm) Fluoride (mg/L) GN-GSA-MW-10 0.1 0.037 No 12 41.67 No 0.01 NP (normality) Fluoride (mg/L) GN-GSA-MW-11 0.1 0.04 No 12 41.67 No 0.01 NP (Cohens/xfrm) Fluoride (mg/L) GN-GSA-MW-12 0.095 0.05 12 No 16.67 No 0.01 NP (normality) Fluoride (mg/L) GN-GSA-MW-13 0.085 0.039 No 12 NP (normality) 8.333 No 0.01 0.0025 0.015 Lead (mg/L) GN-GSA-MW-1 0.0025 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-5 0.0025 0.015 Lead (mg/L) 0.0025 No 11 100 No 0.006 NP (NDs) Lead (mg/L) GN-GSA-MW-6 0.0025 0.0025 0.015 No 11 100 No 0.006 NP (NDs) 0.00229 GN-GSA-MW-7 0.0025 0.015 11 NP (NDs) Lead (mg/L) No 90.91 No 0.006 0.0025 Lead (mg/L) GN-GSA-MW-8 0.0025 0.015 No 11 100 No 0.006 NP (NDs) 0.0025 Lead (mg/L) GN-GSA-MW-9 0.0025 0.015 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-10 0.0025 0.0025 Lead (mg/L) 0.015 No 11 100 No 0.006 NP (NDs) Lead (mg/L) GN-GSA-MW-11 0 0025 0.0025 0.015 No 11 100 Nο 0.006 NP (NDs) Lead (mg/L) GN-GSA-MW-12 0.0025 0.0025 0.015 No 11 100 No 0.006 NP (NDs) Lead (mg/L) GN-GSA-MW-13 0.0025 0.0025 0.015 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-1 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-5 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-6 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-7 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-8 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-9 0.025 0.01 0.04No 11 100 Nο 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-10 0.025 0.01 0.04No 11 100 Nο 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-11 0.025 0.01 0.04No 11 100 Nο 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-12 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) Lithium (mg/L) GN-GSA-MW-13 0.025 0.01 0.04 No 11 100 No 0.006 NP (NDs) 0.00025 Mercury (mg/L) GN-GSA-MW-1 0.00025 0.002 No 11 100 No 0.006 NP (NDs) Mercury (mg/L) GN-GSA-MW-5 0.00025 0.00025 0.002 No 11 100 No 0.006 NP (NDs) 0.00025 Mercury (mg/L) GN-GSA-MW-6 0.00025 0.002 No 11 100 No 0.006 NP (NDs) 0.00025 Mercury (mg/L) GN-GSA-MW-7 0.00025 0.002 No 11 100 No 0.006 NP (NDs) Mercury (mg/L) GN-GSA-MW-8 0.00025 0.00025 0.002 No 11 100 No 0.006 NP (NDs) Mercury (mg/L) GN-GSA-MW-9 0.00025 0.00025 0.002 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-10 0.00025 0.002 No 11 Mercury (mg/L) 0.00025 100 No 0.006 NP (NDs) GN-GSA-MW-11 0.00025 0.002 No 11 100 No Mercury (mg/L) 0.00025 0.006 NP (NDs) GN-GSA-MW-12 0.00025 Mercury (mg/L) 0.00025 0.002 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-13 0.00025 No Mercury (mg/L) 0.00025 0.002 11 100 No 0.006 NP (NDs) Molybdenum (mg/L) GN-GSA-MW-1 0.01801 0.006982 0.1 No 11 9.091 No 0.01 Param. GN-GSA-MW-5 No 11 100 NP (NDs) Molybdenum (mg/L) 0.005 0.1 No 0.006 Molybdenum (mg/L) GN-GSA-MW-6 0.005 No 11 100 No 0.005 0.1 0.006 NP (NDs) Molybdenum (mg/L) GN-GSA-MW-7 0.005 0.1 No 11 100 No 0.006 NP (NDs) Molybdenum (mg/L) GN-GSA-MW-8 0.004568 0.003448 0.1 No 11 9.09 No 0.01 Param. Molybdenum (mg/L) GN-GSA-MW-9 0.005 0.1 No 11 100 No 0.006 NP (NDs)

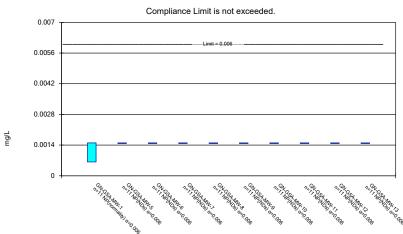
Confidence Intervals - All Results (No Significant Results)

Constituent

Molybdenum (mg/L)

Molybdenum (mg/L)

Molybdenum (mg/L)


Molybdenum (mg/L)

Selenium (mg/L)

Thallium (mg/L)

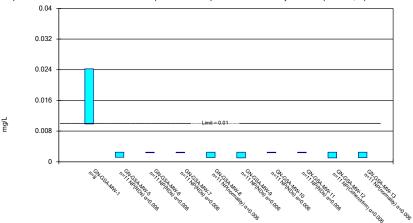
Client: Southern Company Data: Gaston GSA Printed 1/31/2019, 11:37 AM Lower Lim. Compliance Sig. N %NDs Transform <u>Alpha</u> GN-GSA-MW-10 0.005 0.005 0.1 No 11 100 0.006 NP (NDs) GN-GSA-MW-11 0.005 0.005 0.1 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-12 0.005 0.005 0.1 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-13 0.005 0.005 0.1 No 11 100 0.006 GN-GSA-MW-1 0.005 0.05 No 11 100 0.006 NP (NDs) GN-GSA-MW-5 0.005 0.05 No 11 100 0.006 NP (NDs) GN-GSA-MW-6 0.005 0.05 No 11 100 0.006 NP (NDs) GN-GSA-MW-7 0.005 0.05 No 11 100 No NP (NDs) GN-GSA-MW-8 0.005 0.05 No 11 100 NP (NDs) GN-GSA-MW-9 0.005 0.05 No 11 100 GN-GSA-MW-10 0.005 0.05 11 No 100 No 0.006 NP (NDs) GN-GSA-MW-11 0.005 0.05 No 11 100 No NP (NDs) GN-GSA-MW-12 0.005 0.005 0.05 11 NP (NDs) No 100 GN-GSA-MW-13 0.005 0.005 0.05 11 NP (NDs) No 100 GN-GSA-MW-1 0.0005 0.0005 0.002 No 11 100 0.006 NP (NDs) No GN-GSA-MW-5 0.0005 0.0005 0.002 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-6 0.0005 0.0005 0.002 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-7 0.0005 0.0005 0.002 11 100 0.006 NP (NDs) No No GN-GSA-MW-8 0.0005 0.0005 0.002 11 100 0.006 NP (NDs) No No GN-GSA-MW-9 0.0005 0.0005 0.002 11 100 0.006 NP (NDs) No No GN-GSA-MW-10 0.0005 0.0005 0.002 No 11 100 No 0.006 NP (NDs) GN-GSA-MW-11 0.0005 0.0005 0.002 11 100 No 0.006 NP (NDs) No GN-GSA-MW-12 0.0005 0.0005 0.002 11 NP (NDs) No 100 No 0.006 GN-GSA-MW-13 0.0005 0.0005 0.002 No 11 100 No 0.006 NP (NDs)

Non-Parametric Confidence Interval

Constituent: Antimony Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

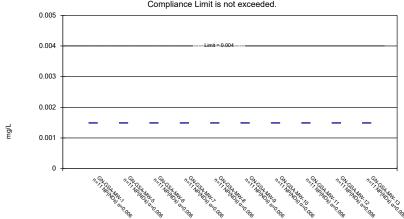
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals Plant Gaston Client: Southern Company Data: Gaston GSA

Parametric and Non-Parametric (NP) Confidence Interval

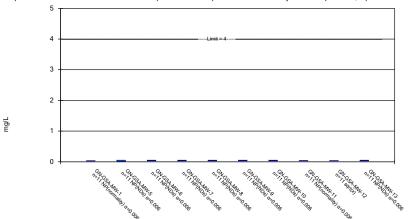
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Arsenic Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals Plant Gaston Client: Southern Company Data: Gaston GSA

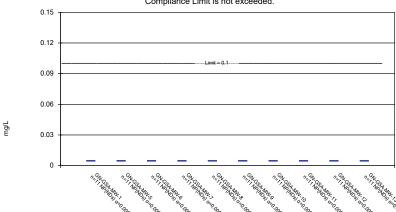
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

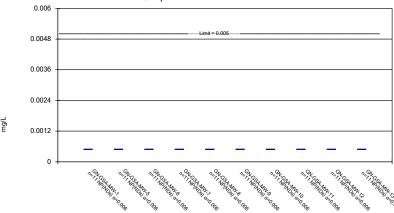
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Boron Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

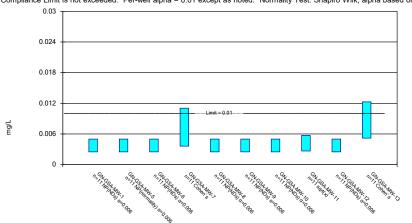
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG


Non-Parametric Confidence Interval Compliance Limit is not exceeded.

Constituent: Chromium Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

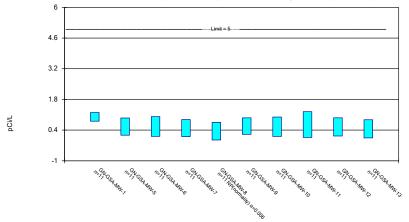
Non-Parametric Confidence Interval

Compliance Limit is not exceeded.



Constituent: Cadmium Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG


Parametric and Non-Parametric (NP) Confidence Interval

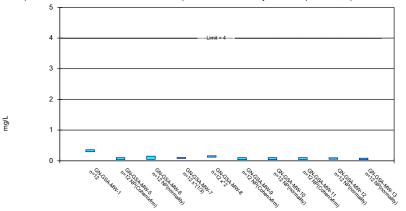
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals

Plant Gaston Client: Southern Company Data: Gaston GSA


Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded. 0.02 0.016 0.012 0.008 0.004 0.004

Constituent: Lead Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals Plant Gaston Client: Southern Company Data: Gaston GSA

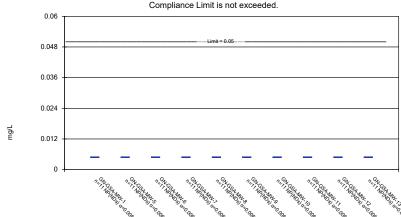
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

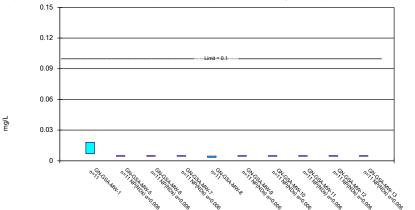
Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded. 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.04 0.05 0.04 0.05 0.04 0.05 0.06 0.07 0.08 0.09 0.


Non-Parametric Confidence Interval

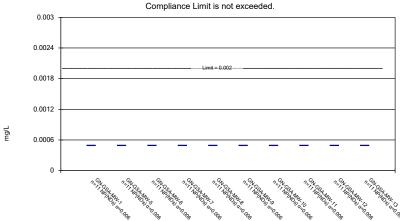
Constituent: Mercury Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG


Non-Parametric Confidence Interval

Constituent: Selenium Analysis Run 1/31/2019 11:36 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 1/31/2019 11:35 AM View: Confidence Intervals
Plant Gaston Client: Southern Company Data: Gaston GSA

Sanitas™ v.9.6.09 Sanitas software licensed to Southern Company. UG

Non-Parametric Confidence Interval

