

September 2021 Plant Greene County

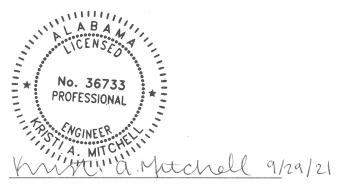
Groundwater Remedy Selection Report

Prepared for Alabama Power Company

September 2021 Plant Greene County

Groundwater Remedy Selection Report

Prepared for


Alabama Power Company 600 18th Street North Birmingham, Alabama 35203

Prepared by

Anchor QEA, LLC 9797 Timber Circle Daphne, Alabama 36527

Engineer's Certification

This *Groundwater Remedy Selection Report* has been prepared in accordance with the U.S. Environmental Protection Agency's coal combustion residuals rule (40 Code of Federal Regulations Part 257, Subpart D) and the Alabama Department of Environmental Management Administrative Code Ch. 335-13-15. This report was prepared under the supervision and direction of the undersigned, whose seal as a registered professional engineer is affixed below. The undersigned is practicing through Anchor QEA, LLC, which is an authorized engineering business in the State of Alabama (Certificate of Authorization license number 5073; a copy of this license is provided in Appendix A).

Kristi A. Mitchell, Senior Engineer Alabama Professional Engineer No. 36733

TABLE OF CONTENTS

Engineer's Certificationi					
Executive Summary1					
1 Introduction					
	1.1	1 Purpose			
	1.2	Site Lo	cation and Description	1	
•		Site Clo	osure and Source Control Measures	1	
		1.3.1	Dewatering and Consolidation	2	
		1.3.2	Vertical Barrier Wall	2	
		1.3.3	Final Cover System (Cap)	3	
		1.3.4	Closure Schedule	3	
	1.4	Correc	tive Action Objectives	3	
2 Site Geology and Hydrogeology		Geolog	gy and Hydrogeology	5	
	2.1	Geolog	gy, Hydrogeology, and Surface Water Hydrology	5	
	2.2	Nature	and Extent of Groundwater Exceedances	6	
3 Groundwater Remedy Selection		er Remedy Selection	8		
	3.1	Assessment of Corrective Measures			
	3.2	Remedy Selection Criteria			
	3.3	Remed	ly Evaluation	. 10	
		3.3.1	Geochemical Manipulation via Injection of Treatment Solutions	. 10	
		3.3.2	Monitored Natural Attenuation	. 11	
		3.3.3	Hydraulic Containment (Pump-and-Treat)	. 11	
		3.3.4	PRB Walls	. 13	
		3.3.5	Vertical Barrier Walls	. 14	
4	Sele	cted G	roundwater Remedy	.15	
	4.1	Source Control		. 16	
	4.2	Geochemical Manipulation via Injections1			
		4.2.1	Injection Treatment Overview	. 17	
		4.2.2	Site-Specific Injection Treatment Plan	. 18	
	4.3	Monito	pred Natural Attenuation	. 21	
		4.3.1	MNA Overview	. 21	
		4.3.2	Site-Specific MNA Evaluation Summary	22	

		4.3.3	Site-Specific MNA Plan	23
	4.4	Adapti	ve Site Management Plan	24
		4.4.1	Interim Performance Standards and Monitoring	25
		4.4.2	Adaptive Triggers	27
		4.4.3	Corrective Action System Adaptation	
5	Remedy Performance Requirement Demonstration			
	5.1	Protect	tion of Human Health and the Environment	
5.2 Attain Groundwater Protection Standard Requirements5.3 Control Sources of Releases				
		Control Sources of Releases		
	5.4	Standa	rds for Waste Management	
6	Corr	ective	Action Groundwater Monitoring Program	
7	Sche	Schedule		
	7.1	Site Clo	osure and Source Control	
	7.2	Injectio	on Treatment	
	7.3	Monito	pred Natural Attenuation	35
8	Refe	rences		

FIGURES

Figure 1	Site Location Map
Figure 2	Site Layout Map
Figure 3	Conceptual Cross Section (North-South)
Figure 4	Conceptual Cross Section (East-West)
Figure 5	Generalized Cross Section
Figure 6	Closure Timeline
Figure 7	Injection Treatment Areas
Figure 8	Phase 1 (Pilot) Injection and Monitoring (Plan View): GC-AP-MW-1
Figure 9	Phase 1 (Pilot) Injection and Monitoring (Cross Section): GC-AP-MW-1
Figure 10	Phase 1 (Pilot) Injection and Monitoring (Plan View): GC-AP-MW-11
Figure 11	Phase 1 (Pilot) Injection and Monitoring (Cross Section): GC-AP-MW-11
Figure 12	Phase 1 (Pilot) Injection and Monitoring (Plan View): GC-AP-MW-14
Figure 13	Phase 1 (Pilot) Injection and Monitoring (Cross Section): GC-AP-MW-14
Figure 14	Phase 1 (Pilot) Injection and Monitoring (Plan View): GC-AP-MW-17
Figure 15	Phase 1 (Pilot) Injection and Monitoring (Cross Section): GC-AP-MW-17

Figure 16	Conceptual Corrective Action Monitoring Plan
Figure 17	Adaptive Site Management Framework
Figure 18	Conceptual Corrective Action Monitoring Plan: Sentinel/Clean Line Monitoring Points
Figure 19	Conceptual Corrective Action Monitoring Plan: Remedy Performance Wells
Figure 20	Anticipated Injection Treatment Schedule

APPENDICES

Appendix A	Certificate of Authorization
Appendix B	Geologic Cross Sections
Appendix C	Potentiometric Maps
Appendix D	Monitored Natural Attenuation Demonstration

ABBREVIATIONS

ACM	Assessment of Corrective Measures
ADEM	Alabama Department of Environmental Management
Admin. Code	Administrative Code
APC	Alabama Power Company
ASM	adaptive site management
CAS	corrective action system
CCR	coal combustion residuals
CFR	Code of Federal Regulations
cm/sec	centimeters per second
COI	constituent of interest
EPRI	Electric Power Research Institute
Facility Plan	Facility Plan for Groundwater Investigation
GWPS	groundwater protection standard
MNA	monitored natural attenuation
Plant Greene County	Greene County Electric Generating Plant
PRB	permeable reactive barrier
RCRA	Resource Conservation and Recovery Act
Site	Greene County ash pond
SSE	selective sequential extraction
SSI	statistically significant increases
SSLs	statistically significant level
UIC	Underground Injection Control
USEPA	U.S. Environmental Protection Agency

Executive Summary

Since submittal of the *Assessment of Corrective Measures* (ACM) in June 2019 (Anchor QEA 2019a), extensive investigations have been performed to select effective corrective measures for arsenic, cobalt, and lithium (constituents of interest [COIs]) in groundwater at the Greene County ash pond (Site). The following corrective measures were selected:

- Source control to include dewatering, consolidation, capping of the Site, and the installation of a subsurface barrier (slurry) wall completely around the consolidated perimeter keyed into the relatively impermeable chalk aquitard
- Geochemical manipulation via injections in areas of relatively high concentrations of COIs to remove them from groundwater and immobilize them in situ
- Monitored natural attenuation (MNA) over the entire Site.

Closure of the Site—including dewatering, consolidation, capping, and the perimeter barrier wall will effectively eliminate source contributions to groundwater. Geochemical manipulation was selected because of its effectiveness, ease of implementation, versatility (ability to treat more than one COI with the same treatment solution), ability to implement in areas with limited working space, and no byproducts that would require further treatment or disposal. MNA was selected because substantial evidence indicates that it is currently occurring at the Site.

Effective injection treatment has been performed for arsenic in groundwater under variable geochemical conditions using iron-based treatment solutions (Anchor QEA 2017, 2018, 2019b, 2019c). In laboratory treatability studies conducted for the Electric Power Research Institute and large utility companies, mixed oxides of iron, manganese, and magnesium in solution were proven effective for arsenic, cobalt, lithium, and other constituents (EPRI 2021). Site-specific laboratory treatability studies using Site aquifer media and impacted groundwater will be performed prior to field implementation of injection treatment. These studies will evaluate multiple viable treatment solutions and a range of doses.

After selection of the optimum treatment reagents and doses, areas with the highest concentrations of arsenic, lithium, and/or cobalt will be treated with a line of injection points. Existing monitoring wells will be used to monitor the effectiveness of the injection treatment, and additional remedial-effectiveness monitoring wells will be installed at variable distances to demonstrate the benefits of injection. Monitoring parameters will include COIs and other indicator parameters based on the composition of the treatment solutions. Monitoring frequency will be based on the hydraulics of the aquifer in the areas of interest and distance of the monitoring wells from the line of injection.

Extensive site-specific geochemical studies performed in 2020 and 2021 demonstrate that MNA is a viable corrective action for COIs in groundwater at the Site (Anchor QEA 2020a, 2020b, 2021). The preponderance of evidence indicates that Site conditions meet the U.S. Environmental Protection

Agency's evaluation criteria for the use of MNA, specifically: area of impacts stable or shrinking, identified mechanisms for attenuation, stability of the attenuating mechanisms, sufficient aquifer capacity for attenuation, and time to achieve groundwater protection standards (GWPSs) considered reasonable when compared to other corrective action alternatives. The ACM identified other corrective measures that could be used in conjunction with MNA should MNA not perform as expected.

Investigations performed to support MNA included preparation of concentration versus time and concentration versus distance graphs for COIs in groundwater; groundwater, well solids (precipitates), and soil sampling; laboratory analysis of solid samples for bulk chemistry (X-ray diffraction), mineralogy (X-ray diffraction and scanning electron microscopy), and cation exchange capacity; geochemical modeling; selective sequential extraction (SSE) to determine associations of COIs with attenuating solids; and column studies to assess aquifer capacity for attenuation.

Several concentration versus time graphs indicate that arsenic, lithium, and/or cobalt concentrations are stable or are decreasing with time in some areas, even without source control. Decreasing trends were extrapolated to estimate time to achieve GWPSs. Also, concentration versus distance graphs along downgradient transects indicate that arsenic, cobalt, and lithium are decreasing with distance from the Site, even without source control. The 2020 and 2021 isoconcentration maps for all three COIs are similar, further demonstrating that the area of impacts are not expanding with time.

Based on the geochemical investigations, multiple lines of evidence support multiple attenuating mechanisms, depending upon the COIs. The major attenuating mechanisms include sorption on (or coprecipitation with) iron oxides and, possibly, precipitation of barium arsenate for arsenic; cobalt attenuation by incorporation into a cobalt-iron oxide; and lithium attenuation by ion exchange on oxides and clay minerals. All COIs are subject to physical attenuation mechanisms such as dispersion and flushing, which will contribute to decreased concentrations with time and distance from the Site.

Column studies were performed to assess the ability for the aquifer media (soil) to take up COIs. Cobalt and lithium showed limited ability to sorb to the aquifer media based on column studies. However, these constituents are still subject to other attenuating mechanisms, such as physical attenuation (dispersion and flushing) and coprecipitation as indicated by the concentration versus time and distance graphs and geochemical studies.

Column studies indicate that arsenic is significantly attenuated by aquifer media, as arsenic in column effluent remained much less than the influent concentrations. This attenuation capacity was extrapolated to the entire mass of the aquifer downgradient of the consolidated Site but within the property boundary. The extrapolation showed that the aquifer has an attenuating capacity of many more times needed based on the mass of arsenic requiring attenuation. SSE studies indicate that

most of the mass of all 3 COIs occurs in the oxidizable and residual fractions, which are very stable attenuation phases.

Source control, geochemical manipulation via injections in areas of relatively high concentrations of COIs to remove them from groundwater and immobilize them in situ, and MNA over the entire Site are expected to achieve GWPSs within 2 to 40 years post-closure (depending upon area and associated wells), which is a reasonable time frame as compared to the other, more aggressive, methods investigated as part of the remedy selection process. More aggressive methods are not expected to achieve GWPSs sooner than 2 to 40 years.

Extensive sitewide monitoring will be performed to evaluate the remedial effectiveness of individual corrective actions such as injection treatment, as well as the cumulative effects of closure (source control), injections, and MNA. Additional monitoring wells will be installed relatively close to injection wells and monitored for specific parameters and at a frequency sufficient to determine the benefits of injection.

The certified compliance monitoring network will be supplemented to establish a comprehensive groundwater remedy plan meeting the requirements of 40 CFR § 257.98(a) and ADEM Administrative Code r. 335-13-15-.06(9)(a). The groundwater remedy monitoring plan will be submitted within 90 days and include: 1) the certified coal combustion residuals compliance monitoring that meets the assessment monitoring requirements of § 257.95 and 335-13-15-.06(6); 2) additional wells that document the effectiveness of the remedy; and 3) sample locations and data evaluation that demonstrate compliance with the GWPS and protection of potential human and ecological receptors.

Alabama Power Company will employ an adaptive site management approach to perform ongoing remedy system evaluation, consider adjustments to the remedy, and ensure achieving corrective action objectives at the Site. Adaptive triggers will be developed, and additional actions (monitoring, analysis, and/or supplemental corrective action measures) will be implemented as needed. Details on the sitewide remedial-effectiveness monitoring program, including adaptive triggers, will be provided in a detailed monitoring plan to be submitted within 90 days of this *Groundwater Remedy Selection Report*.

1 Introduction

1.1 Purpose

This *Groundwater Remedy Selection Report* was prepared to meet the requirements of the U.S. Environmental Protection Agency's (USEPA's) coal combustion residuals (CCR) Rule 40 Code of Federal Regulations (CFR) § 257.97, the Alabama Department of Environmental Management's (ADEM's) Administrative Code (Admin. Code) r. 335-13-15-.06(8), and Part C of Administrative Order No. 18-097-GW at Alabama Power Company's (APC's) Greene County Electric Generating Plant (Plant Greene County) ash pond (Site). Specifically, this report has been prepared to present a groundwater corrective action plan to address the occurrence of arsenic, cobalt, and lithium in groundwater at the Site.

Prior to preparing this final *Groundwater Remedy Selection Report*, semiannual progress reports were prepared to describe the progress made in evaluating the selected remedy and alternative remedies and designing a remedy plan (Anchor QEA 2019d, 2020a, 2020b, 2021).

1.2 Site Location and Description

Plant Greene County is located in southeastern Greene County, Alabama. The physical address is 801 Steam Plant Road, Forkland, Alabama 36740. The Greene County plant lies in portions of Sections 21 and 28, Township 19 North, Range 3 East (USGS 2018). The Site is located south of the main plant along the Black Warrior River to the south and the barge canal to the east. Figure 1 depicts the location of the Site with respect to the surrounding area. The Site went into service in 1964 and is approximately 489 acres.

1.3 Site Closure and Source Control Measures

The Site is underlain by low-permeability clay soils that separate CCR from groundwater. The proposed corrective action strategy incorporates the closure of the Site, which will effectively control the source of CCR constituents to groundwater by removing free liquid from the CCR, reducing the area of the Site footprint, encircling the Site with a subsurface barrier wall, and capping the CCR in place to prevent further infiltration. Specifically, the design for the Site closure calls for dewatering and consolidating the CCR material within the northern portion of the existing Site, which will occupy approximately 221 acres within a diked area, bounded on the northern end by the northern portion of the existing exterior dike, and to the east, west, and south by a new interior dike constructed as part of the Site closure. A barrier wall keyed into the existing underlying chalk layer will be constructed around the perimeter of the consolidated CCR material, along with a final cover consisting of an engineered synthetic turf and geomembrane.

Site closure activities began in 2019. As presented in the *Amended Closure Plan* (APC 2020), closure of the Site will be accomplished by the following:

- 1. Dewatering and consolidating the CCR footprint from approximately 489 acres to approximately 221 acres
- 2. Constructing a vertical barrier wall around the consolidated footprint and extending below the uppermost aquifer at the Site
- 3. Installing a low-permeability geosynthetic final cover system over the consolidated CCR

Figure 2 provides an overview of the closure methods described in the following sections.

1.3.1 Dewatering and Consolidation

(Consolidation of the horizontal footprint by about 55%, from 489 acres to 221 acres (APC 2020), will greatly reduce the CCR surface area potentially exposed to groundwater, thereby reducing the leaching potential of constituents of interest (COIs) to groundwater.

CCR removed from outside of the consolidated footprint will be sufficiently dewatered and compacted within the consolidated footprint. The remaining approximately 268 acres will be converted to a stormwater runoff pond for the cover system and consolidated footprint. Details regarding consolidation are provided in the previously submitted *Amended Closure Plan* (APC 2020).

As discussed in Section 2, the CCR deposits at the Site (including the consolidated CCR footprint) are separated from the uppermost aquifer and groundwater by a low-permeability clay deposit. This serves to isolate the CCR from groundwater at the Site.

1.3.2 Vertical Barrier Wall

To isolate groundwater beneath the Site, a vertical subsurface barrier wall is being constructed around the consolidated CCR and keyed into the low-permeability chalk deposit. The vertical barrier wall will extend from ground surface and penetrate the uppermost aquifer overlying the chalk deposit. Coupled with the low-permeability clay and soil underlying the consolidated CCR deposits, the barrier wall will further isolate the Site from contact with groundwater outside the barrier wall. Figures 3 and 4 depict the conceptual site closure model and show the configuration of the vertical barrier wall relative to the consolidated CCR, surrounding geology, and uppermost aquifer.

Construction of a segment of the barrier wall is complete within a portion of the northern dike where CCR material is being consolidated. Figure 2 shows the approximate extent of the portion of the barrier wall that has already been constructed. The barrier wall will be constructed using a low-permeability bentonite slurry designed to achieve a permeability of 10⁻⁷ centimeters per second (cm/sec) or less. The bentonite slurry will be installed extending from the underlying chalk surface to the top of the portion of the containment dike to the cover system (APC 2020). The chalk is thick

(estimated 250 feet at the Site), with a reported permeability of 10⁻⁷ to 10⁻⁸ cm/sec (Sadler et al. 1992) and is widely recognized as a regional confining layer. As described in Section 2.1, measured site-specific permeability values are on the order of 10⁻⁸ cm/sec. The barrier wall sides, chalk bottom, and cover system will effectively isolate CCR from groundwater (Figure 5), thereby preventing additional releases to groundwater.

1.3.3 Final Cover System (Cap)

The final cover will be constructed to "control, minimize or eliminate, to the maximum extent feasible, post-closure infiltration" of stormwater into the closed CCR unit, which will mitigate potential releases of COIs to groundwater. The cover will consist of the following (described from the final CCR surface upward): 3 to 6 inches of protective soil, a linear low-density polyethylene geomembrane, an engineered synthetic turf product, and sand infill material. The final cover system will have a permeability of 10⁻⁷ cm/sec or less (APC 2020).

Infiltration will also be prevented by providing sufficient grades and slopes to: 1) preclude the probability of future impoundment of water or sediment on the cover system; 2) ensure slope and cover system stability; 3) minimize the need for further maintenance; and 4) be completed in the shortest amount of time consistent with recognized and generally accepted good engineering practices (APC 2020).

1.3.4 Closure Schedule

The current closure plan estimates that dewatering, consolidation, and capping will be completed in 2026. The current closure timeline is shown in Figure 6. The northernmost section of the barrier wall was completed in early 2021.

1.4 Corrective Action Objectives

Pursuant to 40 CFR 257.97(b) and ADEM Admin. Code r. 335-13-15-.06(8)(b), groundwater remedies must:

- (1) Be protective of human health and the environment.
- (2) Attain applicable groundwater protection standards (GWPSs) as specified in the CCR rule.
- (3) Control the source(s) of the release so as to reduce or eliminate, to the extent feasible, further releases of Appendix IV to 40 CFR Part 257 constituents into the environment.
- (4) Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbances of sensitive ecosystems.¹

¹ 40 CFR § 257.97(b)(4) requires a remedy to "remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems."

(5) Comply with any relevant standards (i.e., all applicable Resource Conservation and Recovery Act [RCRA] requirements) for management of wastes generated by the remedial actions.

As presented in this report, the selected remedy plan satisfies the above performance criteria.

The preamble to the CCR rule explains that this requirement is "more directly related to remediation of contamination associated with a release, such as from a collapse or structural failure of a CCR unit," not a release to groundwater (80 Federal Register 21302, 21407 [April 17, 2015]). The § 257.97(b)(4) remedial objective is not applicable to the groundwater corrective action for the Site, but it is included here for completeness when referencing the rule requirements.

2 Site Geology and Hydrogeology

2.1 Geology, Hydrogeology, and Surface Water Hydrology

At the Site, the geology consists of alluvium deposits overlying a low-permeability chalk formation. The major components of the hydrogeological conceptual site model include the components described in previous reports (SCS 2018a) and are summarized as follows:

- Geologic Unit 1: predominantly low-permeability clays with a general thickness between 5 and 15 feet; vertical hydraulic conductivities ranging from 8.0 × 10⁻⁸ to 7.8 × 10⁻⁶ cm/sec with an average of 1.7 × 10⁻⁶ cm/sec; provides upper confining to semi-confining conditions between CCR and the uppermost aquifer
- Geologic Unit 2 (Uppermost Aquifer): fine- to medium-grained sand with clay lenses in upper sections and fine gravel toward the base, generally located 5 to 15 feet beneath the top of the dike, 10 to 30 feet thick, with horizontal hydraulic conductivities ranging from 1.68 × 10⁻³ to 8.29 × 10⁻² cm/sec with an average of 1.83 × 10⁻² cm/sec
- Geologic Unit 3: low-permeability chalk and marl with a general thickness of 250 feet; vertical hydraulic conductivities ranging from 1.4 × 10⁻⁸ to 5.0 × 10⁻⁸ cm/sec; provides lower confining conditions for the uppermost aquifer
- Groundwater flow occurs within the sand and gravel deposit (Unit 2) overlying the Unit 3 chalk. Characteristics of groundwater flow are as follows:
 - Vertical groundwater flow in upper strata is impeded by low-permeability clays of Unit 1 and beneath Unit 2 by the underlying Unit 3 chalk deposit.
 - Sources of recharge are largely from the infiltration of precipitation and estimated to be
 5 to 6 inches per year; infiltration will be eliminated over the consolidated CCR footprint after closure.
 - Groundwater flow reflects the topography at the Site and flows radially from higher elevations toward the Black Warrior River and barge canal.
 - Groundwater flow velocity within Unit 2 is generally between 1 and 3 feet per day.

Geologic cross sections with constituents of interest (COIs) isoconcentration lines are included in Appendix B.

Historical potentiometric data from the Site indicate that groundwater flow directions have been consistent at the Site during the monitoring period. Groundwater flow at the Site reflects the natural topography, where gravity is the dominant force driving flow. Groundwater flows from higher topographic elevations near the northernmost edge of the Site toward the north, east, and south-southeast. However, the construction of the northern section of the barrier wall has apparently caused groundwater to flow to the north on the northern side of the barrier wall and to the south on the southern side of the barrier wall (Appendix C). The installation of the barrier wall has created a

physical groundwater divide impeding groundwater flow toward the surface water body (river) to the north. Groundwater elevations measured on either side of the barrier wall indicate that groundwater flow within the Site footprint is now toward the south and southeast. This change in direction will be confirmed in subsequent monitoring events. A topographic high southwest of the pond provides a localized mound where groundwater elevations are higher than those of neighboring monitoring wells.

Groundwater elevations fluctuate in response to rainfall. Seasonal variations of 1.7 to 10 feet are typical at the Site. These fluctuations are consistent in response in monitoring wells across the Site but vary in magnitude. Groundwater flow direction is consistent despite seasonal fluctuations. Groundwater elevation data indicate that water levels tend to be higher in the spring and early summer and lower during the fall and winter. A typical potentiometric surface map before barrier wall construction and the most recent potentiometric surface map are presented in Appendix C.

2.2 Nature and Extent of Groundwater Exceedances

Based on groundwater monitoring performed pursuant to the federal CCR rule and ADEM's rules, the following constituents have been identified in Site groundwater at concentrations exceeding the GWPS:

- Arsenic
- Cobalt
- Lithium

Several phases of investigation have been completed at the Site to delineate the extent of Appendix IV constituents exceeding GWPSs (SCS 2019, 2020, 2021).

Background groundwater sampling at the Site occurred between February 2016 and June 2017. Compliance detection sampling began in August 2017. Statistically significant increases (SSI) of Appendix III to 40 CFR Part 257 constituents were noted during the September 2017 compliance detection sampling event as described in the *2017 Annual Groundwater Monitoring and Corrective Action Report* (SCS 2018a). The Appendix III SSIs triggered assessment sampling for Appendix IV constituents, with the first assessment sampling event occurring in January 2018.

A *Facility Plan for Groundwater Investigation* (Facility Plan; SCS 2018b) at the Site was completed to meet the requirements of Order No. 18-097-GW issued to APC by ADEM on August 15, 2018. Part B of the order required completion of a Facility Plan by November 13, 2018. The Facility Plan included the following elements:

- Installing additional wells as necessary to define the extent of groundwater impacts, defined as Appendix IV constituents that statistically exceed GWPSs
- Collecting data on the nature and estimated quantity of material released

- Installing at least one additional well at the facility boundary
- Establishing an Assessment Monitoring Program
- If necessary, scheduling the notification of persons who own or reside on land that overlies areas where Appendix IV constituents statistically exceed GWPSs.

The Facility Plan summarized the proposed approach for completing the tasks necessary to satisfy Part B of the order.

Horizontal delineation of arsenic, cobalt, and lithium GWPS exceedances utilized a stepping-out approach based on groundwater flow direction relative to monitoring wells exhibiting exceedances. Vertical delineation wells were not required at the Site, as the uppermost aquifer is relatively thin and is confined at its base by an estimated 250-foot-thick low-permeability chalk (10⁻⁸ cm/sec) that defines the base of the uppermost aquifer.

Three phases of delineation field activities, beginning in December 2018, were performed at the Site. Compliance (assessment) monitoring and delineation sampling events have shown exceedances of arsenic, cobalt, and lithium in the alluvial and low terrace deposits in which groundwater occurs in the coarser sand and gravel intervals of Unit 2.

Details on groundwater data evaluation and monitoring well abandonments and installations (including wells installed for delineation) are provided in annual groundwater monitoring and corrective action reports (SCS 2018a, 2019, 2020, 2021). During the most recent reporting period, the Appendix IV constituents arsenic, lithium, and cobalt were noted at statistically significant levels (SSLs) above the GWPS as follows:

- Arsenic at monitoring wells GC-AP-MW-1, GC-AP-MW-5, GC-AP-MW-10, GC-AP-MW-14, GC-AP-MW-16, GC-AP-MW-17, and GC-AP-MW-18
- Cobalt at monitoring wells GC-AP-MW-1 and GC-AP-MW-11
- Lithium at monitoring wells GC-AP-MW-5, GC-AP-MW-10, GC-AP-MW-11, GC-AP-MW-12, GC-AP-MW-13, GC-AP-MW-14, GC-AP-MW-15, GC-AP-MW-16, GC-AP-MW-17, GC-AP-MW-18, and GC-AP-MW-21

Figure 2 depicts the extent of arsenic, cobalt, and lithium GWPS exceedances based on recent delineation data.

Delineation field activities included the installation and sampling of 11 wells located on 3 off-site properties adjacent to the Site. Assessment monitoring and delineation sampling events have shown exceedances of cobalt in 1 off-site delineation well and lithium in 4 off-site delineation wells.

3 Groundwater Remedy Selection

Groundwater remedy selection has occurred in two stages: completing an assessment of corrective measures to identify potentially feasible remedies for the Site after the initial determination that GWPSs have been exceeded, followed by a comprehensive evaluation of potential remedies to develop this specific remedy plan.

3.1 Assessment of Corrective Measures

In June 2019, the *Assessment of Corrective Measures* (ACM) was prepared pursuant to USEPA's CCR rule (40 CFR Part 257 Subpart D), ADEM's Admin. Code r. 335-13-15, and an Administrative Order issued by ADEM (AO 18-097-GW) to evaluate potential groundwater corrective measures for the occurrence of arsenic, cobalt, and lithium in groundwater at SSLs at the Site (Anchor QEA 2019a). This ACM was the first step in developing a long-term corrective action plan to address GWPS exceedances identified at the Site.

As described in the ACM, the following remedies were considered as potential groundwater corrective measures for the Site:

- Geochemical manipulation via injection of treatment solutions
- Monitored natural attenuation (MNA)
- Hydraulic containment (pump-and-treat)
- Permeable reactive barrier (PRB) walls
- Vertical barrier walls

3.2 Remedy Selection Criteria

The ACM was only the first step in the process for developing a groundwater remedy. The CCR rule contemplated that multiple potential remedies would be identified as potentially effective at achieving the corrective action objectives outlined in 40 CFR § 257.97(b) and ADEM Admin. Code r. 335-13-15-.06(8)(b). Thus, following the ACM, the Site must evaluate the remedial options using the following four factors in § 257.97(b)² and ADEM Admin. Code r. 335-13-15-.06(8)(b):

- (1) Be protective of human health and the environment.
- (2) Attain applicable GWPSs as specified in the rules.
- (3) Control the source(s) of the release so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment.

² As explained in Footnote 1 (Section 1.4), the 40 CFR § 257.97(b)(4) requirement to "remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible" is not applicable to the Site because there was no release of material as contemplated by the rule. Additionally, it is not evaluated as a performance standard for the proposed remedy.

(4) Comply with any relevant standards (i.e., all applicable RCRA requirements) for management of wastes generated by the remedial actions.

In selecting a remedy plan to meet the above performance criteria, consideration factors are set forth in 40 CFR § 257.97(c) and ADEM Admin. Code r. 335-13-15-.06(8)(c) to weigh which option(s) are most appropriate based on site-specific conditions. These factors include the following:

- (1) The long- and short-term effectiveness and protectiveness of the potential remedy(s), along with the degree of certainty that the remedy will prove successful based on consideration of the following
 - (i) Magnitude of reduction of existing risks
 - (ii) Magnitude of residual risks in terms of likelihood of further releases due to CCR remaining following implementation of a remedy
 - (iii) The type and degree of long-term management required, including monitoring, operation, and maintenance
 - (iv) Short-term risks that might be posed to the community or the environment during implementation of such a remedy, including potential threats to human health and the environment associated with excavation, transportation, and redisposal of contaminant
 - (v) Time until full protection is achieved
 - (vi) Potential for exposure of humans and environmental receptors to remaining wastes, considering the potential threat to human health and the environment associated with excavation, transportation, redisposal, or containment
 - (vii) Long-term reliability of the engineering and institutional controls
 - (viii) Potential need for replacement of the remedy
- (2) The effectiveness of the remedy in controlling the source to reduce further releases based on consideration of the following factors:
 - (i) The extent to which containment practices will reduce further releases
 - (ii) The extent to which treatment technologies may be used
- (3) The ease or difficulty of implementing a potential remedy(s) based on consideration of the following types of factors
 - (i) Degree of difficulty associated with constructing the technology
 - (ii) Expected operational reliability of the technologies
 - (iii) Need to coordinate with and obtain necessary approvals and permits from other agencies
 - (iv) Availability of necessary equipment and specialists
 - (v) Available capacity and location of needed treatment, storage, and disposal services
- (4) The degree to which community concerns are addressed by a potential remedy(s)

None of the factors identified in 40 CFR § 257.97(c) and 335-13-15-.06(8)(c) are given greater weight over others. After balancing the various factors, the rules provide facilities with discretion in selecting the final remedy plan, so long as it will achieve the remedial objectives in § 257.97(b) and 335-13-15-.06(8)(b). Therefore, faster and/or more aggressive technologies may not always make up the most suitable option for a Site.

The CCR rules do not establish a set time frame for a facility to evaluate potential remedies and develop a final remedy plan. 40 CFR § 257.97(a) and 335-13-15-.06(a) require an owner or operator to select a remedy "as soon as feasible," and 80 Federal Register 21407 explains USEPA declined to set a specific time frame for selecting a remedy. As described previously, the Site has had to secure off-site property access to complete delineation, performed multiple phases of investigation, and completed sampling and analysis to complete remedy evaluation.

3.3 Remedy Evaluation

As part of the ACM, some potential remedies were eliminated from consideration because they were technically infeasible. The ACM identified the following potentially feasible remedies for groundwater corrective measures for the Site:

- Geochemical manipulation via injection of treatment solutions
- MNA
- Hydraulic containment (pump-and-treat)
- PRB walls
- Vertical barrier walls

Since submittal of the ACM, desktop studies, field work, and laboratory studies have been performed to evaluate potential corrective measures for the Site. Results of these studies are summarized in the semiannual remedy selection progress reports (Anchor QEA 2019d, 2020a, 2020b, 2021).

The following provides details regarding the evaluation of each remedy relative to the considerations listed in 40 CFR § 257.97(c) and 335-13-15-.06(c).

3.3.1 Geochemical Manipulation via Injection of Treatment Solutions

Geochemical manipulation is retained as part of the planned remedy for the following reasons:

- Proven effectiveness for arsenic in field applications and effective for cobalt and lithium in laboratory treatability studies on CCR-impacted groundwater
- Suitable for spot (isolated area) treatment or creation of a linear treatment zone perpendicular to groundwater flow
- Compatible with and can enhance natural attenuation processes

Typical steps in a geochemical manipulation treatment include the following:

- Laboratory treatability studies to determine the optimum reagents, concentration, and dose
- Design, including spacing and depth of injection points, injection rates, travel time, and radius of influence, considerations of which are largely based on site hydrogeological characteristics and injection logistics
- Additional fine-scale delineation of the impacted area in the field
- Implementation of a field pilot test and remedial-effectiveness monitoring

Arsenic has been successfully treated in field applications under a broad range of site geochemical conditions, including adsorption to iron oxyhydroxides under oxidizing conditions (with and without pH adjustment) and sequestration in and on iron sulfide minerals created by injection. Both technologies are ferrous-sulfate-based, though sequestration in sulfide minerals includes the addition of a carbon source (e.g., molasses) as the sulfide process is mediated by naturally occurring iron-reducing bacteria. Mixed metal oxides containing iron, manganese, and magnesium have been successful for arsenic, lithium, and cobalt treatment in laboratory studies.

Especially for spot treatment, the area of impacts is typically better defined (delineated) prior to injection. The delineation may include collection of numerous groundwater samples through direct-push technology on a grid. Groundwater samples are screened with field test kits, with a subset of samples sent to an analytical laboratory for confirmation analyses.

3.3.2 Monitored Natural Attenuation

Extensive geochemical and related studies demonstrate that MNA is a viable corrective action for groundwater impacts associated with the Site. The preponderance of evidence indicates that Site conditions meet USEPA's requirements for MNA, specifically: area of impacts stable or shrinking, identified mechanisms for attenuation, stability of the attenuating mechanisms, sufficient aquifer capacity for attenuation, and time to achieve GWPSs reasonable as compared to other corrective action alternatives. The ACM identified alternative corrective measures, which is the last requirement should MNA not perform as expected. Injection treatments will be performed in areas with higher concentrations of COIs in groundwater; therefore, MNA is one component of corrective action, rather than a standalone remedy. The *Monitored Natural Attenuation Demonstration* report is included as Appendix D.

3.3.3 Hydraulic Containment (Pump-and-Treat)

Hydraulic containment is not recommended for the following reasons:

- Inefficiency due to groundwater not requiring treatment being drawn to the pumping wells
- High operation and maintenance requirements

- Long time required to achieve GWPS, likely beyond the post-closure period of 30 years (based on pore volume calculations)
- Low sustainability (excessive use of resources)

The Site has surface water bodies on three sides: the Black Warrior River to the north and south, and the barge canal connecting to the Black Warrior River to the east. An effective hydraulic containment (pump-and-treat) system would likely pull water from the surface water bodies into pumping wells and, ultimately, into the water treatment system. Treating large volumes of unimpacted groundwater would be inefficient and time-consuming.

Many pumping wells, extensive piping, and a water treatment system would be required to implement pump-and-treat at the Site. Pump-and-treat systems typically have high operation and maintenance requirements (USEPA 2002). These include keeping the wells, pumps, piping, and water treatment system in working order and replacing components as needed. Fouling of well screens and piping is not uncommon in Southeastern Coastal Plain settings such as the Site location. The Site often requires well cleaning and rehabilitation, and, under the most adverse conditions, replacement of the wells. Pumps and components of the water treatment system will need to be replaced periodically. In addition, water treatment for the three COIs at the Site will require an ongoing supply of water treatment chemicals such as ferric chloride and sodium hydroxide (for pH adjustment) and will produce a sludge that will need to be dewatered and disposed of properly. Water treatment systems usually require a full- or part-time operator.

Hydraulic containment (pump-and-treat) will likely not offer any time advantage to achieving GWPSs over geochemical manipulation and MNA due to the slow release of COIs from the aquifer solids. To be effective, many pore volumes of water would need to be passed over the aquifer solids to release the COIs. As part of feasibility studies for pump-and-treat for the Site, estimates of numbers of pore volumes to be pumped and treated range from 20 to 522, depending upon the COI. Natural attenuation is occurring at the Site, and pump-and-treat would operate against (essentially try to reverse) the natural processes already occurring. Pump-and-treat systems for inorganic constituents such as the COIs at the Site typically operate for decades.

Pump-and-treat is also one of the least sustainable groundwater corrective actions, as it requires extensive resources to implement and operate. These resources are expended for decades and include raw materials for the infrastructure, ongoing electricity use, water treatment chemicals, water treatment system operation, pump replacement, well redevelopment and maintenance, equipment maintenance, and laborers for monitoring and maintenance. Geochemical manipulation and MNA, however, are among the most sustainable groundwater corrective actions due to minimal infrastructure and relatively low operation and maintenance requirements.

3.3.4 PRB Walls

A PRB wall is a feasible corrective action for the site. However, it is not recommended for the following reasons:

- It is redundant with the vertical barrier (slurry) wall installed around the consolidated footprint of the CCR for source control.
- It would delay implementation of the groundwater remedy until groundwater flow directions are reestablished after closure activities.
- It does not address the impacted groundwater that has previously moved beyond the consolidated footprint of the CCR.
- It is more difficult to implement and has greater maintenance requirements than the selected remedies (geochemical manipulation via injections and MNA).
- Would require extensive and time-consuming replacement/reinstallation as treatment media were expended.
 - This would potentially create geochemical disruption or disequilibrium that could mobilize COIs and set back remedy progress.

As discussed in the ACM, a PRB wall treats groundwater as it flows through permeable reactive material in the wall or a portion of the wall (reactive gate). A vertical barrier wall is being installed at the Site around the consolidated CCR perimeter to impede further migration of impacted groundwater away from the source. Therefore, a PRB wall is not needed to prevent migration of COIs from the source.

A PRB wall relies on groundwater flow through the wall for treatment. Site closure activities, particularly construction of the vertical barrier wall and runoff pond, will alter groundwater flow magnitude and direction. Therefore, the optimum location and configuration of the PRB wall will not be known until groundwater flow direction stabilizes after construction is complete in 2026. Design and implementation of a PRB wall, therefore, would be delayed until at least 2026 (and probably longer). The selected remedies, geochemical manipulation and MNA, could be implemented prior to 2026.

Over the 57-year history of the Site, groundwater impacted with one particular COI (lithium) has migrated appreciable distances beyond the boundary of the consolidated footprint of the CCR. Though a PRB wall could prevent impacted groundwater from migrating off site, it would not treat existing impacted areas as effectively as the selected remedies, geochemical manipulation and MNA.

A PRB wall is more difficult to implement than the selected remedies and would require periodic maintenance. PRB walls typically require trenching and emplacement of reactive media in the trench through a slurry of some sort. At the Site, trenching would be required to depths up to 70 feet (possibly more), with the wall keyed into the chalk.

13

The reactive media in the PRB wall would be complex due to the different chemical properties of the three COIs. Laboratory treatability studies would need to be performed to determine the optimum media composition and life of the media. The media loses effectiveness with time (sorption properties diminish as COIs are captured) and would likely become fouled and less permeable, even before its reactivity was diminished. Therefore, reactive media must be replaced periodically based on laboratory studies and groundwater monitoring near the PRB wall.

3.3.5 Vertical Barrier Walls

As discussed in Section 1.3.2, the Site closure plan already incorporates a vertical barrier wall, and that will further source control objectives; therefore, developing a wall as part of a remedy plan was not necessary, although the presence and function of the wall are included in the overall remedy strategy.

4 Selected Groundwater Remedy

Since submittal of the ACM in June 2019 (Anchor QEA 2019a), extensive investigations have been performed to select effective corrective measures for COIs in groundwater at the Site. Semiannual status reports regarding investigation and evaluation have been submitted to ADEM and posted to the Site's CCR compliance webpage. Based on investigation and evaluation, the following combination of corrective measures are proposed to address GWPS exceedances at the site:

- Source control
 - Dewatering and consolidating the Site footprint by approximately 55%
 - Installing a low-permeability geosynthetic cover system over the consolidated footprint
 - Constructing a vertical subsurface cement-bentonite barrier wall around the consolidated Site footprint and extending it through the uppermost aquifer (Unit 2) and keying into the relatively impermeable chalk aquitard
- Geochemical manipulation
 - Injecting treatment solutions into areas exhibiting highest concentrations of arsenic,
 lithium, and cobalt to remove them from groundwater and immobilize them in situ
 - Monitoring treatment performance
- MNA
 - Establish no-exceedance boundary monitoring
 - Monitor concentration reduction and natural attenuation mechanisms
- Adaptive site management (ASM)
 - Routinely evaluate remedy system performance
 - Measure performance against interim performance standards (adaptive triggers)
 - Systematically reevaluate remedy system performance against adaptive triggers

As explained in the following subsections, the selected remedy plan meets the four performance standards of 40 CFR § 257.97(b) and ADEM Admin. Code r. 335-13-15-.06(8)(b) and will achieve the following:

- Be protective of human health and the environment.
- Attain the GWPS specified in the rules.
- Control the source of release to reduce or eliminate, to the extent feasible, further releases to the environment.
- Comply with any relevant standards (i.e., all applicable RCRA requirements) for management of wastes generated by the remedial actions.

As required by 40 CFR § 257.97(a) and ADEM Admin. Code r. 335-13-15-.06(8)(a), the following subsections describe the selected remedy.

4.1 Source Control

As discussed previously, a key component of the groundwater remedy plan for the Site is source control to prevent future releases to groundwater from the disposal unit. Figure 5 provides a generalized overview of the closure and source control measures. Closure/source control measures began in 2019 and are anticipated to continue through 2026. Figure 6 presents a general timeline depicting the closure schedule relative to implementation of the groundwater remedy. Source control will be accomplished by:

- 1. Dewatering and consolidating the CCR material to the northern portion of the existing Site and reducing the footprint from approximately 489 acres to approximately 221 acres and contained within dikes. Slopes will be graded to provide stability, promote drainage, and prevent ponding in the disposal area. As shown in Figure 6, dewatering and consolidation are anticipated to proceed into 2025.
- 2. Installing a low-permeability cement-bentonite vertical barrier wall extending through the uppermost aquifer and keyed into the existing underlying chalk layer. The vertical barrier wall will prevent the horizontal migration of impacted water from the Site area and virtually eliminate future releases to groundwater outside the barrier wall. Construction of the northern portion of the barrier wall was completed in 2021. The remainder of the barrier wall is scheduled for completion in 2026.
- 3. Placing final cover, consisting of an engineered synthetic turf and geomembrane, over the disposal area. The low-permeability cover system will promote and control runoff from the disposal area and prevent infiltration. Eliminating infiltration will prevent the mobilization of constituents within the disposal unit and further reduce the potential for future releases from the Site. The final cover will be installed after consolidation is complete and the slurry wall is installed. The planned installation of the final cover system is scheduled for 2026.

As shown in Figure 6, closure/source control measures will proceed for several years following implementation of the groundwater remedy at the Site. Closure activities are, in themselves, anticipated to change and improve groundwater quality by isolating the source area, preventing further releases, and changing groundwater flow conditions. These changes may result in short-term variability in groundwater quality as construction proceeds. These anticipated changes will be accommodated by the groundwater remedy strategy.

The closure and source control measures meet the requirements of 40 CFR § 257.97(b)(3) and 335-13-15-.06(8)(b)3 and will control the source of release to reduce or eliminate, to the extent feasible, further releases to the environment.

4.2 Geochemical Manipulation via Injections

Geochemical manipulation via subsurface injections is an in situ remediation technology for inorganic constituents in groundwater. In this technology, treatment solutions are injected to create solid precipitates, which remove COIs from groundwater during their formation and continue to sorb COIs on their surfaces over time. Geochemical manipulation for arsenic is well established and, due to geochemical similarities, should also be effective for cobalt. Geochemical manipulation is an emerging technology for lithium and has had significant technological development over the last 2 years (EPRI 2021).

Geochemical manipulation will be implemented at the Site in two phases as follows:

- Phase 1 (Pilot)
 - Identify four areas for treatment.
 - Complete bench-scale studies and identify optimum treatment solutions and doses.
 - Plan and install the injection and monitoring points.
 - Perform injections and monitor performance.
 - Evaluate injection results.
 - Adjust injectate, injection frequency, or locations as necessary.
 - Expand and adjust the system to meet objectives based on monitoring results.
- Phase 2
 - Identify additional areas for treatment (if needed).
 - Plan and install the injection and monitoring points based on Phase 1 (Pilot) results.
 - Perform injections and monitor performance.
 - Evaluate injection results.
 - Adjust injectate, injection frequency, or locations as necessary.
 - Expand and adjust the system to meet objectives based on monitoring results.

4.2.1 Injection Treatment Overview

Geochemical manipulation was selected because of its effectiveness, ease of implementation versatility (ability to treat more than one COI with the same treatment solution), ability to implement in areas with limited working space, and lack of byproducts that would require further treatment or disposal.

Effective injection treatment has been performed for arsenic in groundwater under variable geochemical conditions using iron-based treatment solutions (Anchor QEA 2017, 2018, 2019c, 2019e). In laboratory treatability studies conducted for the Electric Power Research Institute (EPRI) and large utility companies, mixed oxides of iron, manganese, and magnesium in solution were proven effective for arsenic, cobalt, lithium, and other constituents (EPRI 2021). Site-specific laboratory treatability studies using Site aquifer media and impacted groundwater will be performed

prior to field implementation of injection treatment. These studies will evaluate multiple viable treatment solutions and a range of doses.

After selection of the optimum treatment reagents and doses, injections will be performed in two phases: a field pilot phase and follow-up treatments as needed based on the results of the pilot injections and ongoing groundwater monitoring data. Areas with the highest concentrations of arsenic, lithium, and/or cobalt will be selected for field pilot studies (Figure 7). A requisite monitoring period (anticipated to be approximately 1 year) will follow the field pilot injections. This approach to injection treatment is consistent with ASM for corrective action.

As described in Section 1.3, site closure (source control) measures are expected to reduce concentrations of COIs in groundwater. Other areas with SSLs will be treated as needed in a second phase of injection based on groundwater monitoring data from the field pilots and ongoing sitewide monitoring. Depending upon the effectiveness of treatment, injections may need to be repeated periodically, though required time between injection treatments is expected to be years (based on other injection treatment precedents).

4.2.2 Site-Specific Injection Treatment Plan

Phase 1 (Pilot) injections will be performed through permanent injection wells. Phase 2 injections will be performed through permanent injection wells and/or direct-push technology, depending upon the results of the pilot program.

Existing monitoring wells will be used to monitor the effectiveness of the injection treatment. In addition, based on the hydraulics of the aquifer in the injection area, additional remedial-effectiveness monitoring wells will be installed at variable distances to demonstrate injection effectiveness. Monitoring parameters will include COIs and other indicator parameters based on the composition of the treatment solutions. Monitoring frequency will be based on the hydraulics of the aquifer in the areas of interest, distance of the monitoring wells from the line of injection, and associated travel time from the points of injection to monitoring wells.

A two-phase injection program will be implemented at the Site targeting areas with the greatest observed arsenic, cobalt, and lithium concentrations:

- Phase 1 (Pilot) will serve as the pilot testing to determine the optimum spacing for injection locations and evaluate the field performance of the treatment solutions. Based on observed results, adaptations will be made to injection location spacing and treatment solutions (if necessary) to optimize performance and attain desired reduction in constituent concentrations.
- Phase 2 will follow Phase 1 (Pilot) as needed and incorporate site-specific information as determined during Phase 1 (Pilot).

For Phase 1 (Pilot), four areas exhibiting the greatest concentrations of arsenic, cobalt, and lithium are targeted to evaluate the effectiveness of in situ injection treatment. Figure 7 identifies the four general areas at the Site where Phase 1 (Pilot) injections will be performed. Tentative anticipated Phase 2 injection areas are identified based on current site conditions and may be adjusted based on changes in groundwater chemistry that may occur because of closure activities, natural attenuation, and Phase 1 (Pilot) injection effectiveness.

Figures 8 through 15 provide details regarding the planned injection program in each Phase 1 (Pilot) area. The first figure for each injection area provides a plan view of the area identifying the existing monitoring well exhibiting elevated concentrations, locations of planned injection wells spaced approximately 15 feet apart and parallel to groundwater flow direction, and performance monitoring points installed approximately 10 feet downgradient of each injection point. The second figure for each injection area provides a cross-sectional depiction of the area and shows well configuration relative to location-specific geology.

Prior to installing Phase 1 (Pilot) injection wells, treatability studies and supplemental data collection must be performed to complete the formulation of the injection media. Supplementary data collection and evaluation activities planned to be completed as part of Phase 1 (Pilot) include the following:

- Collection of Site soils for batch and column studies from proposed Phase 1 (Pilot) injection areas
- Performance of laboratory treatability studies (batch and/or column tests) for geochemical manipulation
- Higher-resolution delineation of COIs in Phase 1 (Pilot) injection areas.

Laboratory treatability studies will be performed to formulate the treatment solution composition, dose, and sequencing (if sequencing is needed). Specifically, the following tasks are anticipated as part of Phase 1 (Pilot):

- Batch tests for reagent selection and sequencing
 - Combinations of iron, manganese, and/or magnesium salts at different concentrations mixed with impacted groundwater from the Site
 - Formulations are based on previous successful treatability studies.
 - Multiple formulations have been proven successful for arsenic in field applications and for lithium and cobalt in laboratory treatability studies.
 - Expected to take approximately 4 to 6 weeks, including post-batch data analysis
- Column tests
 - Apply treatment solution to Site soils based on batch tests.
 - Simulate injection and subsequent precipitation of reactive solids on the sand aquifer.

- Pump impacted groundwater through columns and measure arsenic, lithium, and cobalt in the effluent.
- After column tests, perform SSE on soil to determine the treated form of constituents and stability of treatment.
- Pump ambient groundwater through treated soils in columns to test for stability (remobilization).
- Column tests are expected to take approximately 12 weeks, including post-column data analysis.

Prior to implementing geochemical manipulation, the COIs in the injection areas will be further delineated with greater resolution and may include the following procedures:

- Collect groundwater samples through direct-push technology.
 - Sampling grid from impacted wells; holes on 10-foot spacings
 - Two or three depths within the Unit 2 aquifer, based on thickness
- Field filter as needed, based on visual observation.
- Screen samples with field test kits for arsenic, lithium, and cobalt; adjust sampling locations as needed.
- Geophysical techniques such as electrical resistivity may be performed over the anticipated treatment area. The geophysical survey would be performed again shortly after treatment. Due to the anticipated conductivity contrast between the treatment solution (higher conductivity) and ambient groundwater, geophysics may be useful in mapping the travel distance of the treatment solution and areal extent of the treatment zone (Halihan et al. 2009).
- Once delineation is refined, and wells are installed in each injection area, injections will be performed.

The monitoring program for each injection area is expected to include the following components:

- Pre-injection sampling from injection and monitoring wells to establish background
- Post-injection monitoring in select wells at intervals to determine treatment solution behavior, such as 2 days, 1 week, 1 month, 6 months, and annually thereafter (Frequency may be adjusted as needed based on data generated.)
- Sampling for the following constituents during each monitoring event:
 - Field parameters (temperature, pH, oxidation-reduction potential, and specific conductance)
 - Appendix IV constituents and treatment solution indicators such as iron, magnesium, and manganese (Combined radium-226 and -228 will be excluded from monitoring because it is not observed at elevated concentrations at the Site; thus, the burden of additional sample volume, specialized analysis, and additional analysis turnaround time is not warranted.)

Data loggers may be installed in select monitoring wells prior to injection to observe changes in groundwater chemistry for indicator parameters (e.g., pH, oxidation-reduction potential, and specific conductance) before, during, and after treatment. Due to the expected conductivity contrast between the treatment solution and groundwater, geophysical methods such as electrical resistivity imaging will be investigated to map the extent of the treatment zone.

4.3 Monitored Natural Attenuation

MNA has been a component of corrective action at RCRA and Comprehensive Environmental Response, Compensation, and Liability Act (Superfund) sites since the 1990s. MNA describes a range of physical, chemical, and biological processes in the environment that reduce the concentration, toxicity, or mobility of constituents in groundwater. For inorganic constituents, the mechanisms of natural attenuation include sorption, dispersion, precipitation, and ion exchange (USEPA 1999, 2007a, 2007b). MNA as a remedial alternative is dependent on a good understanding of localized hydrogeologic and geochemical conditions and may require considerable information and monitoring over an extended period of time.

4.3.1 MNA Overview

USEPA defines MNA as the "reliance on natural attenuation processes (within the context of a carefully controlled and monitored site cleanup approach) to achieve site-specific remediation objectives within a time frame that is reasonable compared to that offered by other more active methods" (USEPA 1999, 2015). An MNA evaluation consists of the following steps or tiers (USEPA 2015):

- 1. Demonstrate that the area of impacts (plume) is stable or shrinking.
- 2. Determine the mechanisms and rates of attenuation.
- 3. Determine that the capacity of the aquifer is sufficient to attenuate the mass of constituents in groundwater and that the immobilized constituents are stable and will not remobilize.
- 4. Design a performance monitoring program based on the mechanisms of attenuation and establish contingency remedies (tailored to site-specific conditions) should MNA not perform as expected.

Where site conditions are conducive to MNA, it has the potential to provide a more sustainable, lower-cost alternative to aggressive remediation technologies such as pump-and-treat. EPRI has prepared a document describing implementation of MNA for 24 inorganic constituents, which include most Appendix III and IV constituents (EPRI 2015).

Attenuation mechanisms can be placed in two broad categories, physical and chemical. Physical mechanisms include dilution, dispersion, flushing, and related processes. All constituents are subject to physical attenuation mechanisms, so physical processes should be considered in MNA evaluations.

When properly implemented, MNA removes constituents from groundwater and immobilizes them onto aquifer solids. Decisions to utilize MNA as a remedy or remedy component should be thoroughly supported by site-specific data and analysis (USEPA 1999, 2015). In addition, though not an MNA tier per se, source control is presumed to precede MNA implementation. Extensive MNA investigations were performed for the Site in 2020 and 2021 and are documented in the MNA demonstration report provided in Appendix D.

Site closure (dewatering, consolidation, and capping) and the associated barrier (slurry) wall will meet the MNA criteria for source control. As described in Section 1.3, the Site will be closed by consolidating the Site footprint from approximately 489 acres to approximately 221 acres. CCR removed from outside the consolidated footprint will be dewatered, excavated, and compacted within the consolidated footprint. All visible CCR and a portion of the subgrade soils will be excavated outside the consolidated footprint. A barrier wall will be constructed completely around the footprint of the consolidated CCR and tied into the relatively impermeable underlying chalk such that CCR will be encapsulated and isolated from contact with groundwater outside the barrier wall (Figures 2 and 3). The final cover of the consolidated footprint will have a permeability of 10⁻⁷ cm/sec or less and will be constructed to control and minimize or eliminate (to the extent possible) postclosure infiltration of precipitation into the waste and potential releases of CCR from the unit. Site closure and the associated barrier wall will effectively eliminate any future discharges to groundwater.

4.3.2 Site-Specific MNA Evaluation Summary

As described in greater detail in Appendix D, the trends observed in concentration versus time and concentration versus distance graphs provide evidence that natural attenuation is occurring at the Site. Several concentration versus time graphs indicate that arsenic, lithium, and/or cobalt concentrations are stable or are decreasing with time in some areas, even without source control. Also, concentration versus distance graphs along downgradient transects indicate these COIs are decreasing with distance from the Site. Isoconcentration maps for COIs from 2020 and 2021 were compared and show plume stability.

Based on the geochemical investigations, several lines of evidence support multiple attenuating mechanisms, depending upon the COIs. The major attenuating mechanisms include:

- Arsenic attenuation by sorption on and coprecipitation with iron oxides and, possibly, precipitation of barium arsenate
- Cobalt attenuation by incorporation into a cobalt-iron oxide
- Lithium attenuation by ion exchange on oxides and clay minerals

Rates of attenuation were determined by results of reactive transport modeling and by extrapolating decreasing trends on the concentration versus time graphs to the GWPS for areas where decreasing

trends were observed. Depending on the COIs and well/location, the estimated time to achieve natural attenuation ranges from 2 to 40 years, which is reasonable compared to durations of other corrective action technologies. Based on MNA case histories for inorganic constituents, MNA time frames typically range from a few years to decades (EPRI 2015). Because pond closure activities (consolidation and capping) at the Site are projected to take approximately 5 additional years, the time frame for MNA is compatible with the closure period.

Column studies were performed to assess the ability for the aquifer (soil) to chemically attenuate COIs and to help determine the stability of the attenuated COIs. Cobalt and lithium showed limited ability to sorb to the aquifer media based on column studies. However, these constituents are still subject to other attenuating mechanisms, such as physical attenuation (dispersion and flushing) and coprecipitation, as indicated by the concentration versus time graphs, concentration versus distance graphs, and geochemical studies.

Column studies indicate that arsenic is significantly attenuated by aquifer media, as arsenic in column effluent remained less than 13% of the influent concentrations. Arsenic attenuation capacity was extrapolated to the entire mass of the aquifer downgradient of the consolidated Site but within the property boundary. The extrapolation showed that the aquifer has an attenuating capacity of many more times the mass of arsenic requiring attenuation. SSE studies indicate that most of the mass of all three COIs occurs in the oxidizable and residual fractions, which are very stable attenuation phases.

Corrective action performance monitoring consists of two major components: 1) monitoring for sitewide corrective action, which would include MNA and the positive benefits of source control and geochemical manipulation (injections) at the Site scale; and 2) remedial-effectiveness monitoring for geochemical manipulation in the areas of injections. Sitewide monitoring applies to MNA because MNA will be implemented over the entire Site. Sitewide monitoring is described in Section 4.3.1.

4.3.3 Site-Specific MNA Plan

Implementation of MNA at the Site will be relatively easy. Most of the wells for MNA are already in place, though some additional wells will need to be installed to monitor progress in critical areas. The site-specific MNA plan will be composed of the following:

- A network of sentinel or clean-line monitoring points beyond the extent of GWPS exceedances. The clean-line network will consist of monitoring wells and surface water sampling locations and will be monitored to verify that GWPS exceedances do not occur at or beyond the locations.
- Monitoring wells located within the areas exhibiting GWPS exceedances. These wells will be monitored to verify attenuation mechanisms, document decreasing concentrations, calculate plume mass or mass flux, and provide monitoring data to demonstrate MNA effectiveness.

- A comprehensive data analysis and reporting plan identifying specific wells, performance standards and reporting procedures.
- Components of an ASM plan.

A key component of MNA is a detailed monitoring and reporting plan. Pursuant to 40 CFR § 257.98(a) and ADEM Admin. Code r. 335-13-15-.06(9)(a), a remedy and monitoring program must be implemented within 90 days of selecting a remedy. As documented in Appendix D, natural attenuation is already occurring at the Site. A comprehensive and specific MNA monitoring plan document will be developed within 90 days of this report. A conceptual summary of the anticipated MNA monitoring network is included in Figure 16.

MNA monitoring will primarily be accomplished by sampling MNA monitoring wells for the following list of constituents on a semiannual basis:

- Appendix IV constituents
- General parameters that influence geochemistry such as pH, temperature, oxidation-reduction potential, dissolved oxygen, and specific conductivity
- Natural attenuation indicator parameters specific to the identified attenuation mechanisms such as ferrous and ferric iron

Because MNA does not require design and construction of infrastructure other than new monitoring wells, the monitoring can be initiated within 6 months to a year. At least 1 year of groundwater monitoring data are recommended to establish baseline conditions and trends. The following provides a summary of the MNA implementation plan:

- Install additional monitoring wells
- Begin MNA-specific sampling and analysis
- Provide first MNA evaluation monitoring report describing initial conditions

4.4 Adaptive Site Management Plan

Changes in Site conditions are inevitable with the long-term performance of groundwater remedies. 40 CFR § 257.98(b) and ADEM Admin. Code r. 335-13-15-.06(9)(b) require an owner or operator to implement other methods or techniques if it is determined that compliance is not being achieved by the existing remedy. Remedy system performance will be proactively and systematically monitored against interim performance standards in accordance with the ASM plan to ensure compliance with 40 CFR § 257.98(b) and ADEM Admin. Code r. 335-13-15-.06(9)(b) requirements and provide a process for proactively responding to changing conditions. Details regarding implementation of the ASM will be included in the comprehensive *Corrective Action Groundwater Monitoring Plan*.

The ASM for the Site will include the following items:

- Implementing interim/short-term goals to measure system performance and progress toward long-term goals
- Evaluating remedy system performance against interim goals (adaptive triggers)
- Adapting when performance metrics are satisfied or interim goals are not met
- Updating Site conceptual model as new data become available
- Reevaluating and updating interim goals (adaptive triggers)
- Adapting the corrective action system, if necessary

The performance of the groundwater corrective action system at the Site will be subject to routine evaluation and, if necessary, adjustment as part of the ASM. Figure 17 presents the process that will be used to evaluate monitoring data, determine if performance objectives are met, and determine if adaptation of the corrective action system (CAS) is needed. Performance monitoring is an integral component of the ASM. Details regarding the performance monitoring systems, performance criteria, adaptive triggers, and evaluation criteria will be provided in the comprehensive *Corrective Action Groundwater Monitoring Plan* developed for the Site within 90 days pursuant to 40 CFR § 257.98(a) and ADEM Admin. Code r. 335-13-15-.06(9)(a).

The purpose of the ASM plan is to identify objective data targets that may be used to evaluate the effectiveness of the CAS. The ASM process is applicable at all stages of corrective action as follows (Figure 17):

- The CAS described herein will be implemented to address current conditions.
- Monitoring will occur and system performance will be evaluated with respect to interim and long-term performance standards (adaptive triggers) that signal a reevaluation of performance standards or adjustment to the CAS may be warranted.
- If monitoring indicates interim standards (adaptive triggers) have not been met, those performance standards will be reevaluated and a determination made regarding their continued suitability, if they need to be adjusted, or if the CAS needs to be adapted.
- Adjustments will be made to the adaptive triggers or CAS, as needed, to ensure that long-term (final) performance criteria and remedial goals are met.
- The conceptual site model will be updated as additional data are obtained.
- Implementation of the CAS, monitoring, and ASM plan will continue until the final long-term objectives are met.

4.4.1 Interim Performance Standards and Monitoring

The long-term performance standards for the CAS are defined in 40 CFR § 257.98(c) and ADEM Admin. Code r. 335-13-15-.06(9)(c): demonstrate compliance with the GWPS at all points that lie

beyond the groundwater monitoring system established under § 257.91 and 335-13-15-.06(2) for three consecutive years based on semiannual monitoring.

Interim performance standards and adaptive triggers are developed to evaluate the effectiveness of the CAS in furtherance to meeting the long-term performance standards. As described in Section 4, in addition to closure and source control, the CAS is composed of injection treatment and MNA. Monitoring frequency of CAS components will vary as described in the *Corrective Action Groundwater Monitoring Plan*. Performance monitoring reporting will occur at least semiannually.

Sections 4.4.1.1 and 4.4.1.2 provide details regarding interim and long-term performance standards incorporated into the performance monitoring plan.

4.4.1.1 Injection Treatment

Injection treatment is designed to remove constituents from groundwater by precipitation or sorption via a treatment solution injected into the area of impact.

The interim performance goal of the injection treatment system is to document a reduction in constituent concentrations in groundwater and distribution of the treatment solution within the Unit 2 aquifer. The long-term performance objective is to demonstrate sustained constituent concentration reductions after injection of treatment solution has ceased. As will be described in the *Corrective Action Groundwater Monitoring Plan,* a series of monitoring wells will be installed within the injection zones and will be monitored to demonstrate the performance of the injection system. The performance monitoring system will account for potential variability created during ongoing closure activities such as excavation and slurry wall construction.

4.4.1.2 Monitored Natural Attenuation

The long-term goal of MNA is to document that, in conjunction with source control and injection treatment, natural attenuation of the constituents is occurring. The MNA performance monitoring network and adaptive triggers will be described in detail within the *Corrective Action Groundwater Monitoring Plan*. As described by USEPA (2015), the four tiers of MNA can be summarized as:

- Tier 1: plume size/stability
- Tier 2: attenuation mechanisms and rates
- Tier 3: attenuation mechanism capacity and reversibility
- Tier 4: performance monitoring plan

The suitability of MNA has been demonstrated as described in Section 4.3.2 and Appendix D. The performance of the MNA (Tiers 1 through 3) will be monitored by evaluating the following:

• Source control mechanisms

- Section 1.3 describes how source control at the Site will be complete by way of consolidating the former Site footprint, installing a vertical barrier wall, and constructing the final cover system.
- Plume size and stability
 - The size and stability will be monitored by a network of groundwater monitoring wells within and around the perimeter of the area of groundwater exceedances (i.e., the plume). From a practical implementation standpoint, plume stability refers to an area of groundwater impacts that is not substantially expanding or adversely changing (by exhibiting new constituents or increasing mass). The interim performance standard for plume stability may be monitoring wells installed around the areas of groundwater impacts to exhibit trends that are statistically steady or decreasing and for no new SSLs to occur within the plume area. The long-term performance objective is for statistically decreasing trends, continual reduction in the number or SSLs in the MNA performance monitoring network, a reduction in size of the plume, and/or a reduction in magnitude of COIs within the plume.
- Plume mass and mass reduction
 - MNA performance relative to Tier 2 criteria for attenuation mechanisms and rates and Tier 3 criteria for attenuation capacity and reversibility may be demonstrated by monitoring the mass of each COI within the plume area and documenting changes in mass over time. Steady or decreasing mass indicates that attenuation mechanisms continue to be effective, attenuation capacity remains, and attenuation mechanisms have not reversed. The interim performance standard for mass reduction is for monitoring wells installed in and around the areas of groundwater impacts, in aggregate, to exhibit statistically steady or decreasing mass. Per USEPA guidance, mass flux across transects (cross sections) located in meaningful areas will also be calculated. The long-term performance objective is to demonstrate COI concentration decline to below GWPS and reduce COI mass.

Adjustments to the MNA performance monitoring network will be made as MNA proceeds.

4.4.2 Adaptive Triggers

Detailed performance monitoring requirements for each component of the CAS will be included in the *Corrective Action Groundwater Monitoring Plan*. Included in the performance monitoring plan will be the objective performance standards that serve as adaptive triggers. Should the performance standards and cAS are warranted.

4.4.3 Corrective Action System Adaptation

If it is determined that the performance objectives are appropriate and that the CAS is not achieving the interim or long-term goals, then the CAS may be adapted, optimized, or changed. Within a reasonable time, depending on complexity and need, changes to the CAS and associated workplan or implementation schedule will be provided. A semiannual report describing the progress made adapting the CAS will be completed and placed in the operating record as required by 40 CFR § 257.105(h)(12) and 335-13-15-.08(1)(h)(12). Amendments to this *Groundwater Remedy Selection Report* and the *Corrective Action Groundwater Monitoring Plan* will also be completed and placed in the operating record as 335-13-15-.08(1)(h)(12).

5 Remedy Performance Requirement Demonstration

As previously discussed, as required in 40 CFR § 257.97(b) and ADEM Admin. Code r. 335-13-15-.06(8)(b), the groundwater remedy for the Site must meet the following performance standards:

- (1) Be protective of human health and the environment.
- (2) Attain applicable GWPSs as specified in the rules.
- (3) Control the source of release to reduce or eliminate, to the extent feasible, further releases to the environment.
- (4) Comply with any relevant standards (i.e., all applicable RCRA requirements) for management of wastes generated by the remedial actions).

The following describes how the selected remedy plan meets the performance requirements of 40 CFR § 257.97(b) and 335-13-15-.06(8)(b).

5.1 Protection of Human Health and the Environment

A remedy is protective of human health and the environment when a quantitative risk assessment, conducted according to well-supported scientific principles, demonstrates that chemicals in relevant environmental media are at or below regulatory and/or health-based benchmarks for human health and the environment. Quantitative risk assessment approaches and the derivation of health-based benchmarks may vary by the competent authority or regulatory application. The State of Alabama has several reports that provide specific guidance on risk assessment approaches and the selection/derivation of appropriate health-based benchmarks for chemicals in groundwater and in surface water that will be protective of human health and the environment

Current conditions are protective of human health and the environment. The proposed remedy plan will improve groundwater quality and result in a reduction in concentrations; therefore, the proposed remedy will be protective of human health and the environment as required by 40 CFR § 257.97(b)(1) and 335-13-15-.06(8)(b)(1).

5.2 Attain Groundwater Protection Standard Requirements

As stated in 40 CFR § 257.97(b)(2) and 335-13-15-.06(8)(b)(2), a groundwater remedy plan must be able to attain the GWPS specified in the rules. As described in this report, a three-pronged approach will be used to achieve the GWPS. A significant component of the groundwater remedy plan is the closure and source control measures being implemented at the Site. The combination of CCR consolidation dewatering, construction of a vertical barrier wall, and installation of a low-permeability geosynthetic cover system will prevent further release to the environment.

Injection treatment of areas with significantly elevated concentrations of constituents will reduce concentrations by creating precipitates (solids) that remove COI from the groundwater. Injection

treatment was based on successful field treatments for arsenic and successful laboratory treatability studies from other sites for cobalt and lithium (Anchor QEA 2017, 2018, 2019b, 2019c; EPRI 2021). Effectiveness of injection treatments will be evaluated in the context of decreasing trends from source control and natural attenuation. If warranted, injection treatments will be repeated on a frequency determined to be necessary based on remedial-effectiveness monitoring data.

Finally, as discussed in Section 4.3.2 and Appendix D, the plume area is currently being attenuated, and concentrations are declining as a result of natural attenuation processes. In concert with closure/source control and treatment injections, MNA will continue until constituent concentrations are below the GWPS. Closure activities and injection treatments will serve to enhance the already-occurring natural attenuation.

Remedy evaluation has demonstrated that actions proposed for the Site result in decreasing concentrations in groundwater (Appendix D). Decreasing concentrations will ultimately result in constituents occurring at concentrations below the GWPS. Therefore, as required by 40 CFR § 257.97(b)(2) and 335-13-15-.06(8)(b)(2), the groundwater remedy plan will be able to attain the GWPS specified in the rules.

Depending on constituent and well (location), the estimated time to achieve GWPSs from natural attenuation ranges from 2 to 40 years, which is reasonable compared to durations of other corrective action technologies. Pump-and-treat for inorganic constituents, for example, typically takes decades because that process must reverse the natural attenuation processes already operating by desorbing constituents from aquifer solids by passing many pore volumes (sometimes hundreds) through the aquifer. Supporting information for time to attain GWPSs, including concentration versus time and concentration versus distance graphs, is included in Appendix D. Source control and geochemical manipulation (injections) are expected to accelerate this time frame, particularly in areas where little attenuation is currently observed.

5.3 Control Sources of Releases

As discussed in Section 4.1, Site closure will eliminate potential discharges to groundwater as required by 40 CFR § 257.97(b) (3) and ADEM Admin. Code r. 335-13-15-.06(8)(b) (3). Review of Site hydrogeologic data demonstrates that the Site is separated from the uppermost aquifer by a low-permeability clay soil. Source control will be accomplished by:

1. Dewatering and consolidating the CCR material to the northern portion of the existing Site and reducing the footprint from approximately 489 acres to approximately 221 acres and contained within dikes. Slopes will be graded to provide stability, promote drainage, and prevent ponding in the disposal area. As shown in Figure 6, dewatering and consolidation are anticipated to proceed into 2025.

- 2. Installing a low-permeability cement-bentonite vertical barrier wall extending through the uppermost aquifer and keyed into the existing underlying chalk layer. The vertical barrier wall will prevent the horizontal migration of impacted water from the Site area and virtually eliminate future releases to groundwater outside the barrier wall. Construction of the northern portion of the barrier wall was completed in 2021. The remainder of the barrier wall is scheduled for completion in 2026.
- 3. Placing final cover, consisting of an engineered synthetic turf and geomembrane over the disposal area. The low-permeability cover system will promote and control runoff from the disposal area and prevent infiltration. Eliminating infiltration will prevent the mobilization of constituents within the disposal unit and further reduce the potential for future releases from the Site. The final cover will be installed after consolidation is complete and the slurry wall is installed. The planned installation of the final cover system is scheduled for 2026.

The closure activities are, in themselves, anticipated to improve groundwater quality by isolating the source area, preventing infiltration of water, minimizing the mobilization of constituents, and impeding release to the environment. The closure and source control measures meet the requirements of 40 CFR § 257.97(b)(3) and ADEM Admin. Code r. 335-13-15-.06(8)(b)(3) and will control the source of release to reduce or eliminate, to the extent feasible, further releases to the environment.

5.4 Standards for Waste Management

As specified in requirements of 40 CFR § 257.97(b)(5) and ADEM Admin Code r. 335-13-15-.06(8)(b)(5), any waste must be handled and disposed according to all applicable requirements under RCRA. Specifically, any liquid or solid waste generated must be handled and disposed according to applicable regulations in 40 CFR parts 239 through 282 and ADEM Admin. Code chapters 335-13-1 through 335-13-16.

Based on the technologies selected, very little waste will be generated. Waste may be generated by additional well installations, completing injections, and monitoring. All waste generated during completion of the remedy will be handled and disposed according to RCRA requirements for the type of waste. Therefore, the remedy plan meets the requirements of 40 CFR § 257.97(b)(5) and ADEM Admin. Code r. 335-13-15-.06(8)(b)(5) for managing waste generated by the remedy.

As demonstrated here, the groundwater remedy plan meets the performance criteria of 40 CFR § 257.97(b) and ADEM Admin. Code r. 335-13-15-.06(8)(b).

6 Corrective Action Groundwater Monitoring Program

As required by 40 CFR § 257.98(a) and ADEM Admin. Code r. 335-13-15-.06(9)(a), the owner/operator must implement the groundwater remedy within 90 days of selecting a remedy, including establishing a corrective action groundwater monitoring program that 1) meets the assessment monitoring requirements of § 257.95 and 335-13-15-.06(6); 2) documents the effectiveness of the remedy; and 3) demonstrates compliance with the GWPS. A conceptual groundwater monitoring network is shown in Figure 16.

Assessment monitoring of the certified groundwater monitoring network must continue pursuant to 40 CFR § 257.96(b) and ADEM Admin. Code r. 335-13-15-.06(7)(b). The corrective action groundwater monitoring program will include groundwater monitoring requirements for:

- Assessment monitoring of the certified CCR compliance groundwater monitoring network
- An injection treatment system
 - Injection performance
 - ASM
- MNA
 - Attenuation mechanisms, plume reduction, and mass/concentration reduction
 - ASM
 - Sentinel/clean-line boundary monitoring

Within 90 days of selecting a remedy, a corrective action groundwater monitoring program will be developed that describes the following in detail:

- Sample locations
- Monitoring schedule
- Monitoring parameters
- Data analysis methods
- Interim adaptive standards (for ASM)
- Reporting and notification requirements

Following implementation of the ACM, several wells were installed to complete delineation and have been monitored semiannually pursuant to 40 CFR § 257.95(g)(1) and ADEM Admin. Code r. 335-13-15-.06(6)(g)(2). Ongoing monitoring of certain delineation monitoring wells may be discontinued when the final corrective action groundwater monitoring program is developed.

Sentinel/clean-line boundary monitoring points will be located between known GWPS exceedances and the property boundary or potential receptors. These wells will be sampled at the same frequency as the CCR compliance monitoring wells. Conceptual sentinel/clean-line monitoring points are shown in Figure 18. Adaptive triggers could include statistically increasing trends for multiple events and verified GWPS exceedances at clean-line boundary monitoring points.

Remedy performance monitoring wells will be used to evaluate the combined effects of source control (Site closure), injection treatment, and MNA. Conceptual remedy performance monitoring wells are shown in Figure 19. Adaptive triggers could include statistically increasing trends above the GWPS for multiple events after barrier wall construction is complete.

APC will take an ASM approach to MNA and other corrective action at the Site. Adaptive triggers will be developed, and additional actions (monitoring, analysis, and/or corrective action) will be implemented as needed. These details will be provided in the Site *Corrective Action Groundwater Monitoring Plan* to be submitted 90 days after submission of this *Groundwater Remedy Selection Report*.

During closure and dewatering, the pond-groundwater system will be in a state of geochemical disequilibrium, leading to potential temporary increases in COI concentrations at some locations. Additionally, temporary increases could occur as the subsurface is disturbed by barrier wall construction, injections, and possible localized changes in groundwater flow direction.

7 Schedule

The following factors were considered when determining the schedule for remedial activities as required by 40 CFR § 257.97(d)(1 through 5) and ADEM Admin. Code r. 335-13-15-.06(8)(d)(1 through 5):

- Extent and nature of exceedances
- Reasonable probabilities of remedial technologies in achieving compliance with CCR rule GWPSs and other objectives of the remedy
- Availability of treatment or disposal capacity for CCR managed during implementation of the remedy (not applicate for the Site)
- Potential risks to human health and the environment from exposure to contamination prior to completion of the remedy
- Resource value of the aquifer

In accordance with 40 CFR § 257.97(d) and ADEM Admin. Code r. 335-13-15-.06(8)(d), the following schedules are provided for implementing and completing remedial activities at the Site.

7.1 Site Closure and Source Control

Site closure and source control activities are currently being implemented and are expected to be completed as shown in the timeline in Figure 6. Anticipated project milestones are as follows:

- May 2025: CCR consolidation complete
- February 2026: barrier wall installation complete
- April 2026: final cover installation complete
- November 2026: Site closure certification complete

7.2 Injection Treatment

The anticipated injection treatment implementation schedule is included below and summarized in Figure 20.

For treatability studies and the Underground Injection Control (UIC) permit, the following schedule is anticipated:

- Collect soil and groundwater samples for treatability studies: 2 months
- Conduct batch studies for reagents and doses: 4 to 6 weeks
- Conduct column studies for effectiveness: 3 months
- Prepare Class V UIC permit: 3 months

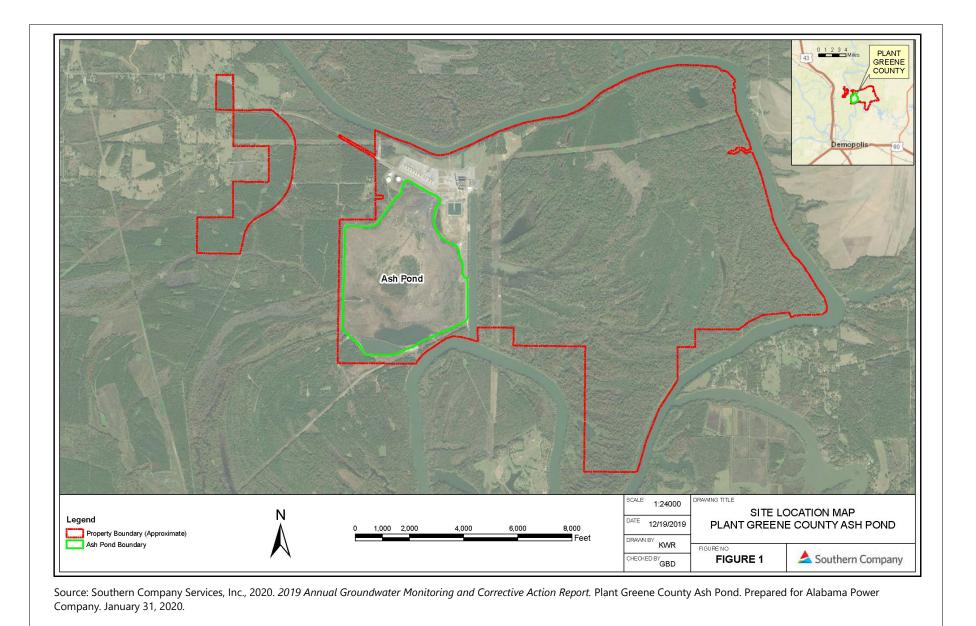
After securing the proper ADEM UIC permit, the following schedule is anticipated:

• Design field implementation of injection treatment: 3 months

- Refine delineation in the field: 1 month
- Phase 1 (Pilot): field implementation (well installation and injections): 4 months
- Phase 1 (Pilot): collect and analyze remedial-effectiveness monitoring data: 15 months
- Phase 2 injections: field implementation: 4 months
- Phase 2 injections: collect and analyze remedial-effectiveness monitoring data: 15 months

7.3 Monitored Natural Attenuation

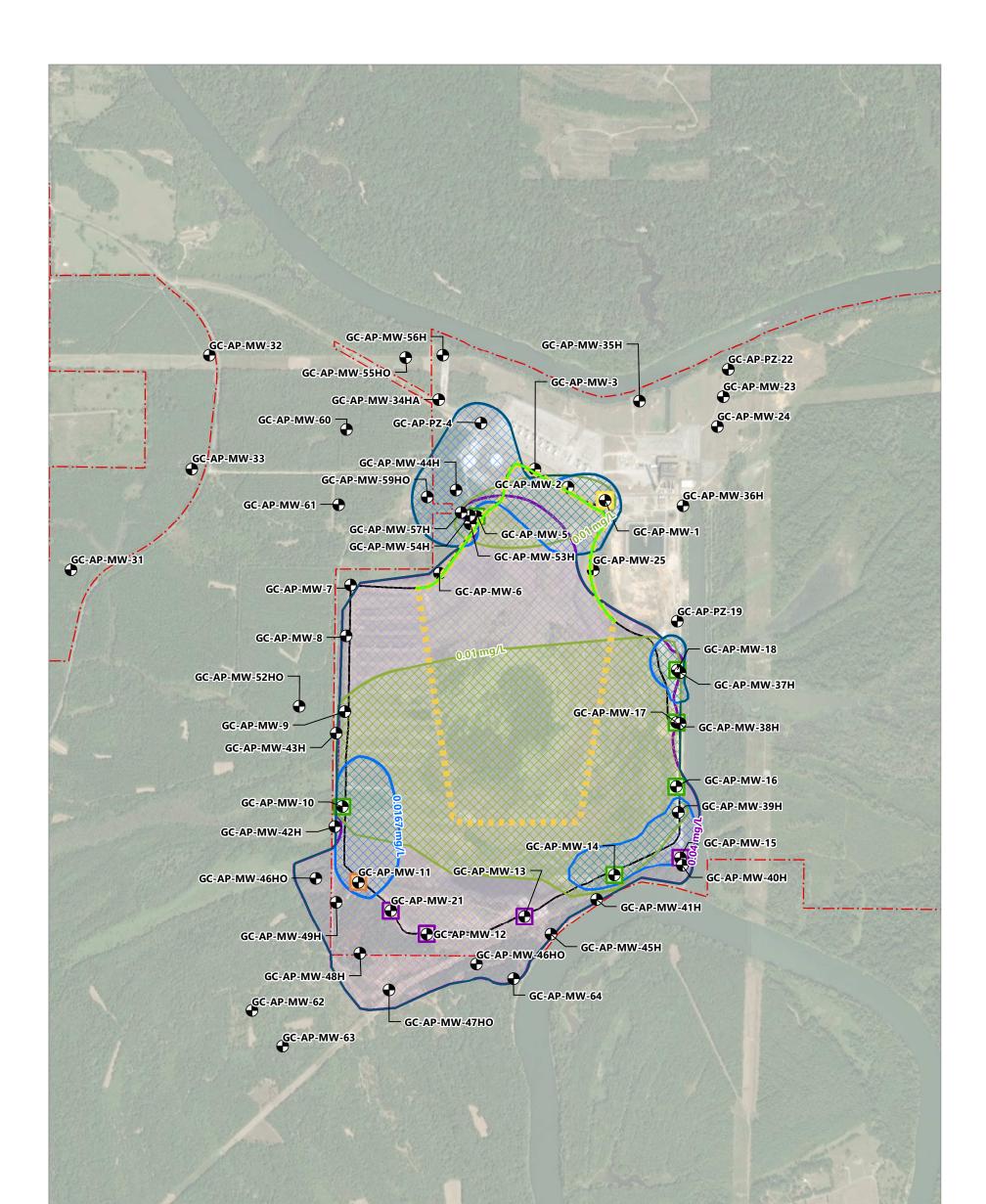
Strictly speaking, the MNA process is currently being implemented at the site, although a formalized process to evaluate and document the process has not been established. MNA will be implemented by establishing the detailed MNA sampling, analysis, and evaluation plan in 90 days as part of the groundwater remedy monitoring plan. Implementation of the MNA program is anticipated to include the following:

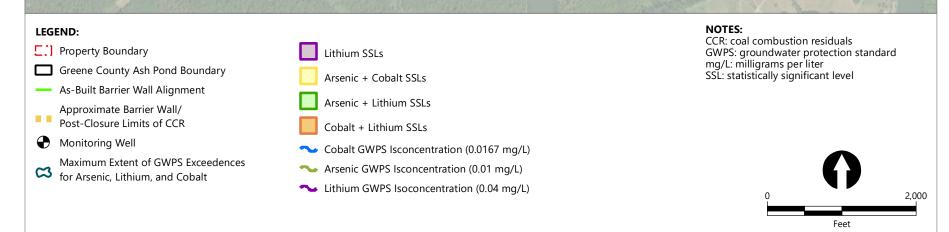

- Install additional no-exceedance and remedial-effectiveness monitoring wells (at an estimated 17 locations, to take 3 to 4 weeks)
- Coordinate MNA sampling with the first semiannual compliance sampling event after new well installation
- Collect and analyze baseline data: 1 year
- Remedy complete: depending on area, 2 to 40 years after Site closure is complete

8 References

- Anchor QEA (Anchor QEA, LLC), 2017. *Remedial Action Plan Final Report Lynn Haven Pilot Test*. Lynn Haven Retired Substation. Prepared for Gulf Power Company. May 2017.
- Anchor QEA, 2018. *Lynn Haven Full Site Remedy Post-Construction Report*. Lynn Haven Retired Substation. Prepared for Gulf Power Company. October 2018.
- Anchor QEA, 2019a. *Assessment of Corrective Measures*. Greene County Ash Pond. Prepared for Alabama Power Company. June 2019.
- Anchor QEA, 2019b. *Bench-Scale Study Results and Field-Scale Pilot Test Work Plan.* Former St. Andrews Substation Site. Prepared for Gulf Power Company. August 2019.
- Anchor QEA, 2019c. *Lynn Haven Third Quarterly Remediation Monitoring Report*. Lynn Haven Retired Substation. Prepared for Gulf Power Company. October 2019.
- Anchor QEA, 2019d. *Semi-Annual Remedy Selection and Design Progress Report*. Plant Greene County Ash Pond. Prepared for Alabama Power Company. December 2019.
- Anchor QEA, 2020a. Semi-Annual Remedy Selection and Design Progress Report. Plant Greene County Ash Pond. Prepared for Alabama Power Company. June 2020.
- Anchor QEA, 2020b. *Semi-Annual Remedy Selection and Design Progress Report*. Plant Greene County. Prepared for Alabama Power Company. December 2020.
- Anchor QEA, 2021. *Semi-Annual Remedy Selection and Design Progress Report.* Plant Greene County. Prepared for Alabama Power Company. June 2021.
- APC (Alabama Power Company), 2020. *Amended Closure Plan for Ash Pond*. Plant Greene County. April, 2020.
- EPRI (Electric Power Research Institute), 2015. *Corrective Action for Closed and Closing Ash Ponds*. Final Report. 3002006292. December 2015.
- EPRI, 2021. Corrective Action Technology Profile: Permeable Reactive Zones for Groundwater Remediation at Coal Combustion Product Landfills and Impoundments. 3002021966. 2021.
- Halihan, T., S. Comfort, and V. Zlotnik, 2009. Using Electrical Resistivity Imaging to Evaluate Permanganate Performance During an In Situ Treatment of a RDX-Contaminated Aquifer. Environmental Security Technology Certification Program. August 2009.

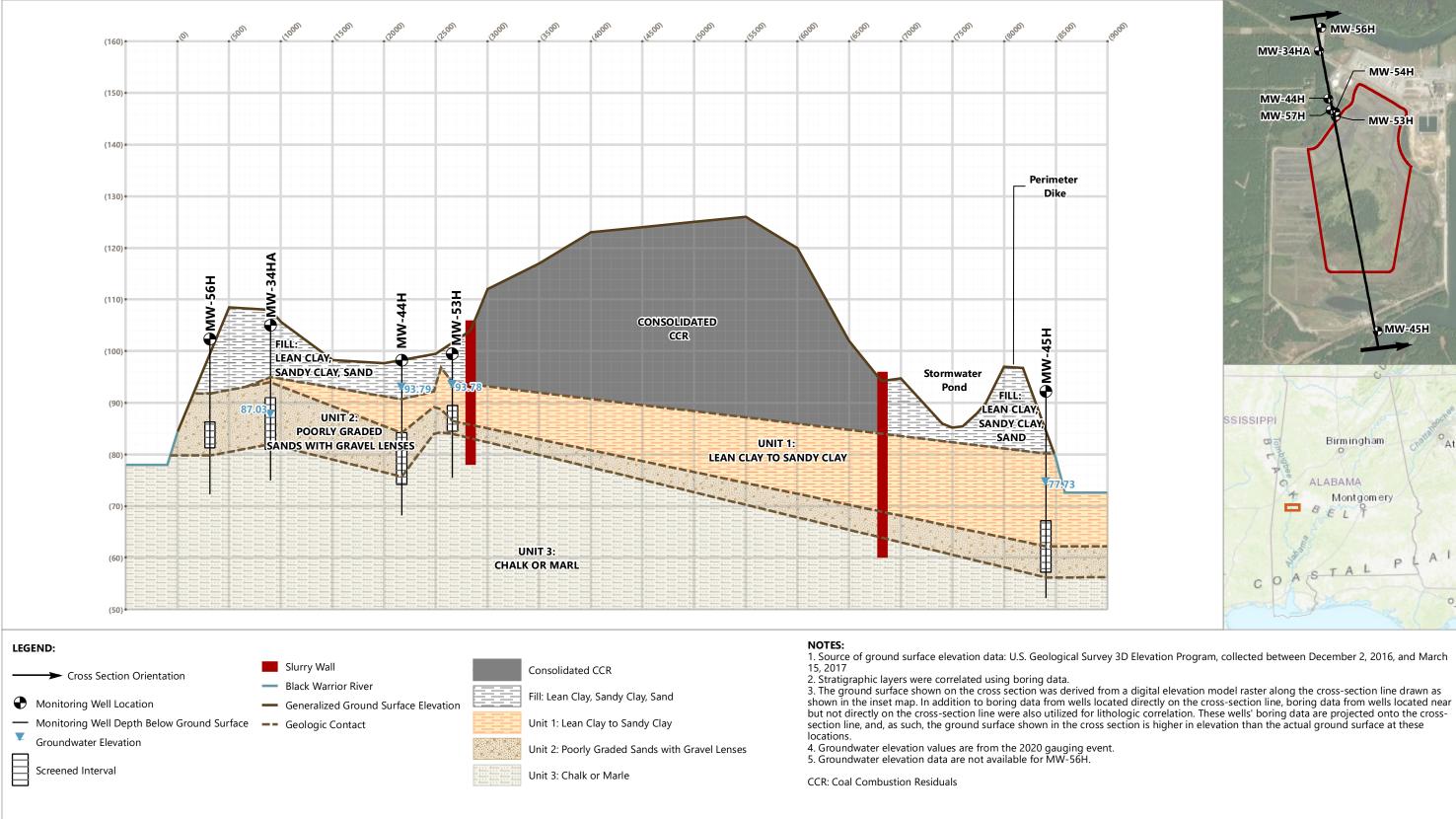
- Sadler, L.Y., M.B. Rahnama, and G.P. Whittle, 1992. "Laboratory Measurement of the Permeability of Selma Chalk Using an Improved Experimental Technique." *Hazardous Waste and Hazardous Materials* 9(4):331-343. DOI: 10.1089/hwm.1992.9.331.
- SCS (Southern Company Services, Inc.), 2018a. 2017 Annual Groundwater Monitoring and Corrective Action Report. Plant Greene County Ash Pond. Prepared for Alabama Power Company. January 31, 2018.
- SCS, 2018b. *Facility Plan for Groundwater Investigation*. Plant Greene County Ash Pond. Prepared for Alabama Power Company. October 2018.
- SCS, 2019. *2018 Annual Groundwater Monitoring and Corrective Action Report*. Plant Greene County Ash Pond. Prepared for Alabama Power Company. January 31, 2019.
- SCS, 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report. Plant Greene County Ash Pond. Prepared for Alabama Power Company. January 31, 2020.
- SCS, 2021. 2020 Annual Groundwater Monitoring and Corrective Action Report. Plant Greene County Ash Pond. Prepared for Alabama Power Company. January 31, 2021.
- USEPA (U.S. Environmental Protection Agency), 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. USEPA Office of Solid Waste and Emergency Response Directive 9200.4-17P. April 1999.
- USEPA, 2002. *Elements for Effective Management of Operating Pump and Treat Systems*. 542-R-02-009, USEPA Office of Solid Waste and Emergency Response Directive 9355, 4-27FS-A, 22. December 2002.
- USEPA, 2007a. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 1 Technical Basis for Assessment. EPA/600/R-07/139. October 2007.
- USEPA, 2007b. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 2 – Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium. EPA/600/R-07/140. October 2007.
- USEPA, 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. USEPA Office of Solid Waste and Emergency Response Directive 9283.1-36. August 2015.
- USGS (U.S. Geological Survey), cartographer, 2018. Demopolis Quadrangle Alabama, 7.5-Minute Series (topographic map): USGS.


Figures



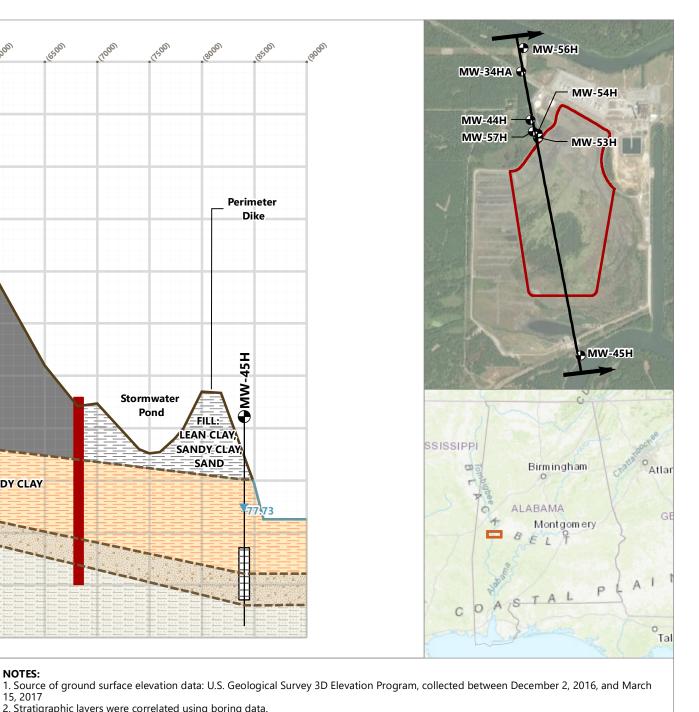
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\Remedy Selection Reports\Greene\Figures\Figure 1 - Site Location.docx

Figure 1 Site Location Map Groundwater Remedy Selection Report Plant Greene County

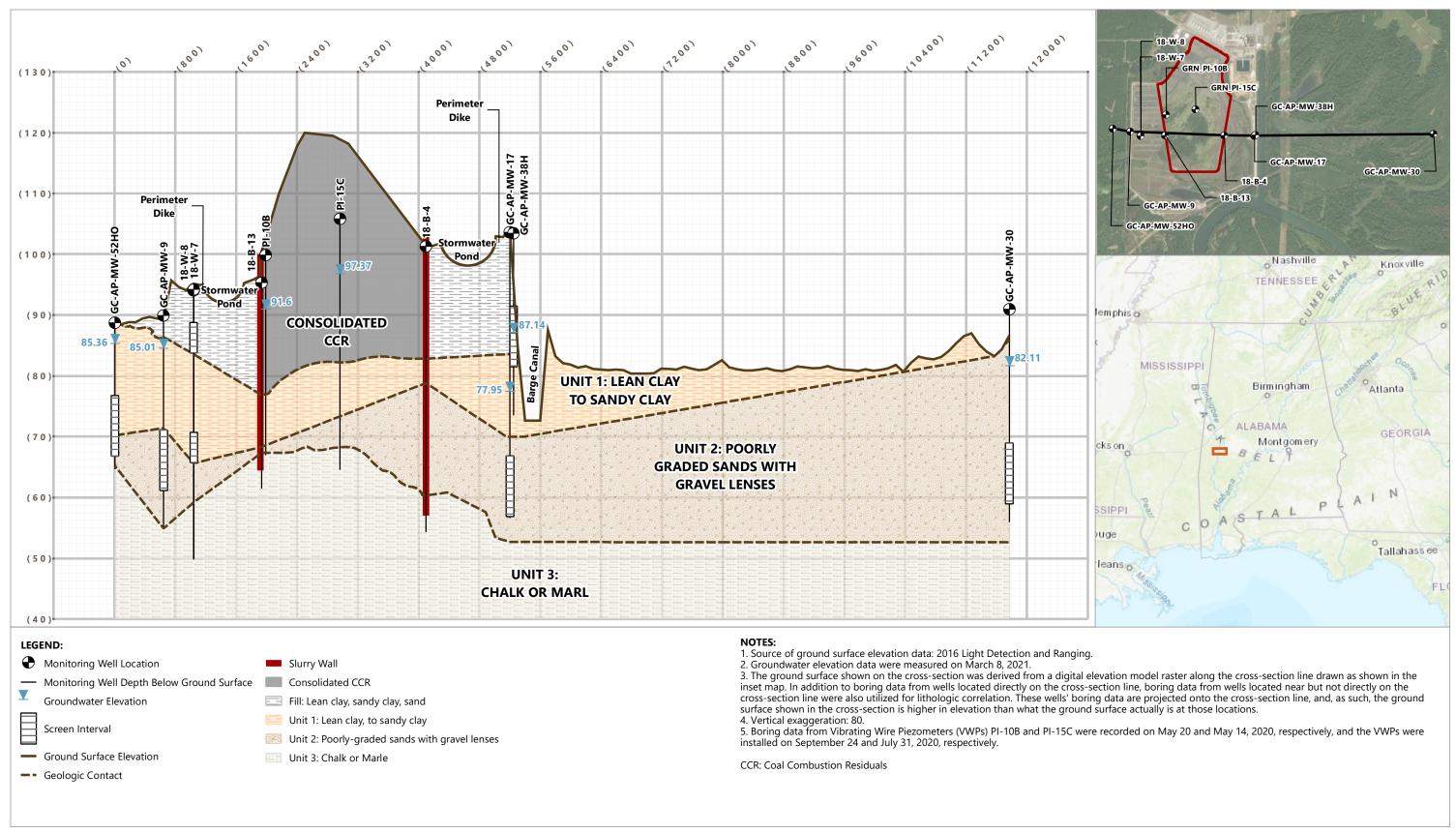


Publish Date: 2021/09/28, 2:10 PM | User: epipkin

 $Filepath: Q: Vobs \\ Southern Company \\ 1114 \\ Greene County \\ Maps \\ 2021 \\ Groundwater \\ Remedy \\ Selection \\ Report \\ 02 \\ GC \\ CMP \\ Site \\ Layout \\ Map \\ mxd \\ Map \\ Ma$

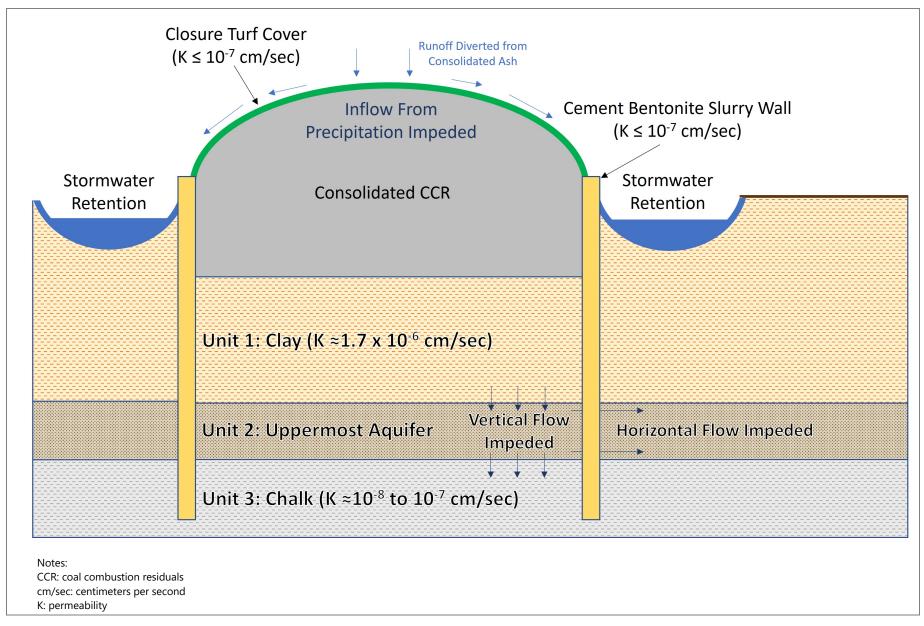

Figure 2 Site Layout Map

Publish Date: 2021/09/29, 9:29 AM | User: jquinley


Filepath: \\orcas\GIS\obs\SouthernCompany_1114\GreeneCounty\Maps\2021_Groundwater_Remedy_Selection_Report\10_GC_CMP_xSection_NS.mxd

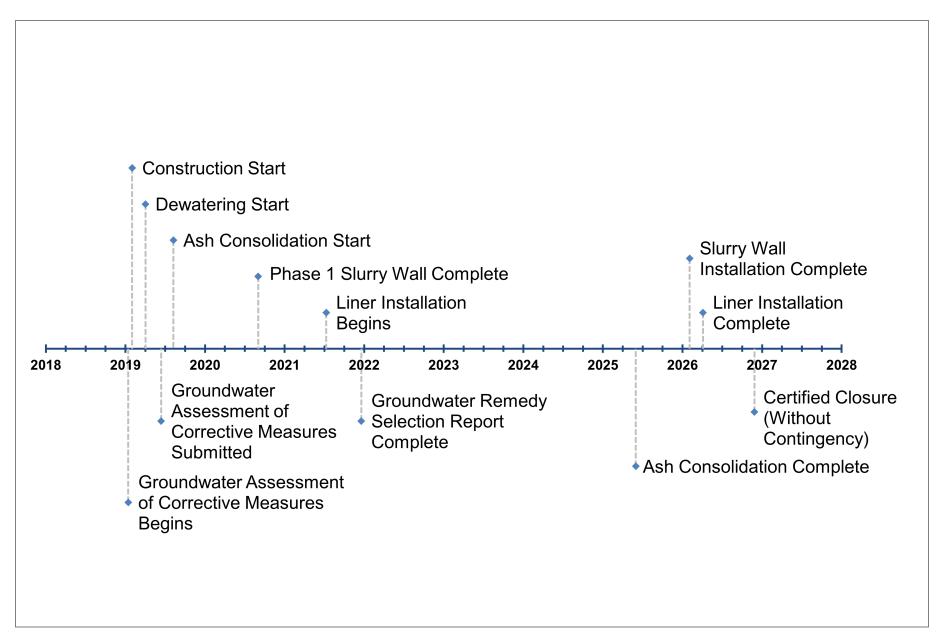
but not directly on the cross-section line were also utilized for lithologic correlation. These wells' boring data are projected onto the crosssection line, and, as such, the ground surface shown in the cross section is higher in elevation than the actual ground surface at these

> Figure 3 **Conceptual Cross Section (North-South)**

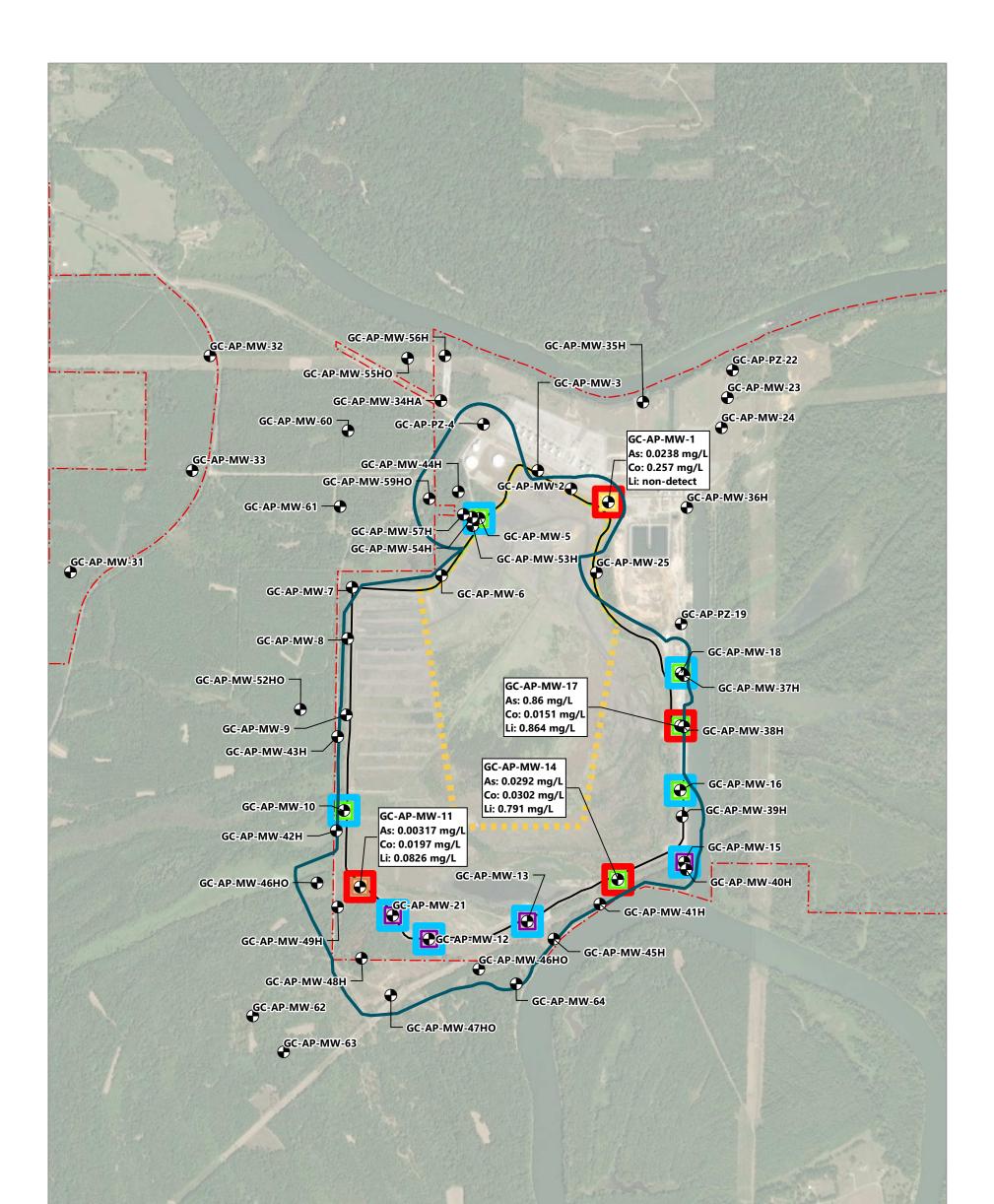


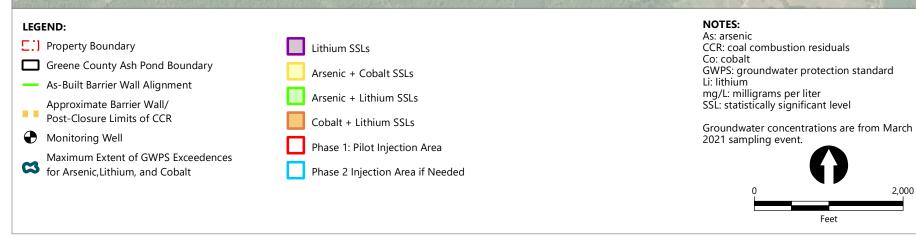
Publish Date: 2021/09/29, 9:36 AM | User: jquinley

 $\label{eq:constraint} Filepath: \constraint \constraint \constraint} Filepath: \constraint \constraint \constraint \constraint} Filepath: \constraint \constrain$


Figure 4 Conceptual Cross Section (East-West)

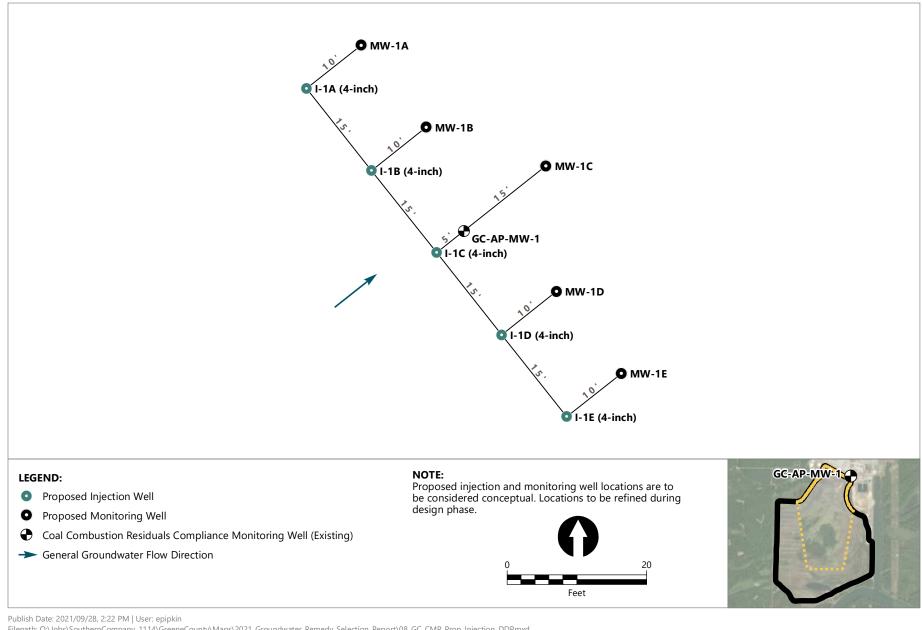
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\Remedy Selection Reports\Greene\Figures\Figures - Generalized Cross Section.docx


Figure 5 Generalized Cross Section

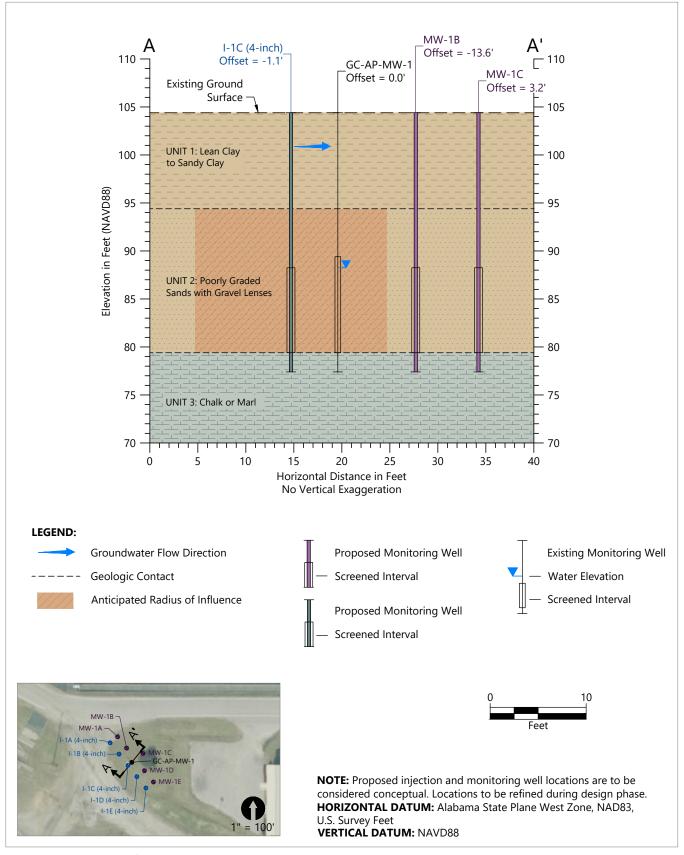


Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\Remedy Selection Reports\Greene\Figures\Figure 6_Closure Timeline.docx

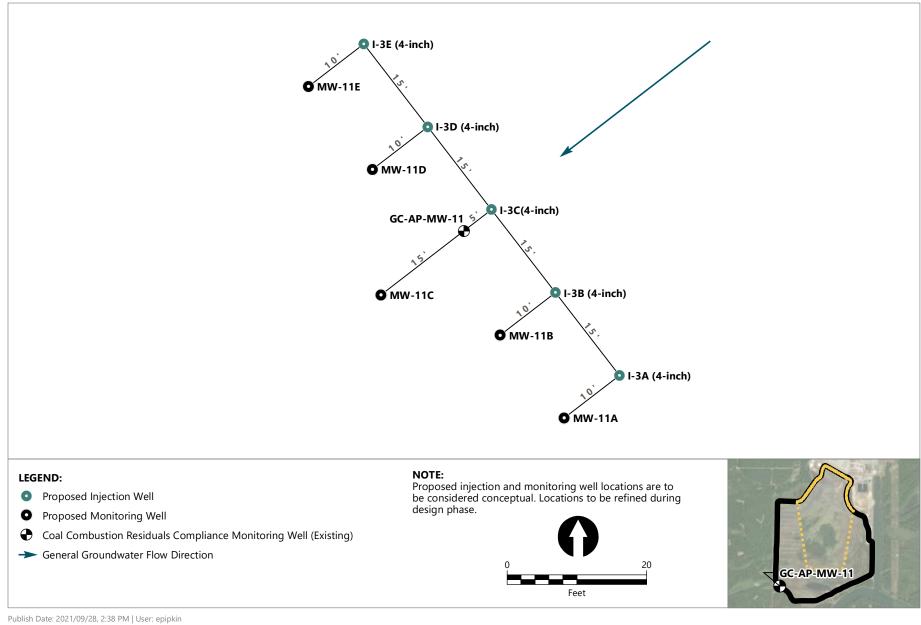
Figure 6 Closure Timeline Groundwater Remedy Selection Report Plant Greene County



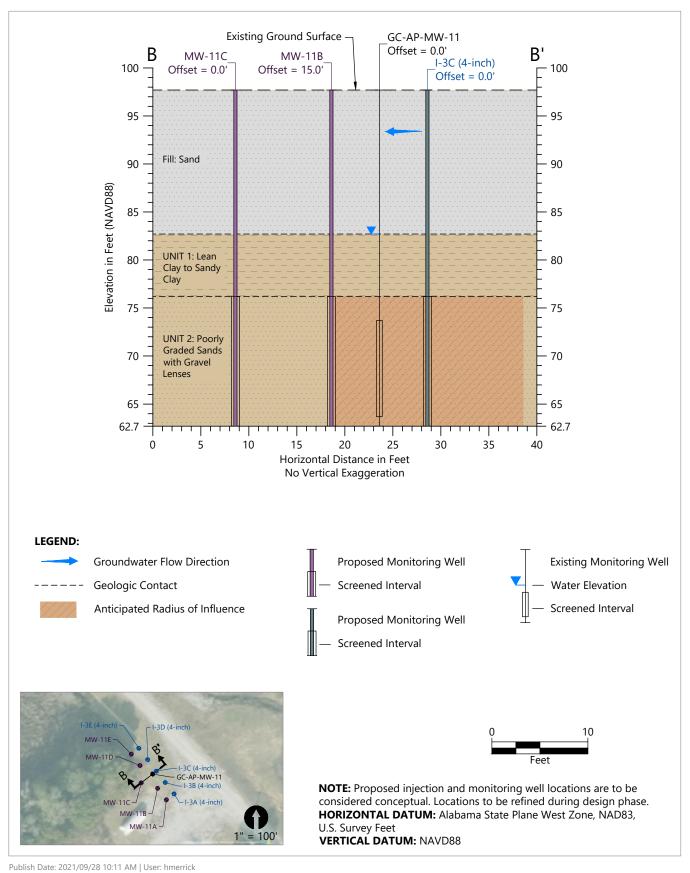
Publish Date: 2021/09/23, 3:23 PM | User: epipkin Filepath: Q:\Jobs\SouthernCompany_1114\GreeneCounty\Maps\2021_Groundwater_Remedy_Selection_Report\03_GC_CMP_Injection_Area_wPhase2.mxd


Figure 7 Injection Treatment Areas

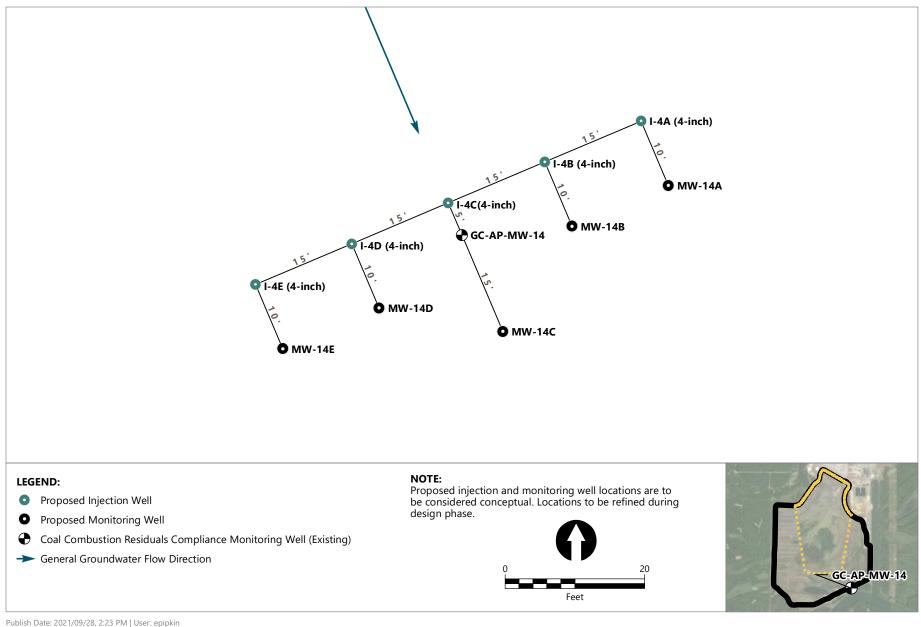
Filepath: Q:\Jobs\SouthernCompany_1114\GreeneCounty\Maps\2021_Groundwater_Remedy_Selection_Report\08_GC_CMP_Prop_Injection_DDP.mxd


Figure 8 Pilot Test Injection and Monitoring (Plan View): GC-AP-MW-1

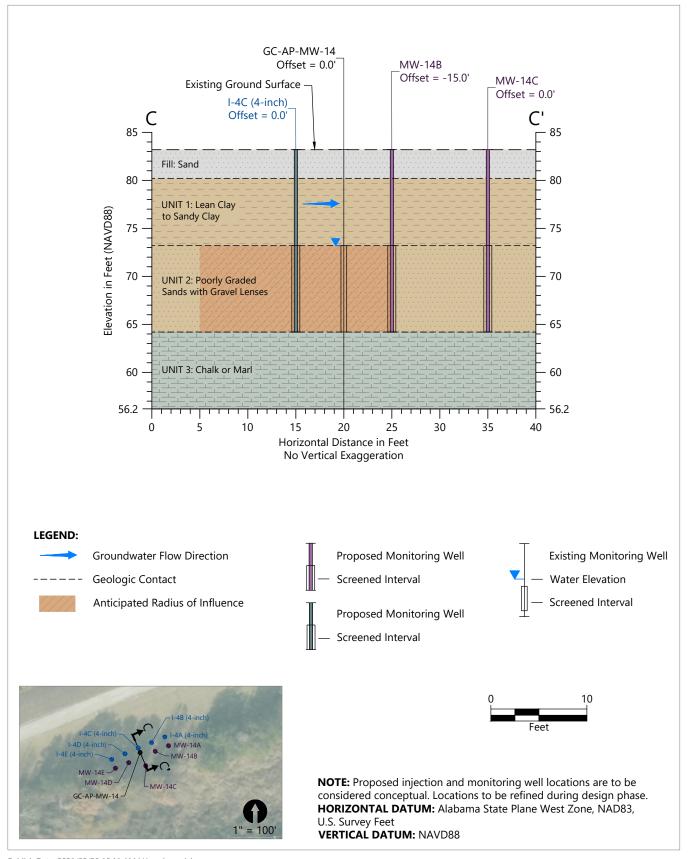
Publish Date: 2021/09/28 10:10 AM | User: hmerrick Filepath: K:\Projects\1114-Southern Company\Greene County\Groundwater Remedy Selection Report\1114-RP-001 (Greene Inj Well Sections).dwg Figure 9


Figure 9 Phase 1 (Pilot) Injection and Monitoring (Cross Section): GC-AP-MW-1

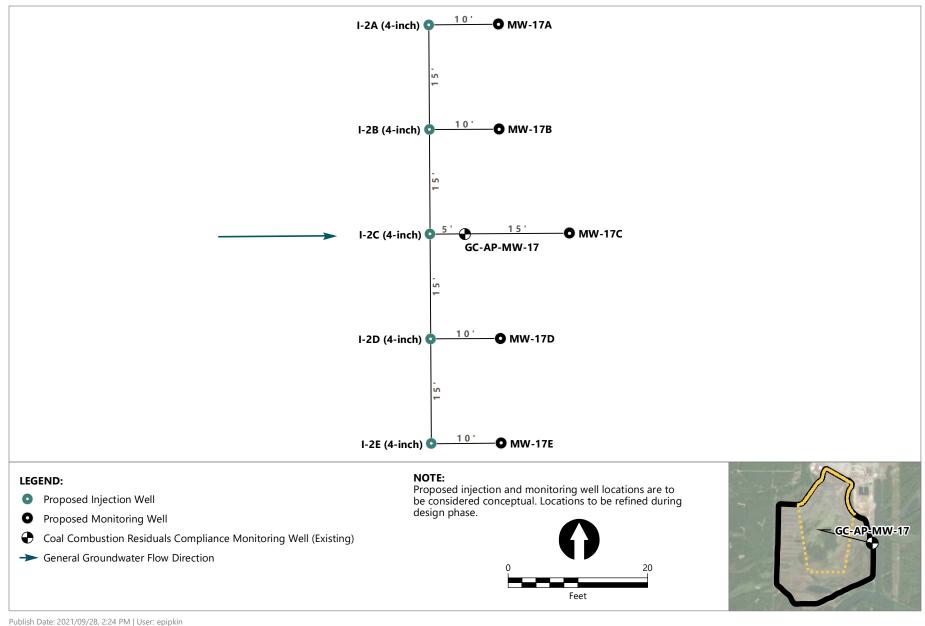
 $\label{eq:source} Filepath: Q: Vobs \\ Southern Company_1114\\ Greene County\\ \\ Maps \\ 2021\\ Groundwater_Remedy_Selection_Report\\ \\ 08\\ GC_CMP_Prop_Injection_DDP.mxd \\ 08\\ GC_CMP_Prop_Injection_DDP.mxd \\ 08\\ GC_CMP_Prop_Injection_Report\\ 08\\ GC_CMP_Prop_Injection_RProp_Report\\ 08\\ GC_CMP_Prop_Injection_RProp_Report\\ 08\\ GC_CMP_Prop_RProp_RProp_RProp_RProp_RProp_RProp_RProp_RProp_RProp_RProp_RProp_RProp_RProp_RP$


Figure 10 Pilot Test Injection and Monitoring (Plan View): GC-AP-MW-11

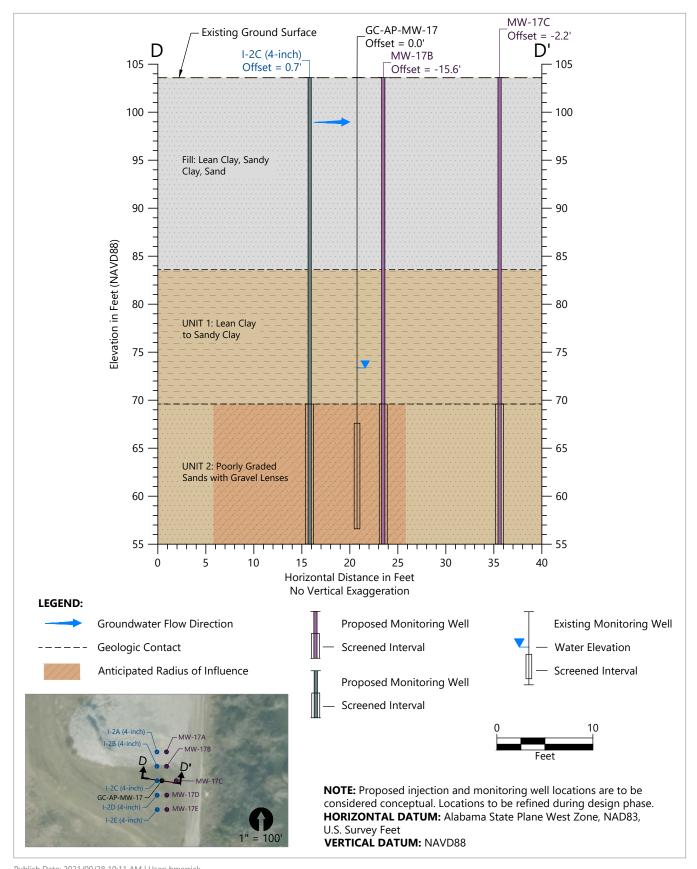
Filepath: K:\Projects\1114-RP-001 (Greene Inj Well Sections).dwg Figure 11


Figure 11 Phase 1 (Pilot) Injection and Monitoring (Cross Section): GC-AP-MW-11

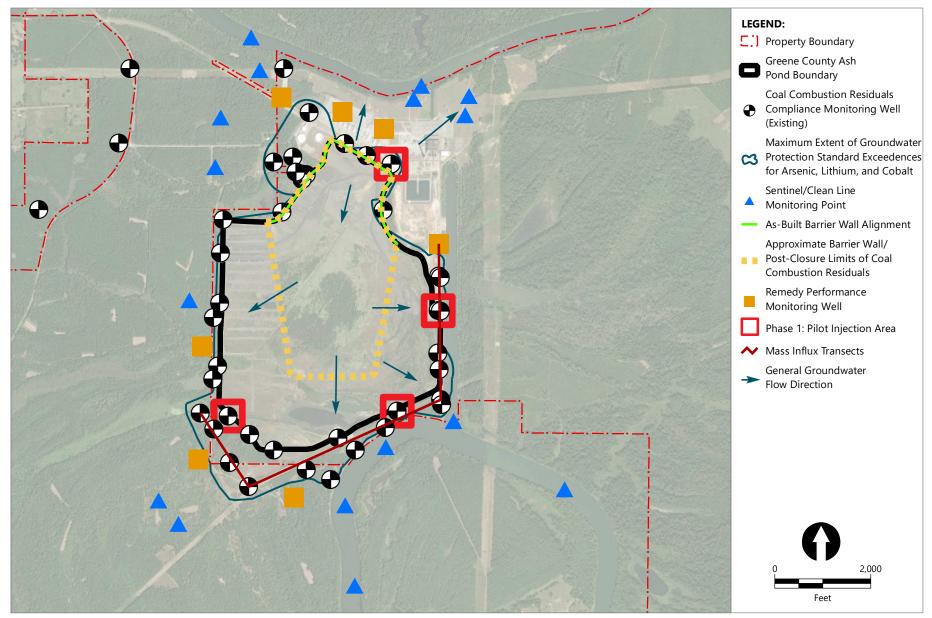
Filepath: Q:\Jobs\SouthernCompany_1114\GreeneCounty\Maps\2021_Groundwater_Remedy_Selection_Report\08_GC_CMP_Prop_Injection_DDP.mxd


Figure 12 Pilot Test Injection and Monitoring (Plan View): GC-AP-MW-14

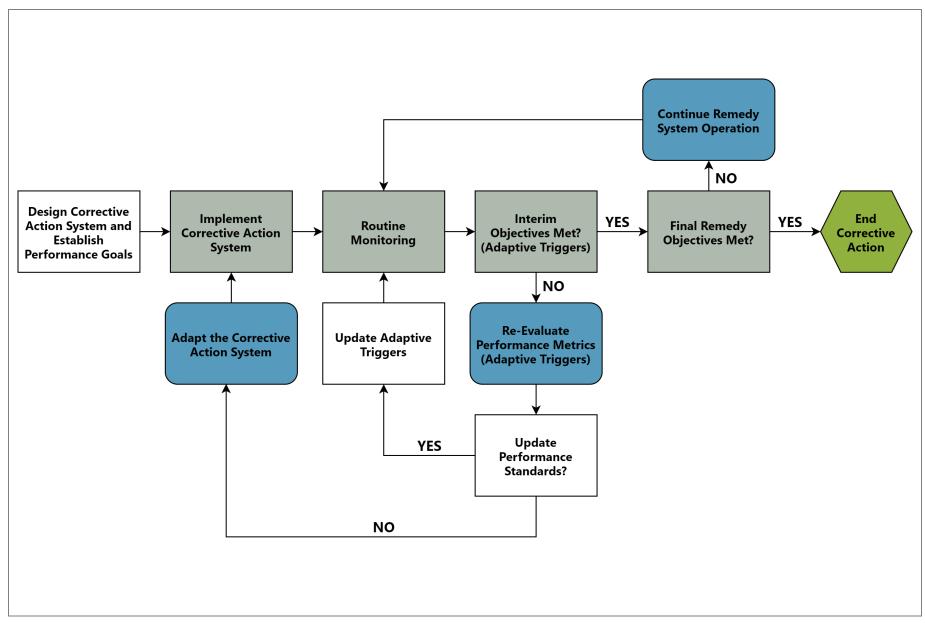
Publish Date: 2021/09/28 10:11 AM | User: hmerrick Filepath: K:\Projects\1114-Southern Company\Greene County\Groundwater Remedy Selection Report\1114-RP-001 (Greene Inj Well Sections).dwg Figure 13


Figure 13 Phase 1 (Pilot) Injection and Monitoring (Cross Section): GC-AP-MW-14

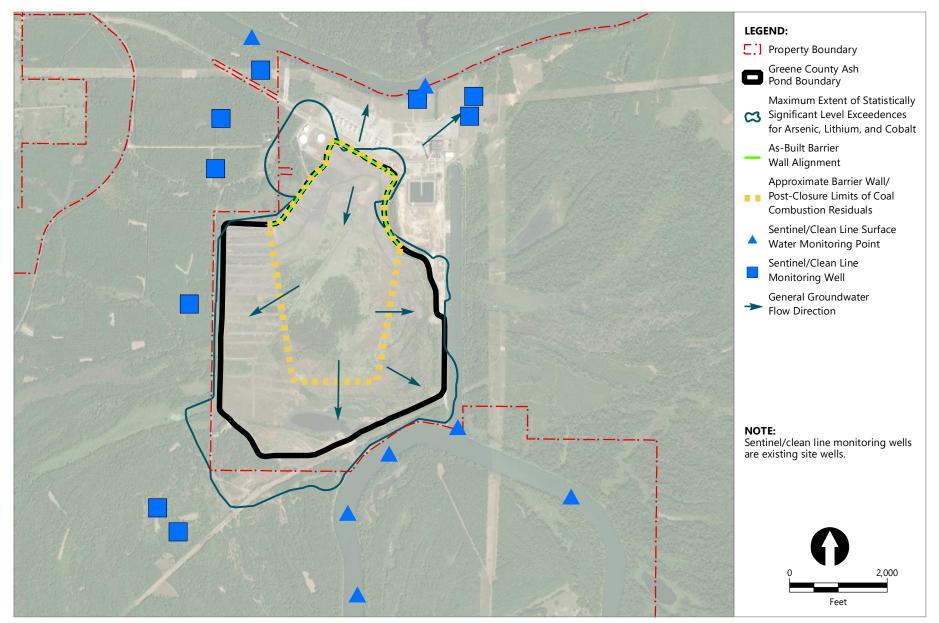
Filepath: Q:\Jobs\SouthernCompany_1114\GreeneCounty\Maps\2021_Groundwater_Remedy_Selection_Report\08_GC_CMP_Prop_Injection_DDP.mxd


Figure 14 Pilot Test Injection and Monitoring (Plan View): GC-AP-MW-17

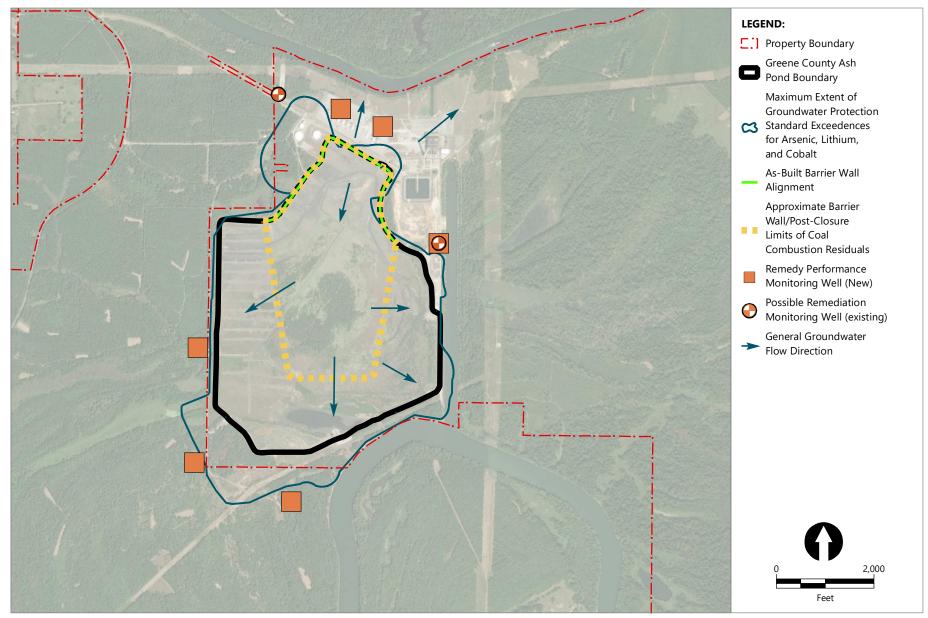
Publish Date: 2021/09/28 10:11 AM | User: hmerrick Filepath: K:\Projects\1114-Southern Company\Greene County\Groundwater Remedy Selection Report\1114-RP-001 (Greene Inj Well Sections).dwg Figure 15


Figure 15 Phase 1 (Pilot) Injection and Monitoring (Cross Section): GC-AP-MW-17

Publish Date: 2021/09/28, 2:26 PM | User: epipkin Filepath: Q:\Jobs\SouthernCompany_1114\GreeneCounty\Maps\2021_Groundwater_Remedy_Selection_Report\16_GC_CMP_Base.mxd


Figure 16 Conceptual Corrective Action Monitoring Plan

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\Remedy Selection Reports\Greene\Figures\Figure 17 - Site Management Framework.docx


Figure 17 Adaptive Site Management Framework

Publish Date: 2021/09/28, 2:28 PM | User: epipkin Filepath: Q:\Jobs\SouthernCompany_1114\GreeneCounty\Maps\2021_Groundwater_Remedy_Selection_Report\18_GC_CMP_Sentinel.mxd

Figure 18 Conceptual Corrective Action Monitoring Plan: Sentinel/Clean Line Monitoring Points

Publish Date: 2021/09/28, 2:35 PM | User: epipkin Filepath: Q:\Jobs\SouthernCompany_1114\GreeneCounty\Maps\2021_Groundwater_Remedy_Selection_Report\19_GC_CMP_RemedyPerformanceWells.mxd

Figure 19 Conceptual Corrective Action Monitoring Plan: Remedy Performance Wells

Before UIC Permit Submittal	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	i				
Collect soil and groundwater samples for treatability studies							,								
Conduct batch studies for reagents and doses															
Conduct column studies for effectiveness															
Prepare Class V UIC Permit															
											-			-	
After Class V UIC Permit Approval	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	Y2	Y3	Y4
Design field implementation of injection treatment															
Refine delineation in the field															
Phase 1 (Pilot): field implementation (well installation and injections)															
Phase 1 (Pilot): collect and analyze remedial effectiveness monitoring data															
Phase 2 injections: field implementation															
Phase 2 injections: collect and analyze remedial effectiveness monitoring data															
Notes:															
M: month															
UIC: Underground Injection Control Y: year															
i. year															

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\Remedy Selection Reports\Greene\Figures\Figure 20 - Injection Schedule.docx

Figure 20 Anticipated Injection Treatment Schedule

Appendix A Certificate of Authorization

State of Alabama

Board of Licensure for Professional Engineers and Land Surveyors

This is to certify that

ANCHOR QEA LLC

Having given satisfactory evidence of the necessary qualifications required by law has been duly certificated and is hereby issued Certificate of Authorization

CA- 5073 - E

authorizing the firm to provide or offer to provide

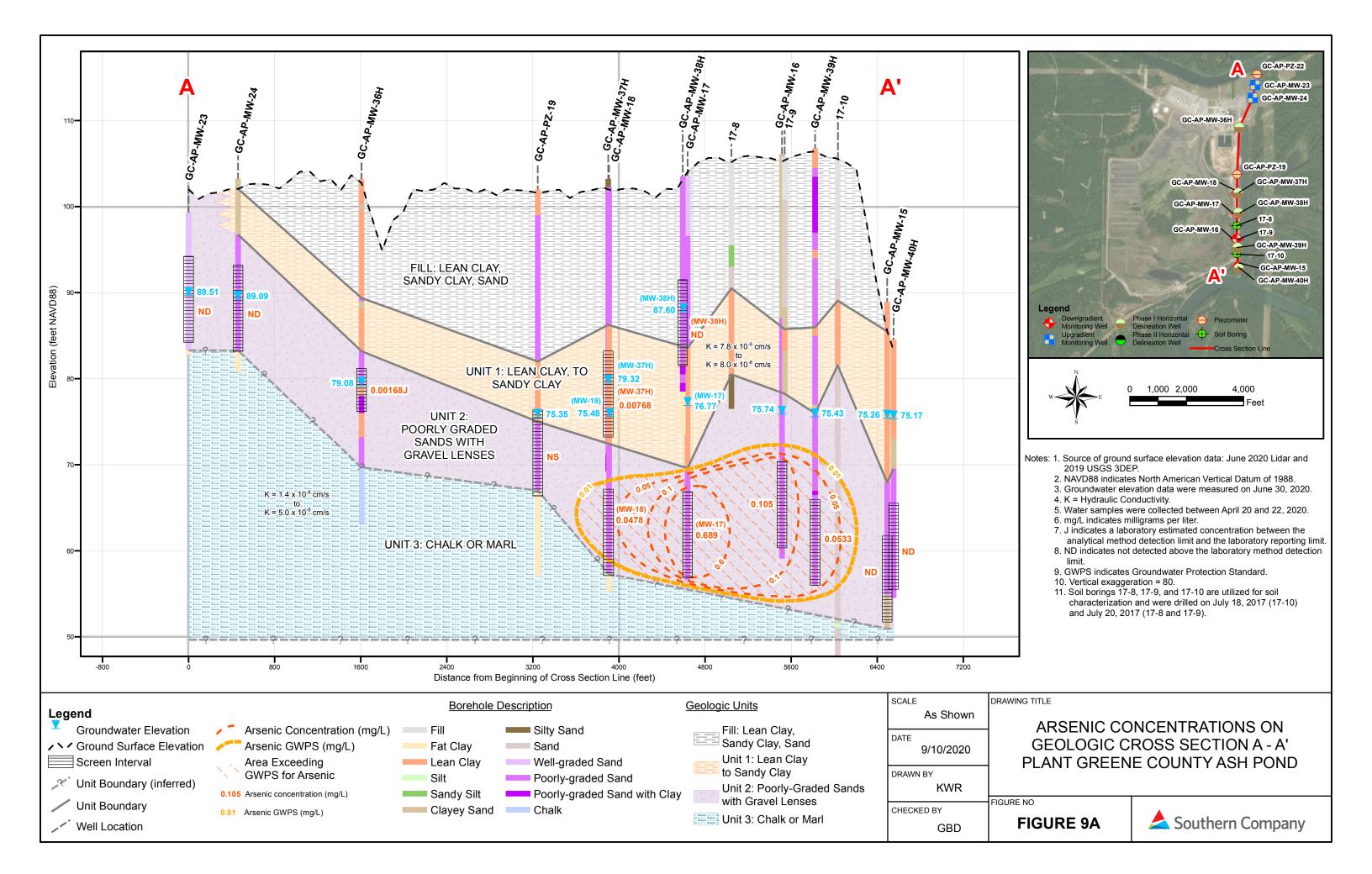
Engineering

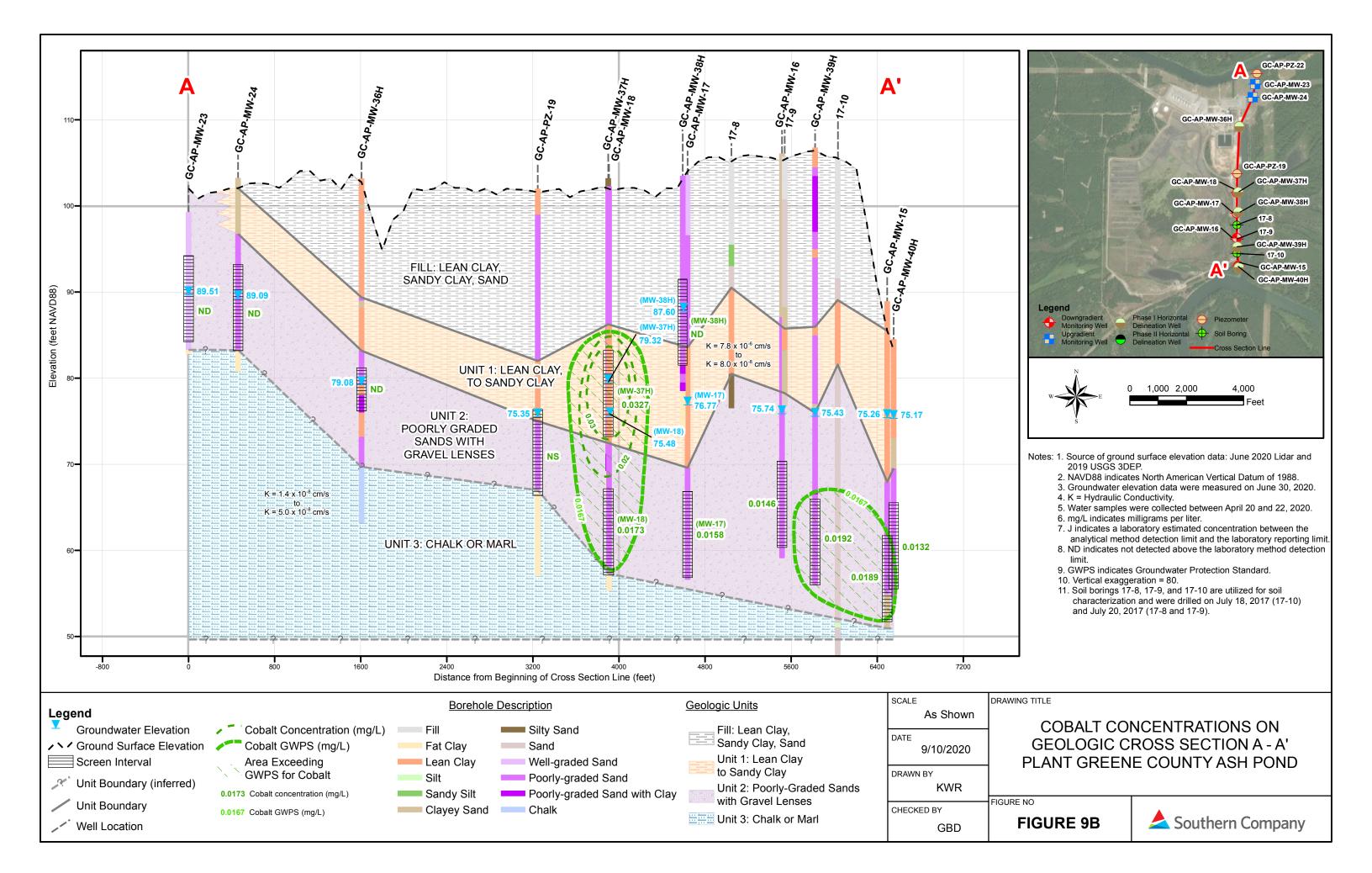
services in the State of Alabama through individual licensed professional licensees as agents, employees, officers or partners.

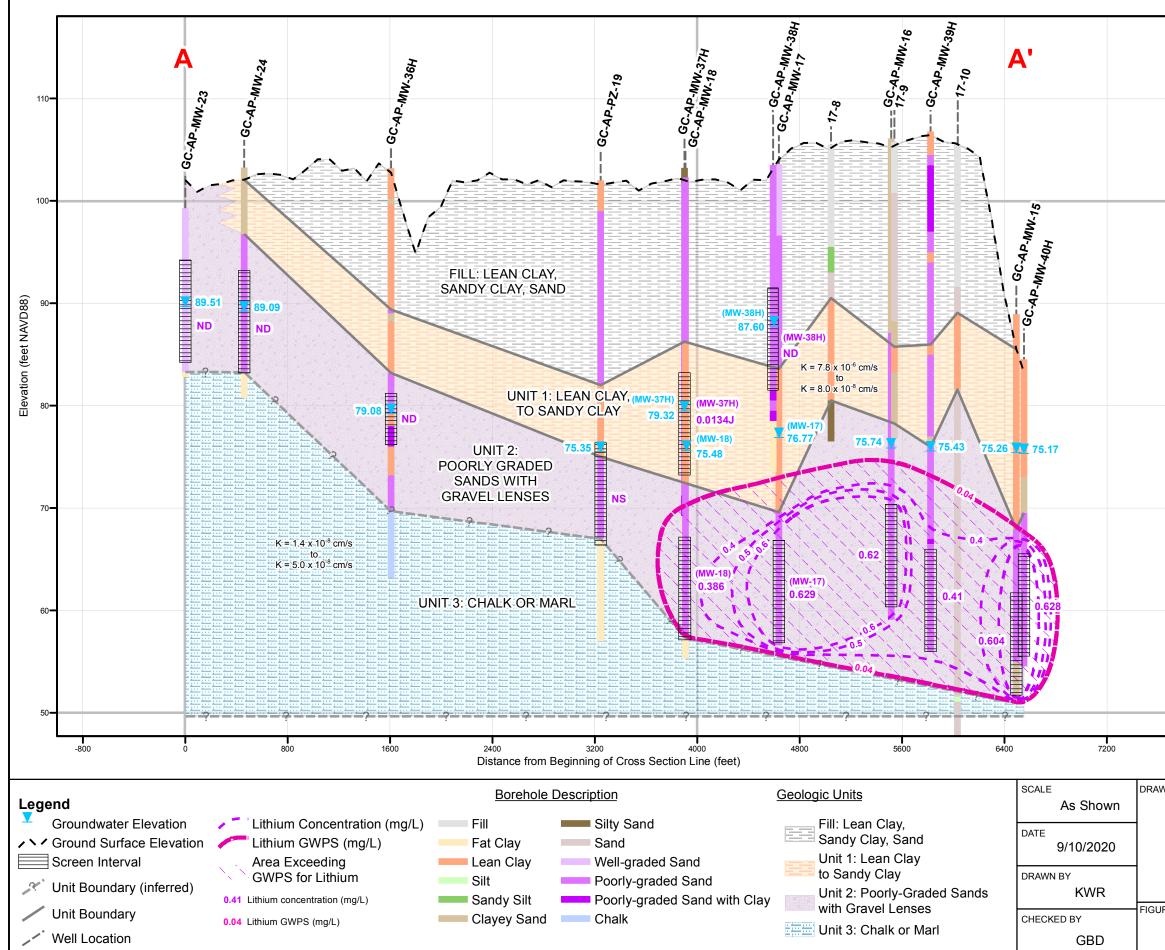
This certificate requires the firm to operate in the State of Alabama as

ANCHOR QEA LLC

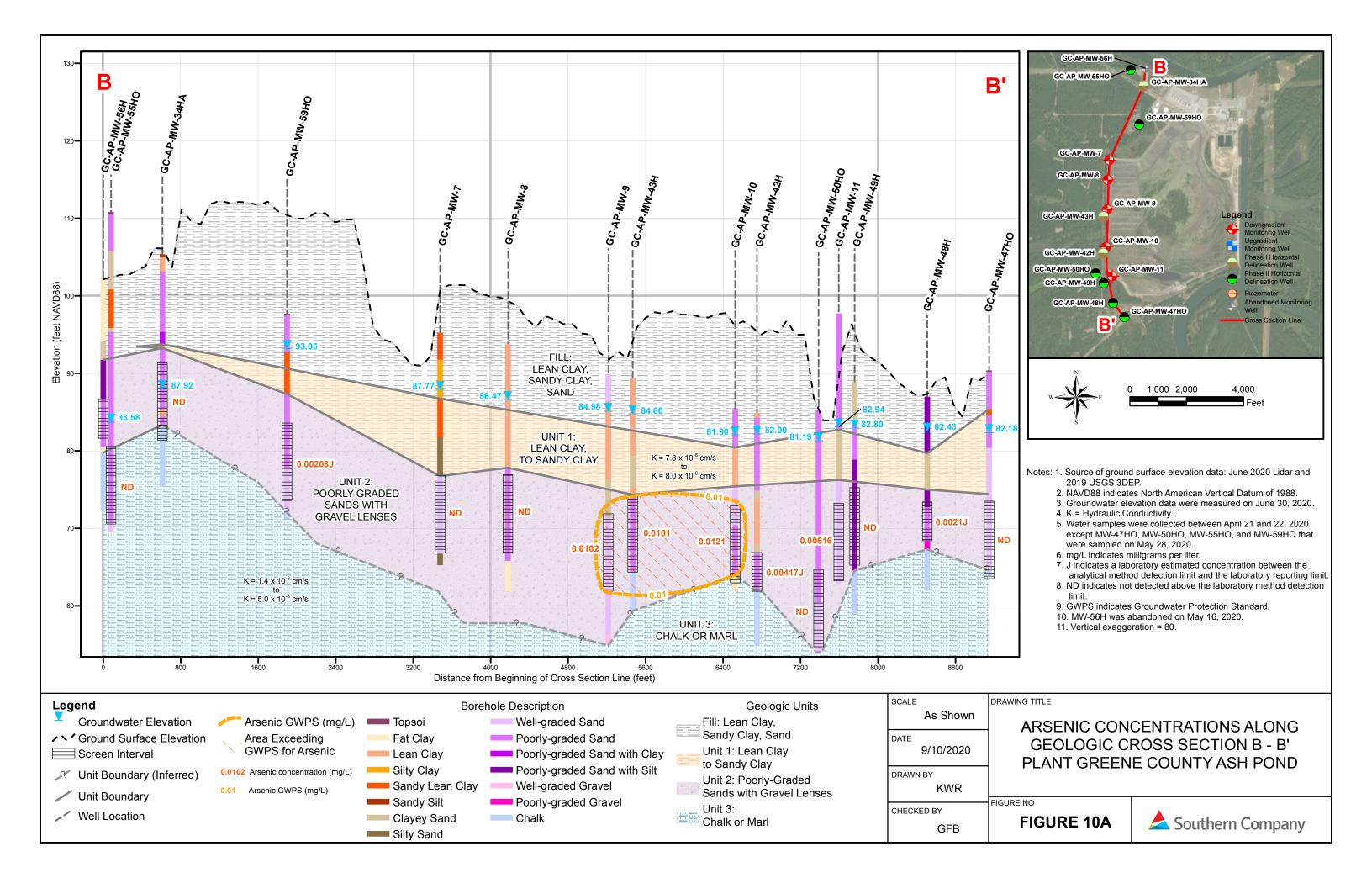
This certificate will lapse January 31, 2022 unless renewed.

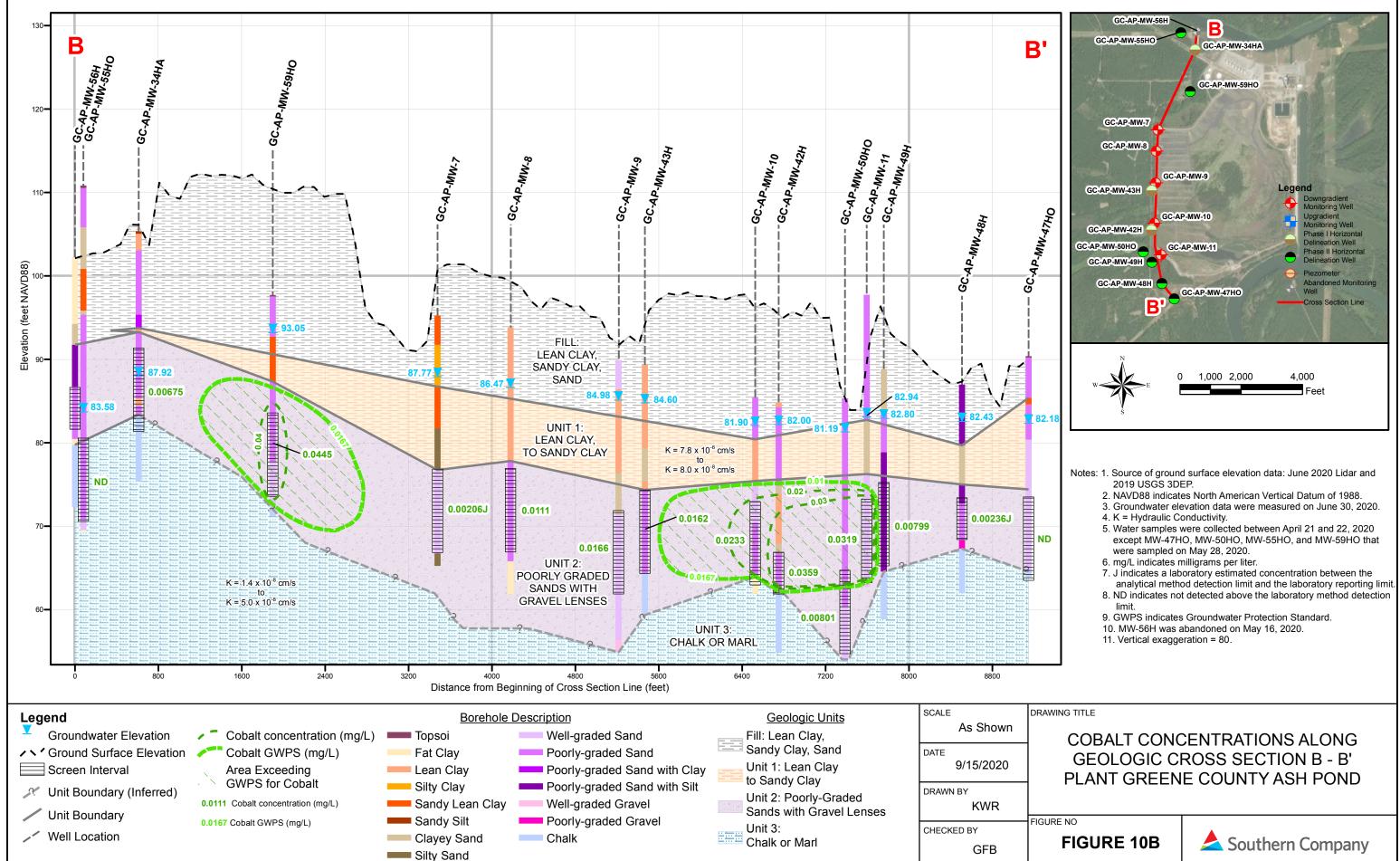

In Testimony whereof, witness the signature of the Executive Director under seal of the Board on November 02, 2020

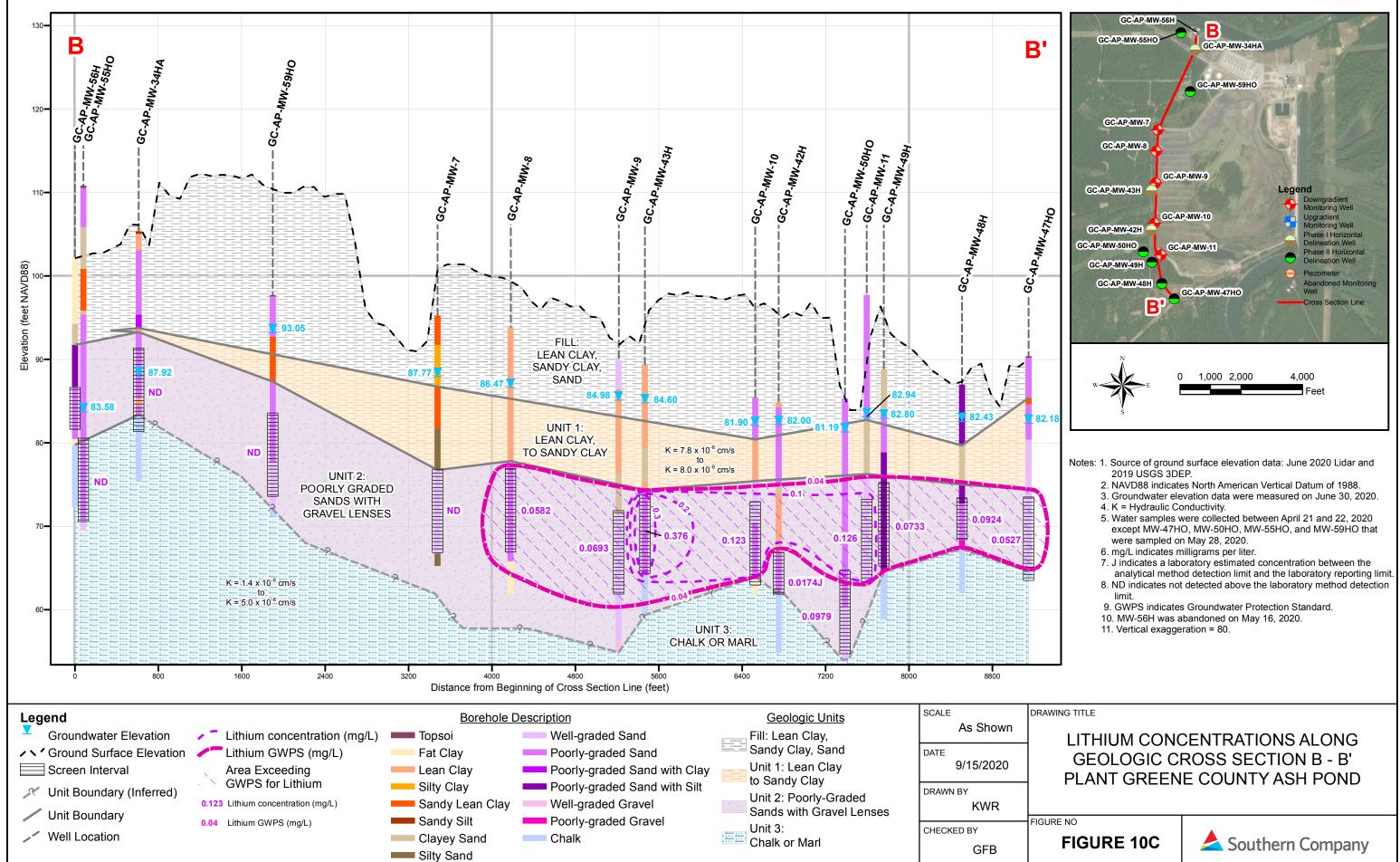

William R. Huett

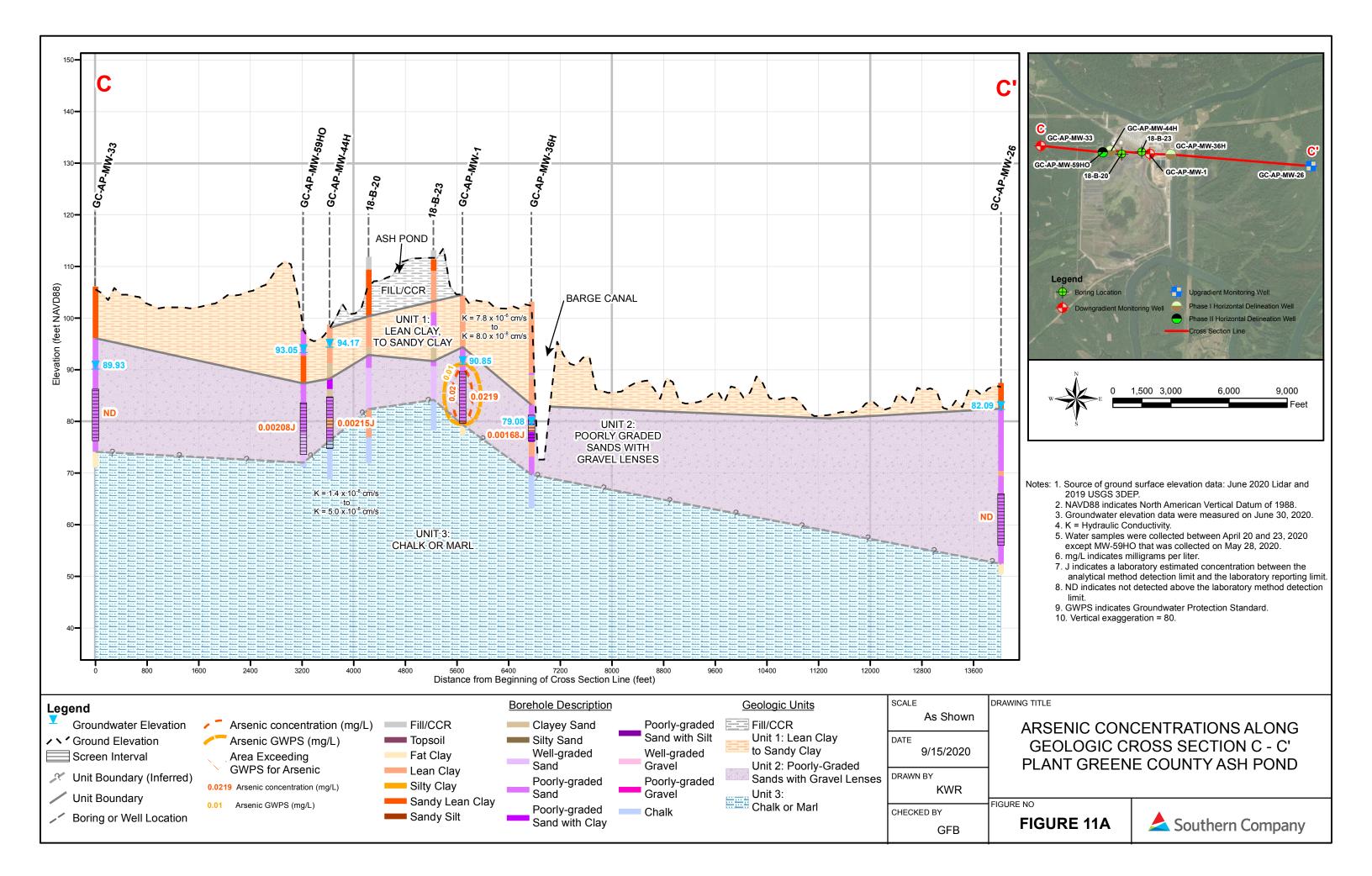

Executive Director

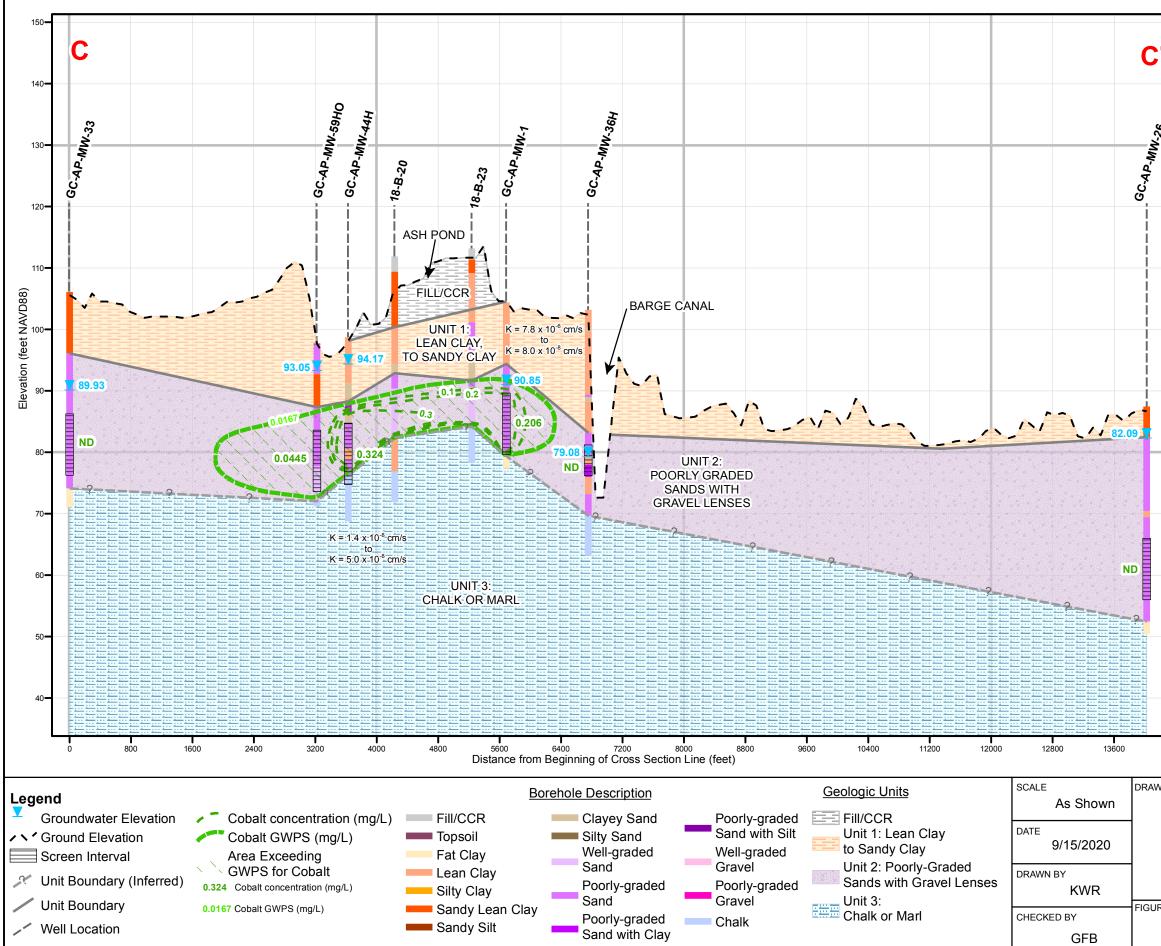
RECEIPT NO. 20201102000023800

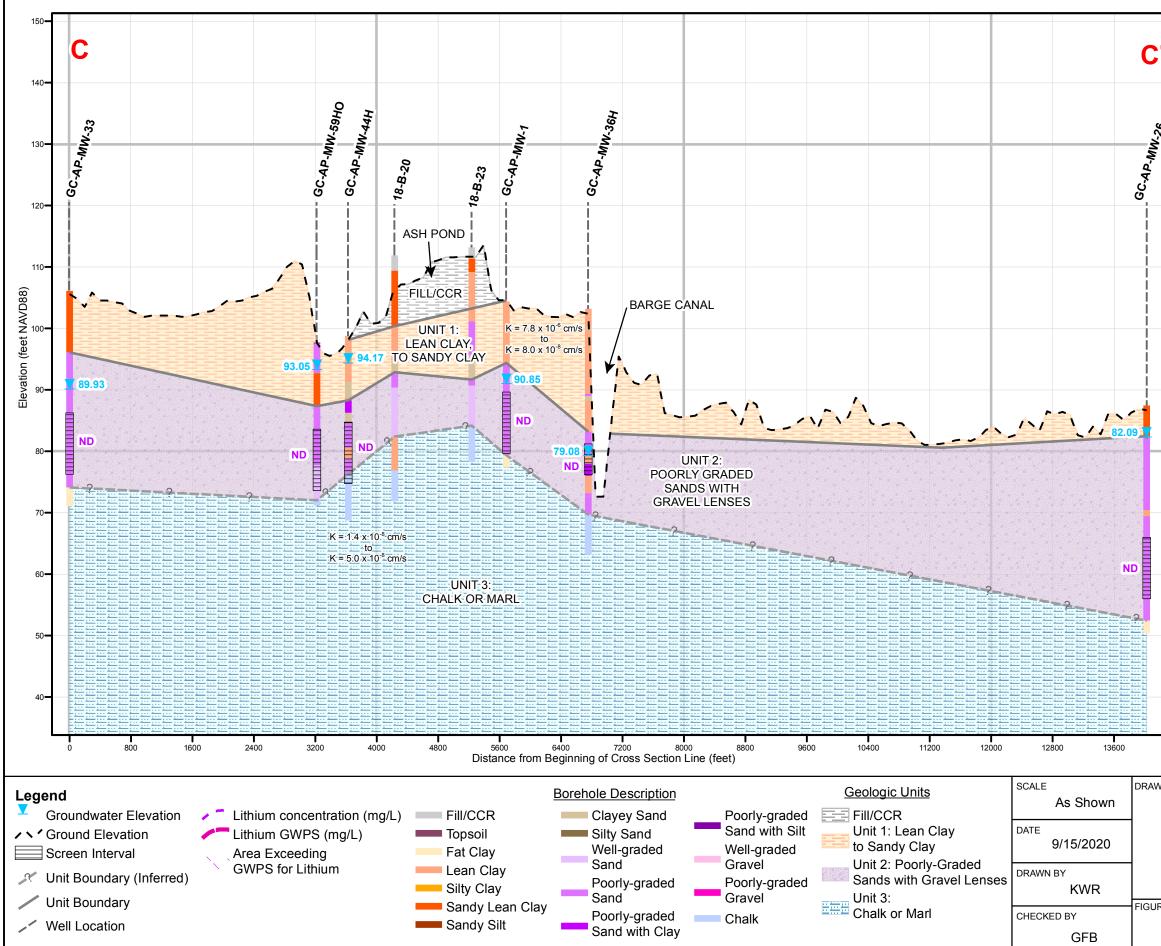

Appendix B Geologic Cross Sections

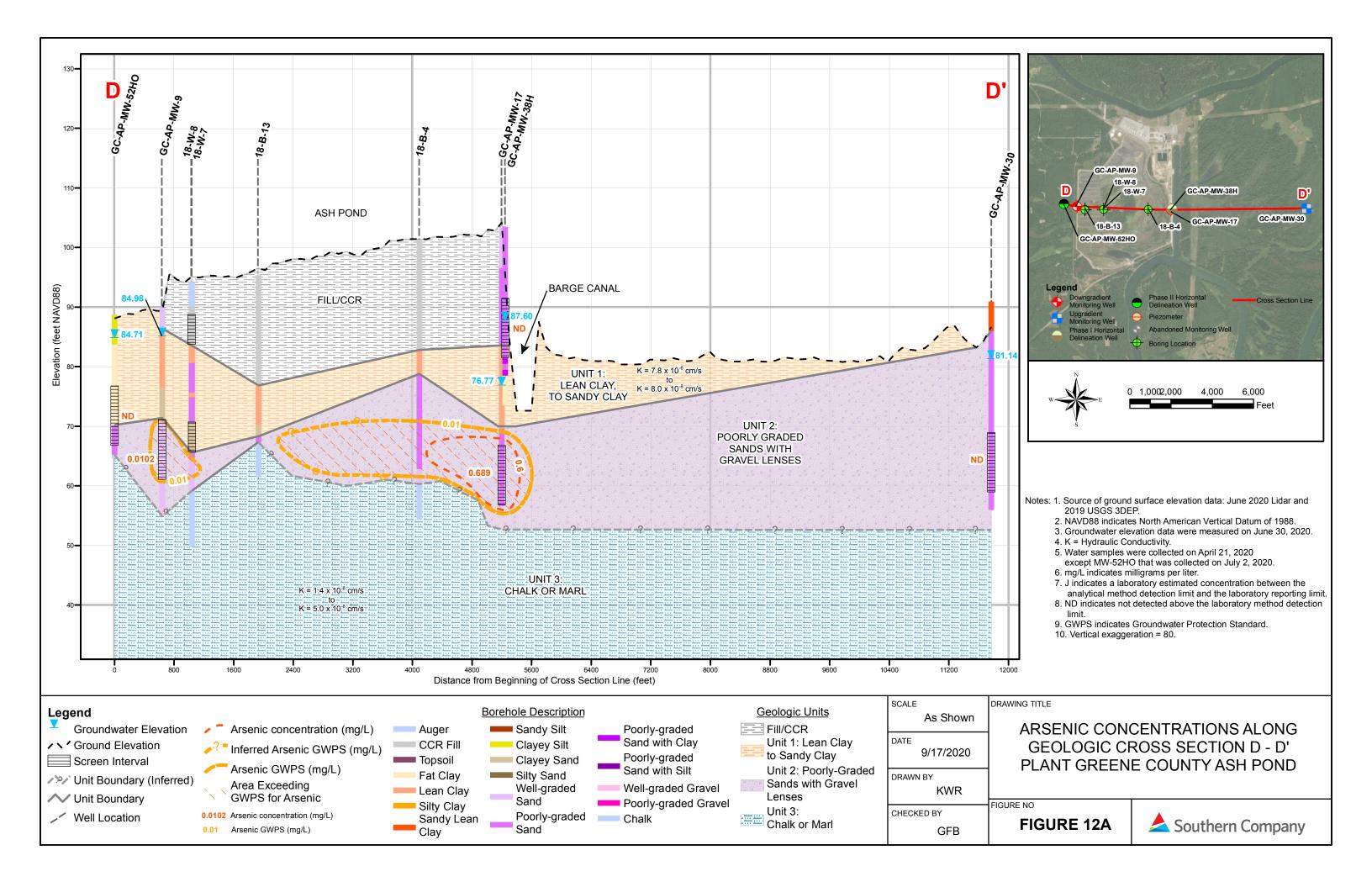


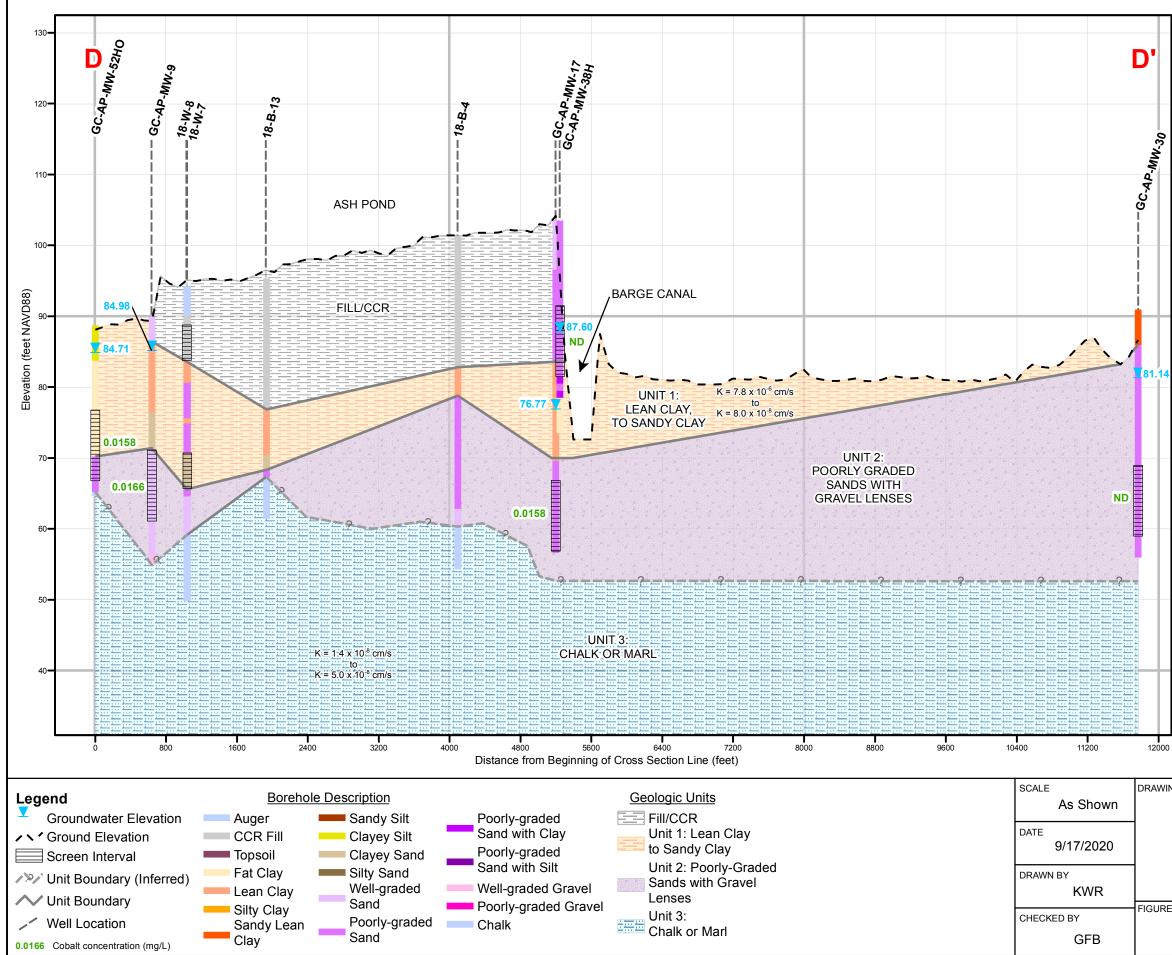




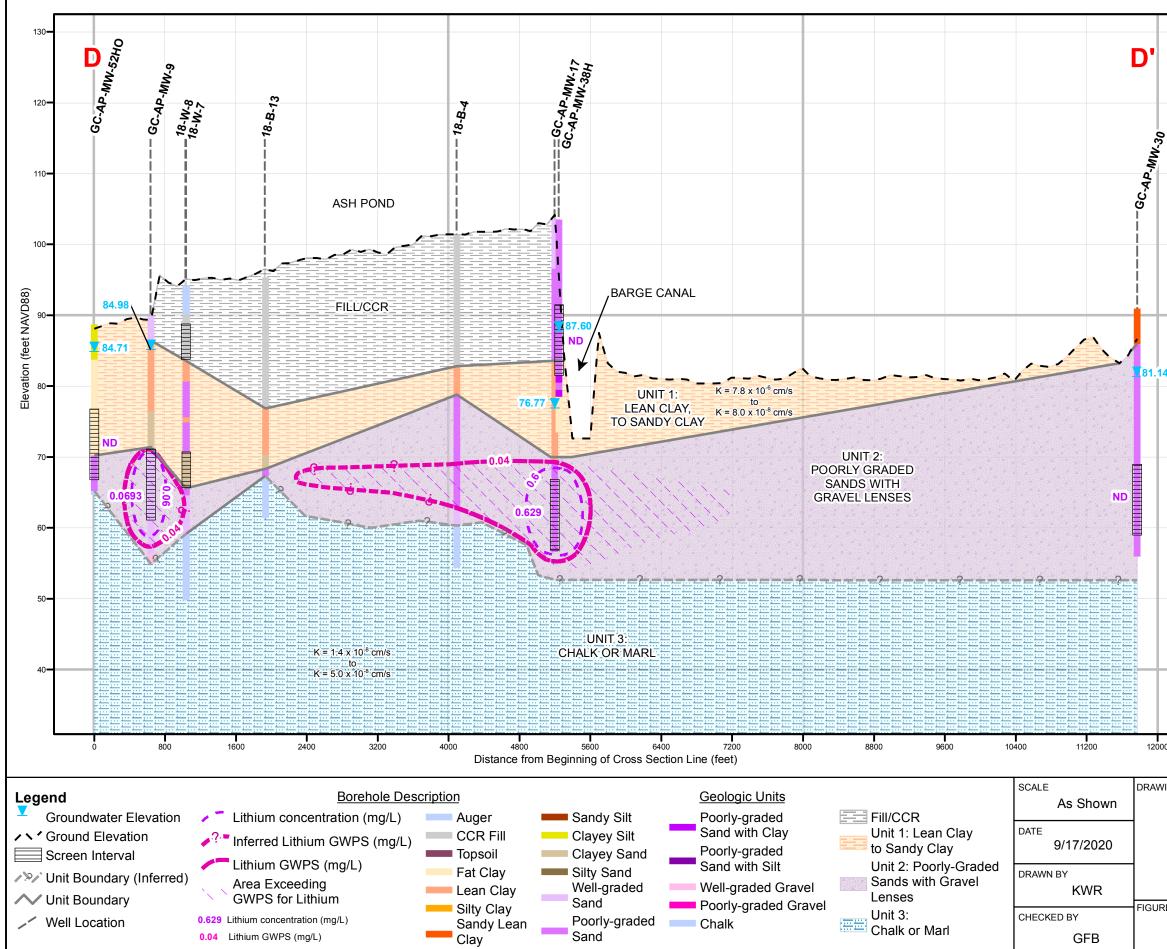

Notes: 1. Source of ground 2019 USGS 3DE 2. NAVD88 indicate 3. Groundwater ele 4. K = Hydraulic Cd 5. Water samples v 6. mg/L indicates no 7. J indicates no 10. Indicates no 11. Soil borings 17. characterization	Feet d surface elevation data: June 2020 Lidar and EP. es North American Vertical Datum of 1988. evation data were measured on June 30, 2020. onductivity. were collected between April 20 and 22, 2020. hilligrams per liter. oratory estimated concentration between the od detection limit and the laboratory reporting limit. t detected above the laboratory method detection Groundwater Protection Standard.
LITHIUM CONCENTRATIONS ON GEOLOGIC CROSS SECTION A - A' PLANT GREENE COUNTY ASH POND	
RE NO FIGURE 9C	📥 Southern Company





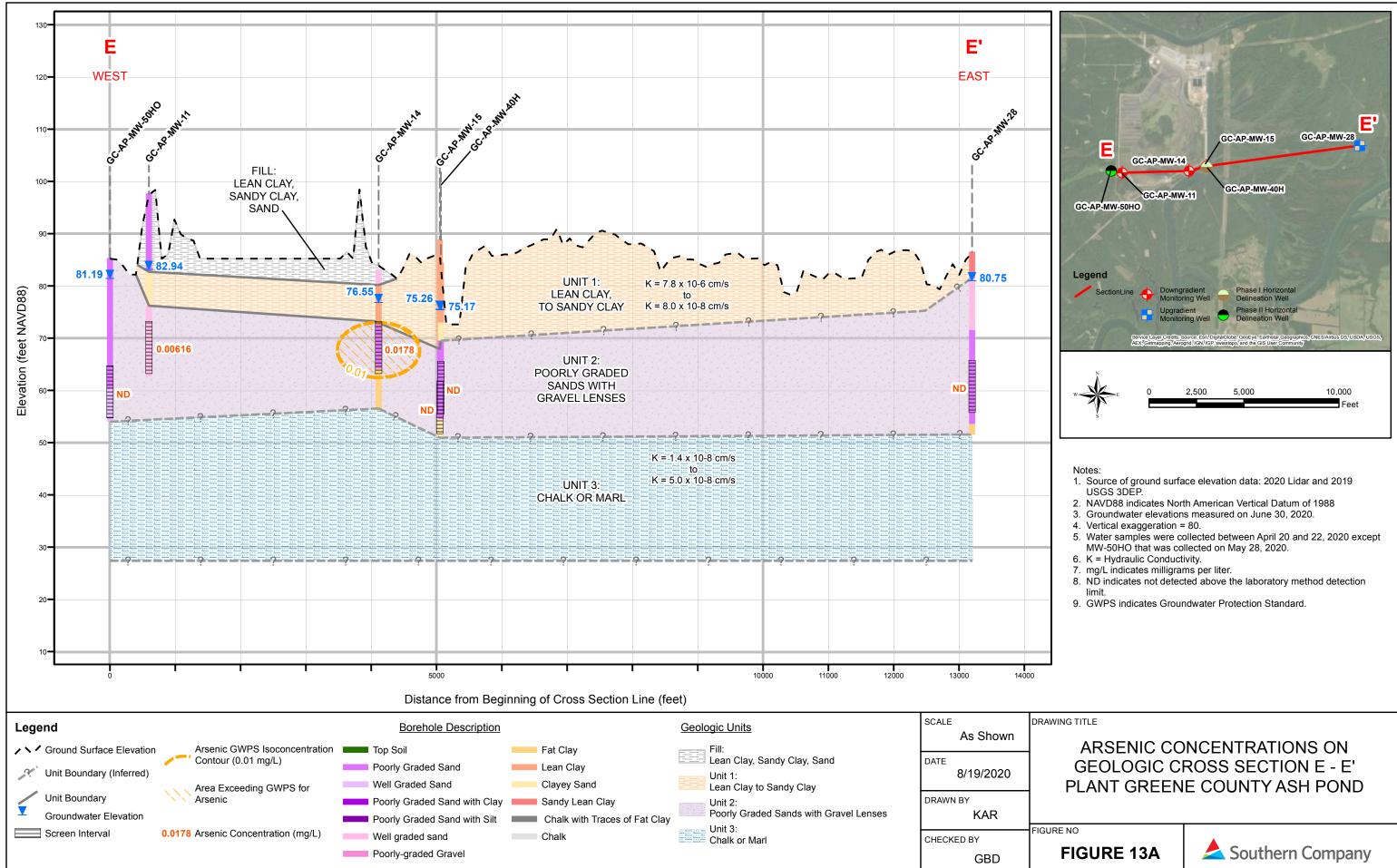


No.	
GC-AP-MW-33	GC-AP-MW-44H 18-B-23 GC-AP-MW-36H
GC-AP-MW-59HO 18-B-20	
	A Company
Legend Boring Location	Upgradient Monitoring Well
Downgradient Mon	itoring Well Phase I Horizontal Delineation Well Phase II Horizontal Delineation Well
	Cross Section Line
W W E	0 1,0002,000 4,000 6,000 8,000
	Feet
2019 USGS 3DE 2. NAVD88 indicate 3. Groundwater elev 4. K = Hydraulic Co 5. Water samples w except MW-59HC 6. mg/L indicates m 7. J indicates a labo analytical metho 8. ND indicates not limit.	s North American Vertical Datum of 1988. vation data were measured on June 30, 2020. nductivity. Dere collected between April 20 and 23, 2020 that was collected on May 28, 2020. illigrams per liter. bratory estimated concentration between the d detection limit and the laboratory reporting limit. detected above the laboratory method detection
9. GWPS indicates 10. Vertical exagger	Groundwater Protection Standard. ration = 80.
_	
COBALT CONCENTRATIONS ALONG GEOLOGIC CROSS SECTION C - C' PLANT GREENE COUNTY ASH POND	
FIGURE 11B	📥 Southern Company



GC-AP-MW-33	C-AP-MW-44H 18-B-23 GC-AP-MW-36H
GC-AP-MW-59HO	GC-AP-MW-1 CCCAP NW 20
Legend Boring Location Downgradient Monitor Upgradient Monitor	Phase I Horizontal Delineation Well Phase I Horizontal Delineation Well Prezometer Abandoned Monitoring Well Cross Section Line
	Feet
2019 USGS 3DE 2. NAVD88 indicate 3. Groundwater ele 4. K = Hydraulic Co 5. Water samples w except MW-59H0 6. mg/L indicates m 7. J indicates a labo analytical metho 8. ND indicates not limit.	as North American Vertical Datum of 1988. vation data were measured on June 30, 2020. inductivity. vere collected between April 20 and 23, 2020 D that was collected on May 28, 2020. illigrams per liter. oratory estimated concentration between the id detection limit and the laboratory reporting limit. detected above the laboratory method detection Groundwater Protection Standard.
WING TITLE	
LITHIUM CONC GEOLOGIC CI	CENTRATIONS ALONG ROSS SECTION C - C' E COUNTY ASH POND
FIGURE 11C	📥 Southern Company

	100 - 31 - 31 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
the second secon	and the second second
at the second	
and the second	
GC-AP-M	
	W-8 8-W-7 GC-AP-MW-38H
The the the test of test o	GCAP-MW-17 GC-AP-MW-30
18-B-13 GC-AP-MW-52	(18-B-4) (00 AJ (1111))
Legend	Yax I Start
Downgradient	Phase I Horizontal Delineation Well Phase II Horizontal
Monitoring Well Upgradient	Phase II Horizontal Delineation Well
Monitoring Well	
4	Cross Section Line
N A	
W E O	1,0002,000 4,000 6,000
	Feet
S	
Notes: 1. Source of ground 2019 USGS 3DE	l surface elevation data: June 2020 Lidar and
2. NAVD88 indicate	es North American Vertical Datum of 1988. Evation data were measured on June 30, 2020.
4. K = Hydraulic Co	
except MW-52H	O that was collected on July 2, 2020.
	oratory estimated concentration between the
8. ND indicates not	od detection limit and the laboratory reporting limit. detected above the laboratory method detection
	Groundwater Protection Standard.
10. Vertical exagge	ration = 80.
00	
	ENTRATIONS ALONG
	ROSS SECTION D - D'
PLANT GREEN	E COUNTY ASH POND
RE NO	
FIGURE 12B	📥 Southern Company



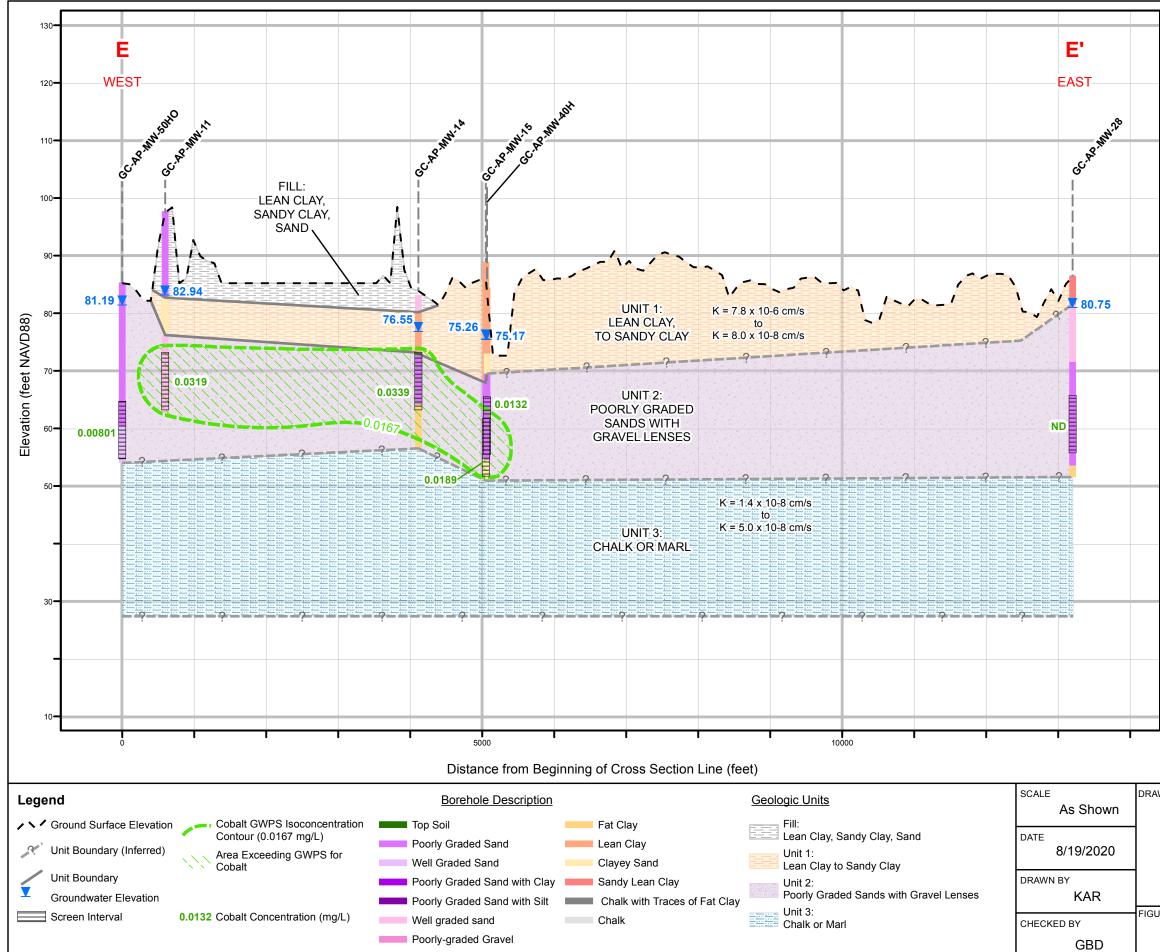

-	
00	CC-AP-MW-9 18-W-8 18-W-7 18-W-8 18-W-7 18-B-13 GC-AP-MW-17 GC-AP-MW-30
14	Legend Phase I Horizontal Delineation Well Prase I Horizontal Delineation Well Pizzometer Abandoned Monitoring Well Boring Location Cross Section Line
000	 Notes: 1. Source of ground surface elevation data: June 2020 Lidar and 2019 USGS 3DEP. 2. NAVD88 indicates North American Vertical Datum of 1988. 3. Groundwater elevation data were measured on June 30, 2020. 4. K = Hydraulic Conductivity. 5. Water samples were collected on April 21, 2020 except MW-52HO that was collected on July 2, 2020. 6. mg/L indicates milligrams per liter. 7. J indicates a laboratory estimated concentration between the analytical method detection limit and the laboratory reporting limit 8. ND indicates Groundwater Protection Standard. 10. Vertical exaggeration = 80.
VIN	G TITLE
	LITHIUM CONCENTRATIONS ALONG GEOLOGIC CROSS SECTION D - D' PLANT GREENE COUNTY ASH POND

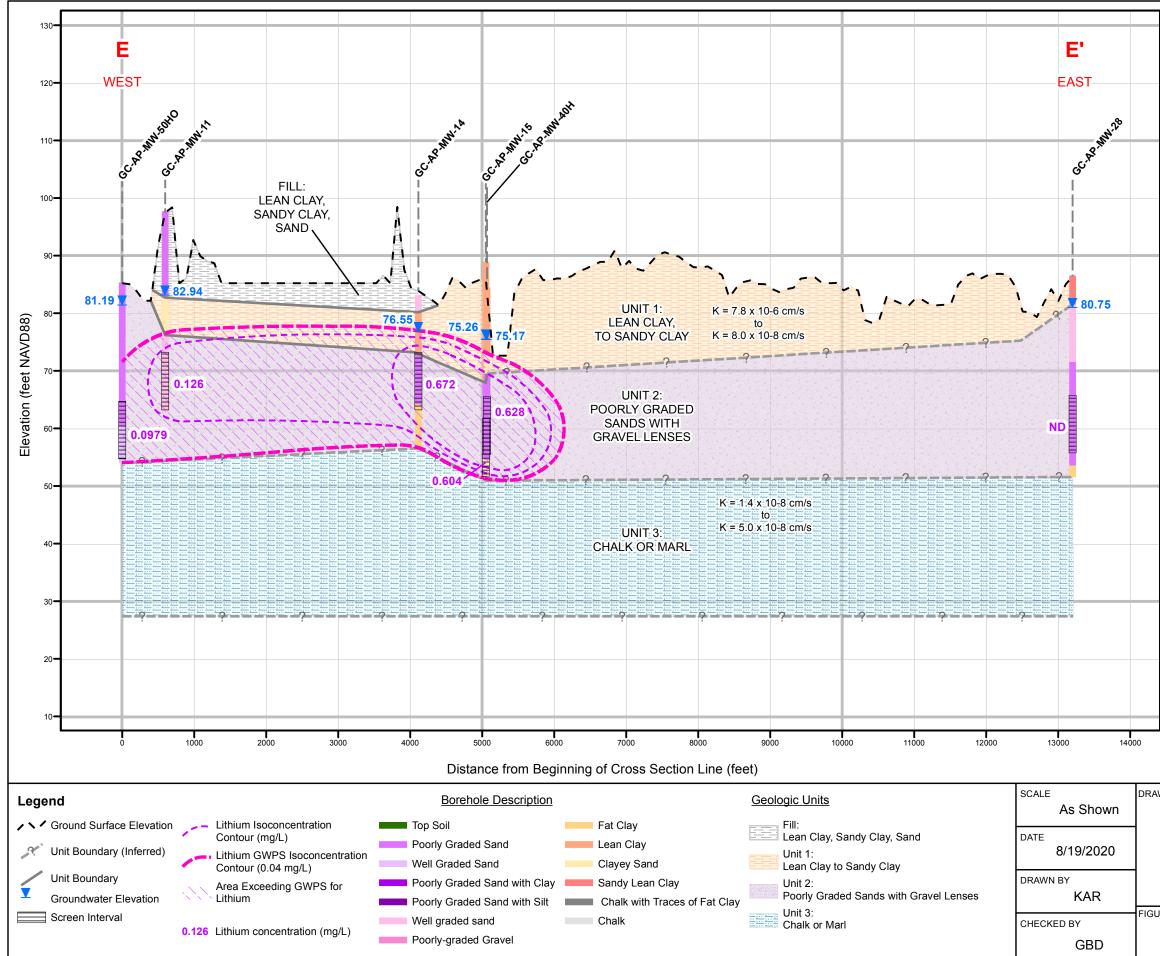
FIGURE NO

FIGURE 12C

E GC-AP-MW-14 GC-AP-MW-11	GC-AP-MW-15 GC-AP-MW-28 GC-AP-MW-40H
GC-AP-MW-50HO	
1	
Legend	Free Contraction
SectionLine Downgradient Monitoring Wel	Phase I Horizontal Delineation Well
Upgradient Monitoring Wel	Phase II Horizontal Delineation Well
Service Layer Credits: Source: Est, AEX;Getmapping'Aerogrid./ICN./IC	DigitalGlobe, GeoEye, Earthstar/Geographics, CNES/Airbus DS, USDA, USGS, PP, swisstopo, and the CIS User Community
w E 0 2,500	5,000 10,000 Feet

Notes:

- 1. Source of ground surface elevation data: 2020 Lidar and 2019 USGS 3DEP. 2. NAVD88 indicates North American Vertical Datum of 1988
- 3. Groundwater elevations measured on June 30, 2020.
- 4. Vertical exaggeration = 80.
- Water samples were collected between April 20 and 22, 2020 except MW-50HO that was collected on May 28, 2020.
- 6. K = Hydraulic Conductivity.
- 7. mg/L indicates milligrams per liter.
- 8. ND indicates not detected above the laboratory method detection
- limit 9. GWPS indicates Groundwater Protection Standard.


DRAWING TITLE

COBALT CONCENTRATIONS ON **GEOLOGIC CROSS SECTION E - E'** PLANT GREENE COUNTY ASH POND

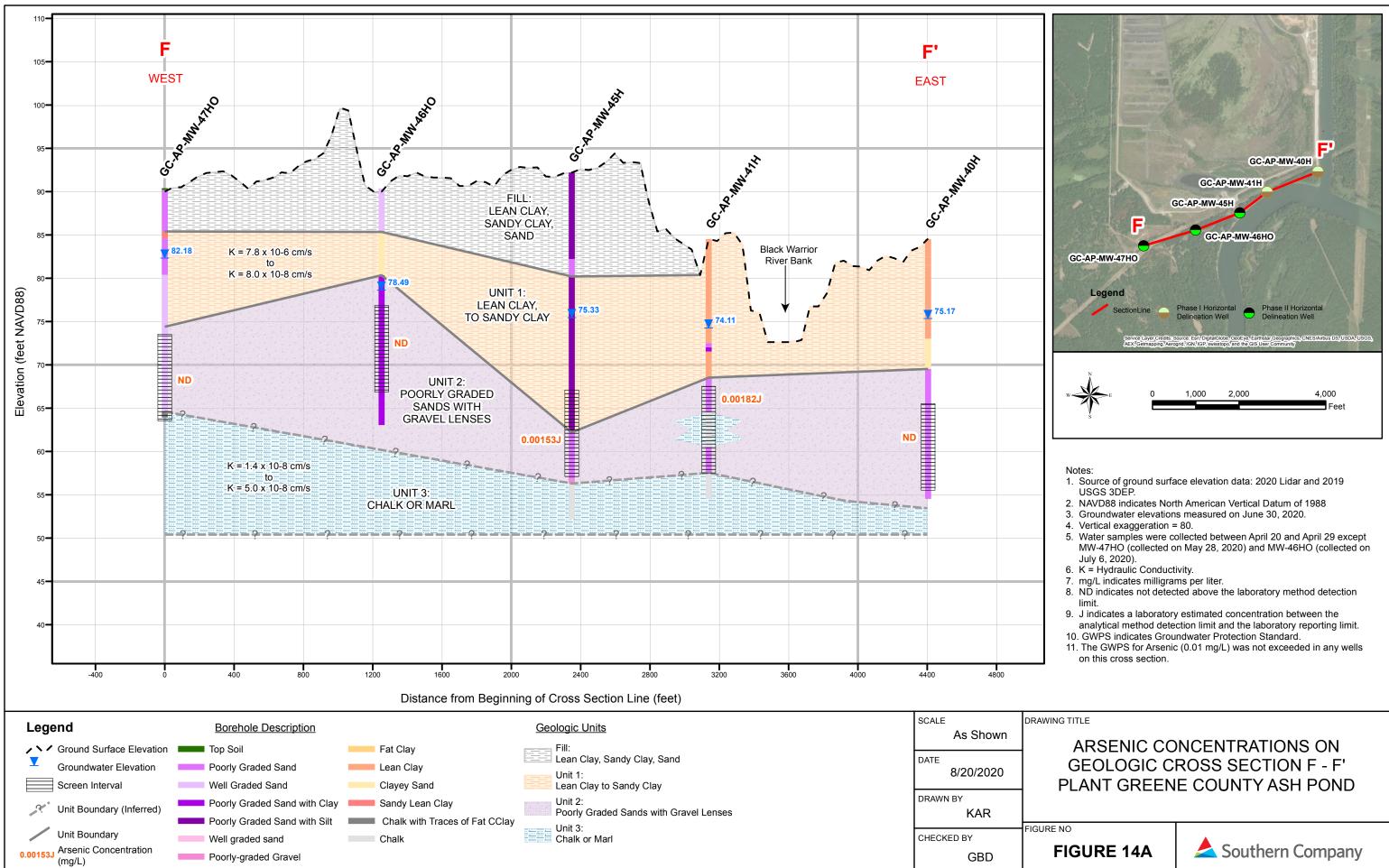
FIGURE NO

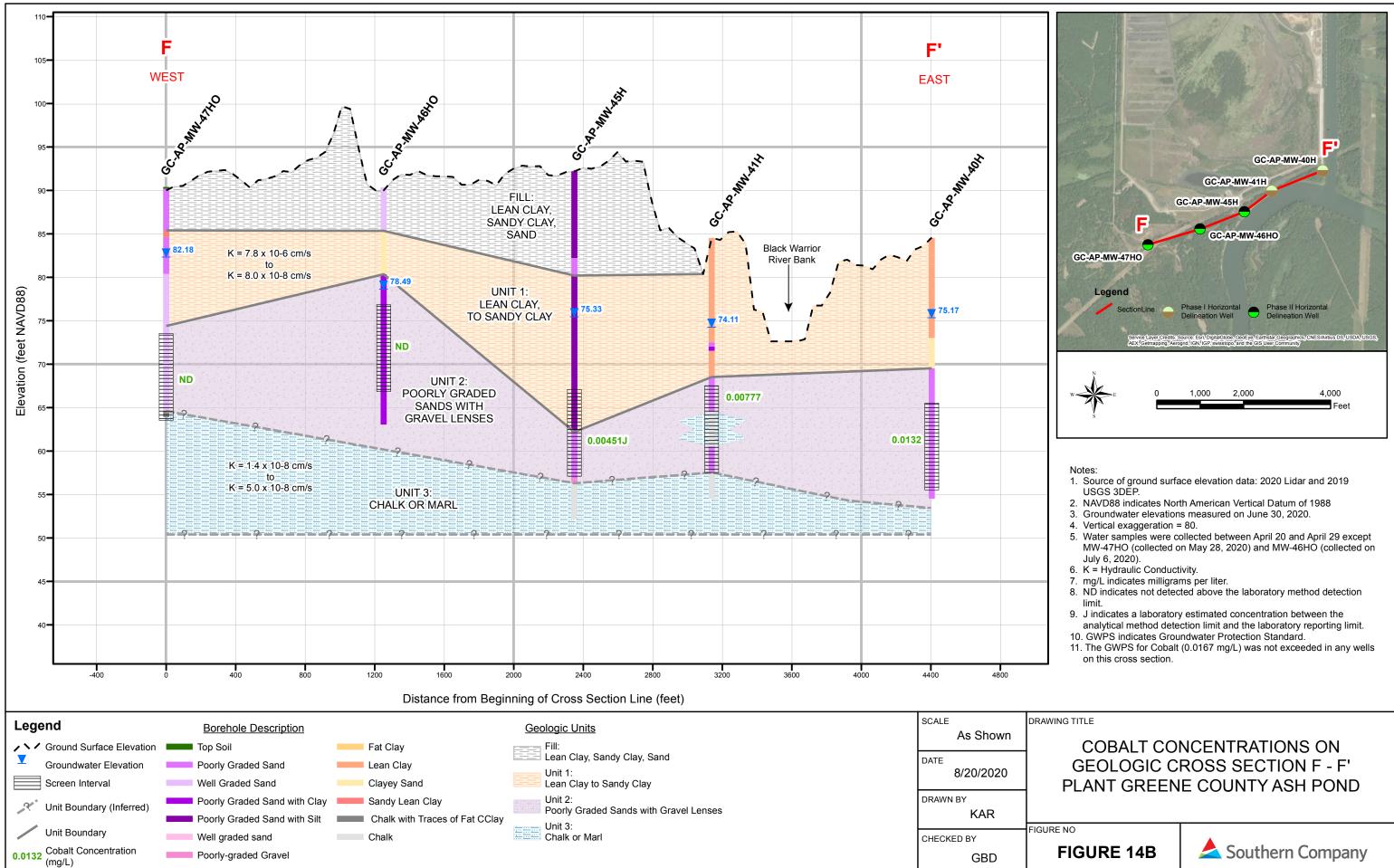
FIGURE 13B

GC-AP-MW-50H	GC-AP-MW-14 GC-AP-MW-11 D	GC-AP-MW-15 GC GC-AP-MW-40H	C-AP-MW-28
Legend SectionLine	Monitoring Well Upgradient Monitoring Well envice Layer Credits: Source: Esri, fi	Phase I Horizontal Delineation Well Phase II Horizontal Delineation Well Delineation Well	CNES/ATDUS DSJ, USDA, USGS,
W E	0 2,500	5,000	10,000 Feet

Notes

- 1. Source of ground surface elevation data: 2020 Lidar and 2019 USGS 3DEP.
- 2. NAVD88 indicates North American Vertical Datum of 1988 3. Groundwater elevations measured on June 30, 2020.
- 4. Vertical exaggeration = 80.
- Water samples were collected between April 20 and 22, 2020 except MW-50HO that was collected on May 28, 2020.
- 6. K = Hydraulic Conductivity.
- 7. mg/L indicates milligrams per liter.
- 8. ND indicates not detected above the laboratory method detection limit
- 9. GWPS indicates Groundwater Protection Standard.


DRAWING TITLE


LITHIUM CONCENTRATIONS ON **GEOLOGIC CROSS SECTION E - E'** PLANT GREENE COUNTY ASH POND

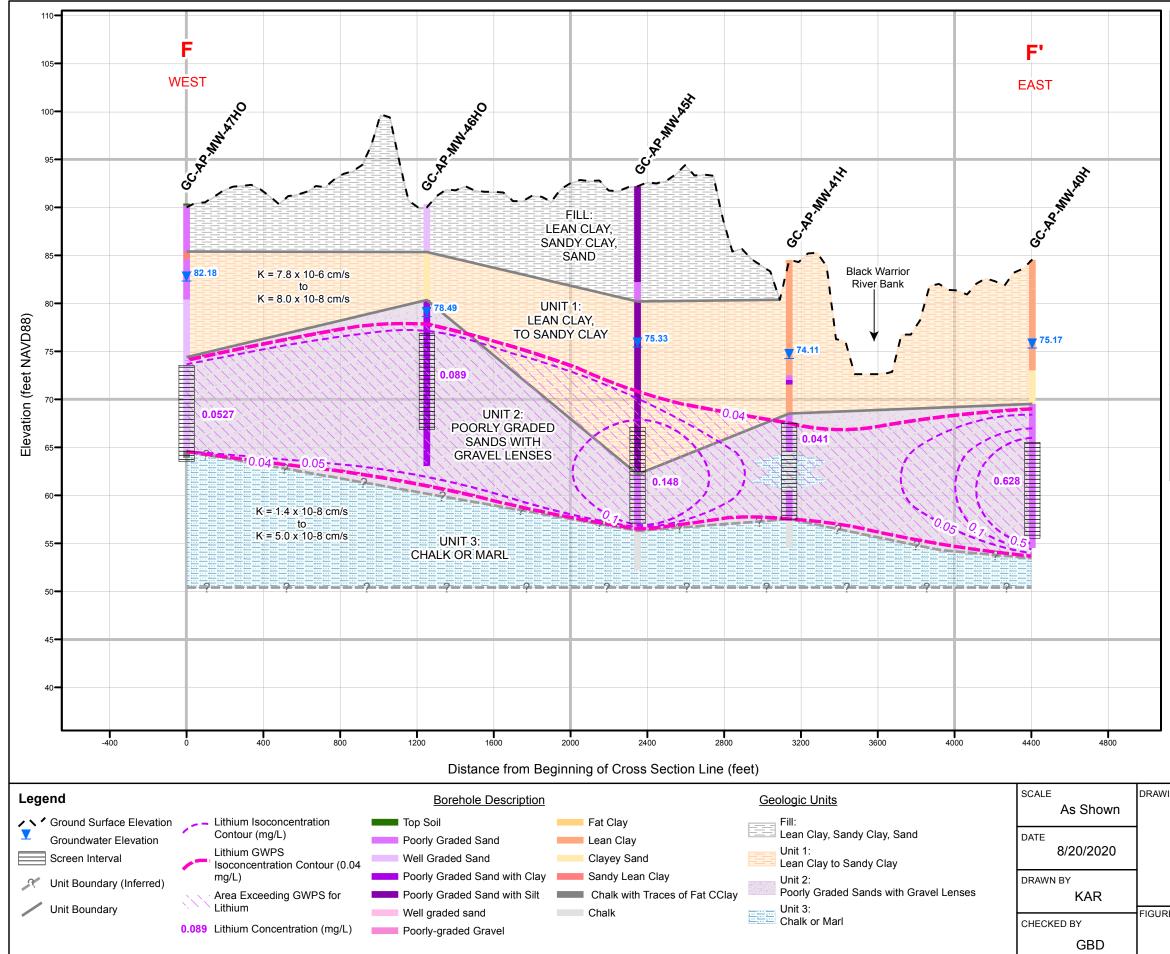
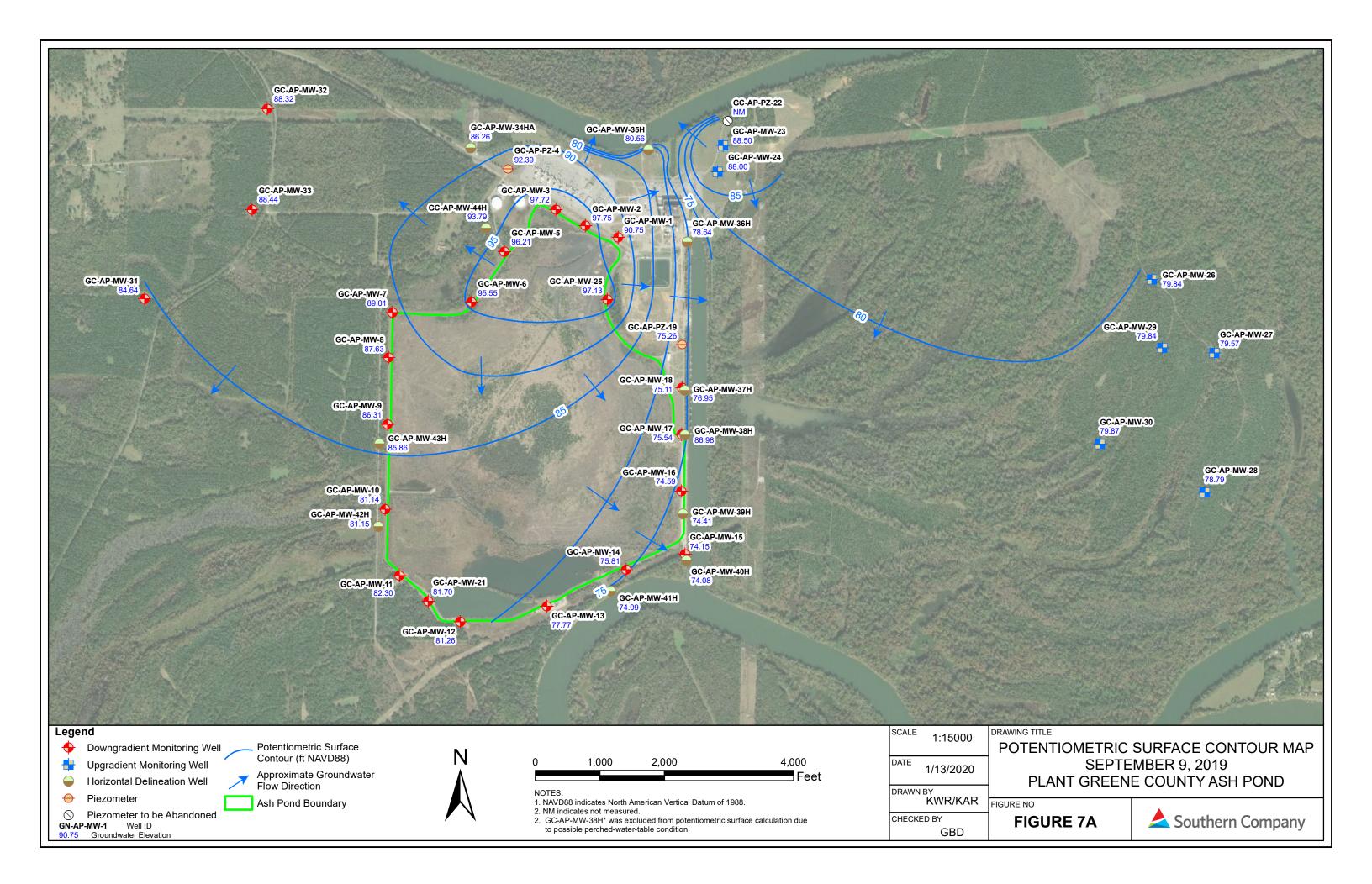
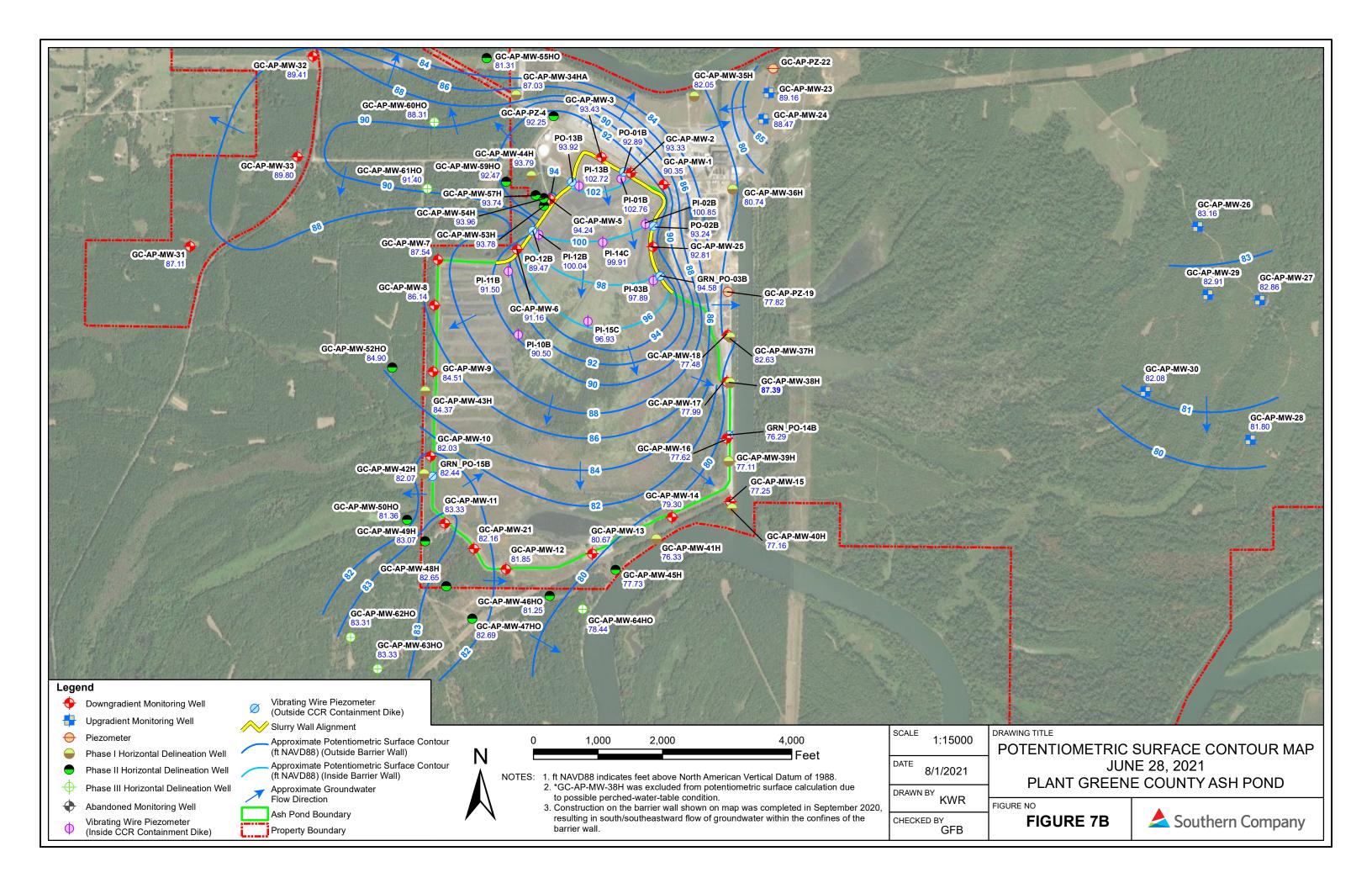

FIGURE NO

FIGURE 13C





Y A	GC-AP-MW-40H
	GC-AP-MW-41H
	GC-AP-MW-45H
F	and Spill Street
GC-AP-MW-47HO Legend SectionLine	GC-AP-MW-46HO Serrer Enf Digit/Goby, Condyo, Enrichtin Coopenfiles, GNES/Alticus DS, USOA, USOS, graf USA, VGP, Eurissiepo, and the CIS User Community
	1,000 2,000 4,000
 USGS 3DEP. 2. NAVD88 indicates Nor 3. Groundwater elevation 4. Vertical exaggeration = 5. Water samples were conduct MW-47HO (collected of July 6, 2020). 6. K = Hydraulic Conduct 7. mg/L indicates milligran 8. ND indicates not detect limit. 9. J indicates a laboratory analytical method dete 10. GWPS indicates Grout 	ollected between April 20 and April 29 except on May 28, 2020) and MW-46HO (collected on ivity.
GEOLOGIC C	NCENTRATIONS ON ROSS SECTION F - F' E COUNTY ASH POND
ENO FIGURE 14C	southern Company

Appendix C Potentiometric Maps

Appendix D Monitored Natural Attenuation Demonstration

September 2021 Plant Greene County

Monitored Natural Attenuation Demonstration

Prepared for Alabama Power Company

September 2021 Plant Greene County

Monitored Natural Attenuation Demonstration

Prepared for Alabama Power Company 600 18th Street North Birmingham, Alabama 35203

Prepared by

Anchor QEA, LLC 9797 Timber Circle, Suite B Daphne, Alabama 36527

TABLE OF CONTENTS

Exe	utive SummaryES	5-1
1	Introduction	1
2	Stability of Areas of Impacts	2
3	Groundwater Sampling and Analysis	3
4	Groundwater Geochemical Modeling	4
	4.1 Geochemical Stability and Speciation Calculations	4
5	Solids Sampling and Analysis	6
	5.1 Sample Collection	6
	5.2 Sample Analysis	7
	5.3 Well Solids Results	8
	5.4 Aquifer Solids (Soil) Results	9
6	Mechanisms for Natural Attenuation	10
7	Reactive Transport Modeling	12
8	Column Studies	15
	3.1 Methodology (Setup)	15
	8.2 Column Test Results	16
9	Aquifer Capacity for Attenuation	17
10	Time to Achieve Groundwater Protection Standards (Rates) and Stability of Attenuated COIs	20
11	Conclusions and Interpretation	21
12	References	24

TABLES

Table 1	Monitored Natural Attenuation Demonstration Status
Table 2	Sampling Locations
Table 3	Analyzed Constituents and Laboratory Analytical Methods
Table 4	Saturation Indices for Groundwater Samples

i

Table 5	Geochemical Analysis of Monitoring Well and Aquifer Solids
Table 6	Bulk Chemistry by XRF (Well Solids)
Table 7	Minerals Identified in Well Solids Samples by XRD
Table 8	Cation Exchange Capacity of Well Solids Samples
Table 9	Bulk Chemistry by XRF (Aquifer Solids)
Table 10	Minerals Identified in Aquifer Solids Samples by XRD
Table 11	Cation Exchange Capacity of Aquifer Solids Samples
Table 12	Lines of Evidence for Attenuation Mechanisms
Table 13	Extractable Aluminum, Manganese, and Iron Oxides in Aquifer Solids
Table 14	Groundwater Sample Data for the 1D Model Transects
Table 15	Cation Exchange and Sorption Capacity for the 1D Model Transects
Table 16	Initial Groundwater Characterization Results
Table 17	Site Soils and Groundwater Used in Column Tests
Table 18	Column Test Operating Conditions
Table 19	Post-Column Test Soil SSE Results

FIGURES

Figure 1	Concentration Versus Time Graphs
Figure 2	Concentration Versus Distance Graphs
Figure 3	Eh-pH Stability Diagram for Dissolved and Solid Iron Phases
Figure 4	Eh-pH Stability Diagram for Dissolved and Solid Arsenic Phases
Figure 5	Eh-pH Stability Diagram for Dissolved and Solid Cobalt Phases
Figure 6	Eh-pH Stability Diagram for Dissolved and Solid Manganese Phases
Figure 7	1D Model Transects
Figure 8	Representative Soil Samples
Figure 9	Bulk Chemistry Relationship Between Arsenic and Iron
Figure 10	SSE Results for Well Solids
Figure 11	SEM Results for GC-AP-MW-11
Figure 12	Simulated Arsenic and Lithium Concentrations Along Model Transect 1
Figure 13	Simulated Arsenic and Cobalt Concentrations Along Model Transect 2
Figure 14	Simulated Arsenic and Lithium Concentrations Along Model Transect 3
Figure 15	Simulated Lithium Concentrations Along Model Transect 4
Figure 16	Column Test Equipment Setup
Figure 17	Schematic of Column Test Setup

- Figure 18 Dissolved Arsenic Breakthrough Curves: Columns 1 and 2
- Figure 19 Dissolved Arsenic Breakthrough Curves: Columns 3 and 4
- Figure 20 Dissolved Cobalt Breakthrough Curves
- Figure 21 Dissolved Lithium Breakthrough Curves

APPENDICES

- Appendix A Concentration Versus Time Graphs
- Appendix B Isoconcentration Maps
- Appendix C Analytical Data

ABBREVIATIONS

μg	microgram
ADEM	Alabama Department of Environmental Management
APC	Alabama Power Company
CCR	coal combustion residuals
CEC	cation exchange capacity
cm	centimeter
COI	constituent of interest
EGL	Anchor QEA Environmental Geochemistry Laboratory
GWPS	groundwater protection standard
kg	kilogram
meq	milliequivalents
mg	milligram
MNA	monitored natural attenuation
Plant Greene County	Greene County Electric Generating Plant
PV	pore volume
SEM	scanning electron microscopy
Site	Greene County Electric Generating Plant ash pond
SSE	selective sequential extraction
SSL	statistically significant level
USEPA	U.S. Environmental Protection Agency
wt%	weight percent
XRD	X-ray diffraction
XRF	X-ray fluorescence

Executive Summary

Extensive geochemical and related studies demonstrate that monitored natural attenuation (MNA) is a viable corrective action for groundwater impacts associated with the Greene County Electric Generating Plant (Plant Greene County) ash pond (Site). The preponderance of evidence indicates that conditions at the Site meet U.S. Environmental Protection Agency's evaluation criteria for the use of MNA, specifically: area of impacts stable or shrinking, identified mechanisms for attenuation, stability of the attenuating mechanisms, sufficient aquifer capacity for attenuation, and time to achieve groundwater protection standards (GWPSs) are reasonable compared to other correctiveaction alternatives. However, MNA is one component of the Site's corrective action remedy. As noted in the *Groundwater Remedy Selection Report*, the following corrective measures were selected for the Site: source control to include dewatering, consolidation, capping of the Site, and the installation of a barrier (slurry) wall completely around the consolidated perimeter keyed into the relatively impermeable chalk aquitard; geochemical manipulation via injections in areas of relatively high concentrations of constituents of interest (COIs) to remove them from groundwater and immobilize them in situ; and MNA over the entire Site.

Investigations performed to support the use of MNA at the Site included preparation of concentration versus time and concentration versus distance graphs for COIs in groundwater; groundwater, well solids (precipitates), and soil sampling; laboratory analyses of well solids samples for bulk chemistry (X-ray fluorescence), mineralogy (X-ray diffraction and scanning electron microscopy), and cation exchange capacity; geochemical modeling; selective sequential extraction (SSE) to determine associations of COIs with attenuating solids; and column studies to assess the aquifer (soil) capacity for attenuation.

The trends observed in concentration versus time and concentration versus distance graphs provide evidence that natural attenuation is occurring at the Site, even without source control. Several concentration versus time graphs indicate that arsenic, lithium, and/or cobalt concentrations are stable or are decreasing with time in some areas. Decreasing trends were extrapolated to estimate time to achieve the GWPS. Also, concentration versus distance graphs along downgradient transects indicate that arsenic, cobalt, and lithium are decreasing with distance from the Site. Isoconcentration maps for COIs from 2020 and 2021 were compared and show plume stability.

Based on the geochemical investigations, multiple lines of evidence support multiple attenuating mechanisms, depending upon the COIs. The major attenuating mechanisms include sorption on (or coprecipitation with) iron oxides and possibly precipitation of barium arsenate for arsenic, cobalt attenuation by incorporation into a cobalt-iron oxide, and lithium attenuation by ion exchange on oxides and clay minerals. All COIs are subject to physical attenuation mechanisms such as dispersion and flushing, which will contribute to decreased concentrations with time and distance from the Site.

Column studies were performed to assess the ability for the aquifer media (soil) to take up COIs. Cobalt and lithium showed limited ability to sorb to the aquifer media based on column studies. However, these constituents are still subject to other attenuating mechanisms, such as physical attenuation (dispersion and flushing) and coprecipitation, as indicated by the concentration versus time and distance graphs, and geochemical studies.

Column studies indicate that arsenic is significantly attenuated by aquifer media, as arsenic in column effluent remained below 13% of the influent concentrations. This attenuation capacity was extrapolated to the entire mass of the aquifer downgradient of the consolidated Site (outside the barrier wall), but within the property boundary. The extrapolation showed that the aquifer has an attenuating capacity of many more times the mass of arsenic requiring attenuation.

SSE studies indicate that most of the mass of all three COIs occurs in the oxidizable and residual fractions, which are very stable attenuation phases.

The slope of trend lines through recent data on concentration versus time graphs and results from reactive transport modeling were used to estimate time to achieve the applicable GWPS. Depending on the COI and well (area), the estimated time to achieve natural attenuation ranges from 2 to 40 years not considering source control, which is very reasonable compared to durations of other corrective action technologies. Source control and geochemical manipulation (injections) will reduce the time to achieve natural attenuation.

1 Introduction

The Greene County Electric Generating Plant (Plant Greene County) ash pond (Site), located in Greene County, Alabama, is owned and operated by Alabama Power Company (APC). As of April 15, 2019, the Site ceased receipt of all coal combustion residuals (CCR) and non-CCR waste streams.

APC has been monitoring groundwater at the Site in accordance with the U.S. Environmental Protection Agency (USEPA) CCR Rule and the Alabama Department of Environmental Management (ADEM) rule since 2016. Constituents of interest (COIs) for the Site include arsenic, cobalt, and lithium.

Though substantial evidence for natural attenuation exists for the Site, natural attenuation is expected to increase as source control measures are implemented (i.e., dewatering, consolidation, barrier wall installation, and capping).

USEPA defines MNA as the "reliance on natural attenuation processes (within the context of a carefully controlled and monitored site cleanup approach) to achieve site-specific remediation objectives within a time frame that is reasonable compared to that offered by other more active methods" (USEPA 1999, 2015). An MNA evaluation consists of the following steps or tiers (USEPA 2015):

- 1. Demonstrate that the area of impacts (plume) is stable or shrinking.
- 2. Determine the mechanisms and rates of attenuation.
- 3. Determine that the capacity of the aquifer is sufficient to attenuate the mass of constituents in groundwater and that the immobilized constituents are stable and will not remobilize.
- 4. Design a performance monitoring program based on the mechanisms of attenuation and establish contingency remedies (tailored to site-specific conditions) should MNA not perform as expected.

As shown in Table 1, the field and laboratory investigations completed for this evaluation support Tiers 1 through 3. Tier 4 is addressed in the accompanying *Groundwater Remedy Selection Report*. A detailed sitewide corrective action monitoring plan will be submitted by December 29, 2021.

1

2 Stability of Areas of Impacts

Existing groundwater data were used to generate concentration versus time and concentration versus distance graphs to determine if attenuation is occurring over time and/or space and to assess natural attenuation occurrence and rates. COIs were plotted on the y-axis. For the concentration versus time plots, the time between sampling events (in days from 2016 through 2021) was plotted on the x-axis. For the concentration versus distance graphs, the distance between the pond boundary and the monitoring well was plotted on the x-axis. Concentration versus distance graphs were made for all COIs along the upgradient-downgradient flowpaths. Specifically, concentration versus distance graphs were made for the following wells:

- GC-AP-MW-2 to GC-AP-MW-35H (arsenic)
- GC-AP-MW-5 to GC-AP-MW-54H to GC-AP-MW-57H to GC-AP-MW-59HO (arsenic and lithium)
- GC-AP-MW-13 to GC-AP-MW-45H (lithium)
- GC-AP-MW-12 to GC-AP-MW-47HO (lithium)
- GC-AP-MW-21 to GC-AP-MW-48H to GC-AP-MW-63HO (lithium and cobalt)
- GC-AP-MW-11 to GC-AP-MW-49H to GC-AP-MW-62HO (lithium)

The trends observed in recent data provide evidence that natural attenuation is occurring at the Site. Recent trends in wells that have statistically significant levels (SSLs) of at least one COI are generally either stable or are decreasing, which supports USEPA's Tier I for an MNA evaluation. Similar evidence from other wells is expected after closure, as closure activities cut off the source of COIs to groundwater. A selection of concentration versus time graphs is included in Figure 1. All concentration versus time graphs are included in Appendix A. For concentration versus distance, all transects showed COI concentrations decreasing with distance away from the Site, indicating spatial attenuation (as shown in Figure 2).

A demonstration that the areas of impacts are stable or shrinking (Tier I) is further supported by comparing isoconcentration maps from 2020 and 2021 for all COIs (Appendix B). These isoconcentration maps show a close correlation in isoconcentration contours between the two dates, indicating that impacts are not expanding.

3 Groundwater Sampling and Analysis

Groundwater samples were collected by RDH Environmental, Inc., on March 30 through 31, 2020. The samples were submitted to the Alabama Power General Test Laboratory to evaluate MNA and enable groundwater geochemical modeling. This groundwater data could also be used to support geochemically based corrective action such as geochemical manipulation (injections). Groundwater samples were collected from monitoring wells as listed in Table 2. The samples were analyzed for major cations, anions, and parameters influencing the chemical behavior of the COI. The analyzed constituents and associated laboratory analytical methods are summarized in Table 3.

Groundwater samples were collected from monitoring wells included in Table 2 using the dedicated pump installed in each well. Wells were purged at a low flow rate to minimize drawdown and sampled using low-flow sampling techniques in accordance with 40 CFR § 257.93(a) and ADEM Admin. Code r. 335-13-15-.06(4)(a). Prior to sampling, each monitoring well was purged until field parameters (pH, temperature, specific conductance, dissolved oxygen, and oxidation-reduction potential) stabilized. Turbidity was measured during sampling but was not used as a stabilization criterion.

4 Groundwater Geochemical Modeling

4.1 Geochemical Stability and Speciation Calculations

Geochemical equilibrium modeling was performed to help determine which phases may be controlling the dissolved concentrations, mobility, and attenuation of arsenic, cobalt, and lithium as well as the behavior of other species (such as iron, manganese, and aluminum) that influence the behavior of the COI.

The Geochemist's Workbench software (Bethke and Yeakel 2013) was used to construct Pourbaix (Eh-pH) diagrams for the COI, iron, and manganese based on Site groundwater chemistry to assess the geochemical stability of phases potentially controlling COI concentrations under Site conditions (Figures 3 through 6). Blue fields indicate dissolved/mobile species, and yellow fields indicate solid/attenuated species. Eh-pH data from the March 2020 groundwater sampling event are also plotted to determine the most stable species under Site conditions. The Pourbaix stability diagrams indicate the following associations and attenuating mechanisms:

- Site Eh-pH data generally fall along the equilibrium line between amorphous iron hydroxide [Fe(OH)₃(a)] and dissolved ferrous iron [Fe²⁺], from which the presence of iron oxides in the aquifer can be inferred as a major control on Eh-pH conditions (Figure 3). Iron oxides are strong sorbents for many metals and metalloids including arsenic and cobalt.
- Site Eh-pH data also indicate that a barium arsenate mineral phase is stable under Site conditions and may control dissolved arsenic concentrations (Figure 4).
- A cobalt-iron oxide phase [CoFe₂O₄] is also predicted to be stable under Site conditions (Figure 5). This phase has a similar structure to the iron oxide mineral magnetite [Fe₃O₄], suggesting incorporation/co-precipitation of cobalt in iron oxides as an attenuation mechanism.
- Lithium is often associated with manganese oxides, and specifically with the mineral lithiophorite [(Li,Al)Mn₂O₂(OH)₂]. The thermodynamic properties of lithiophorite and other lithium-bearing manganese oxides are not well known, and its stability field shown in Figure 6 is approximate. According to the Eh-pH diagram for manganese, Site groundwater conditions appear to be too reducing (lower Eh) for lithiophorite to be stable; therefore, manganese oxides are not likely important attenuating phases for lithium at the Site.

Geochemical speciation-solubility calculations were also performed using the U.S. Geological Survey computer program PHREEQC (Parkhurst and Appelo 2013) with the WATEQ4F thermodynamic database (augmented with data for lithiophorite [Parc et al. 1989] and cobalt species from the MINTEQv4 database) to calculate aqueous speciation and determine the saturation state of groundwater samples with respect to possible mineral phases. Saturation index calculations can be useful in inferring potential solid phases present in an aquifer and controls on water chemistry and

reactivity of an aqueous solution toward specific mineral phases. If a groundwater solution is saturated or supersaturated with a solid mineral phase, then that phase could be precipitating and attenuating COIs as it precipitates. Saturation indices for groundwater samples collected in March 2020 are presented in Table 4, and geochemical speciation modeling results indicate the following:

- Groundwater samples in downgradient wells are slightly supersaturated and/or close to equilibrium with respect to amorphous iron hydroxide [Fe(OH)₃(a)] and iron carbonate (siderite) and supersaturated with respect to the more crystalline iron oxides (goethite, hematite, and magnetite).
- Groundwater samples with detectable arsenic are generally supersaturated with respect to a barium arsenate mineral phase.
- Groundwater samples with detectable cobalt concentrations are generally supersaturated with respect to a cobalt-iron oxide phase.
- Groundwater samples with both detectable aluminum and manganese are supersaturated with respect to lithiophorite (lithium aluminum manganese oxide), suggesting lithiophorite as a potential attenuating phase for lithium at the Site. However, groundwater samples in all wells are generally undersaturated with respect to manganese oxides, and downgradient samples are close to equilibrium with respect to rhodochrosite [MnCO₃], indicating that redox conditions are generally more reducing than required to stabilize manganese oxides. The role of lithiophorite as an attenuation mechanism for lithium at the Site is, therefore, somewhat uncertain.

5 Solids Sampling and Analysis

Precipitation and coprecipitation may be major mechanisms for natural attenuation. Soil and aquifer media can also sorb COIs, and their geochemistry can indicate if natural attenuation is occurring or has the potential to occur. If well solids (precipitates) are forming and incorporating COIs, then natural attenuation is occurring. Similarly, if well solids (precipitates) are forming and incorporating COIs, this suggests attenuation mechanisms that can be enhanced by geochemical manipulation under existing Site conditions.

5.1 Sample Collection

To evaluate these mechanisms (precipitation and coprecipitation), solid particles were collected from the bottom of select monitoring wells and analyzed, as summarized in Table 2. The solids may be well solids (precipitates) forming in the aquifer or part of the mineralogy of the aquifer that has migrated into the well through the well screen. Regardless, depending upon their chemistry and mineralogy, the solids may have the ability to attenuate COIs.

Well solids samples were collected as follows:

- Well solids were pumped from the bottom of the well via polyethylene tubing and the applicable pump.
- Groundwater and well solids (precipitates) were pumped through an inline filter holder and stand (for example, those manufactured by Geotech Environmental Equipment, Inc.) with a 0.45-micron filter membrane until the filter clogged or the water ran clear. Up to five filters containing well solids were collected at each well (with the objective to collect as much solid material as possible from the bottom of each well).
- All filters from each well were placed in a single plastic petri dish, and the petri dish lid was secured with duct tape.
- Each wrapped petri dish was placed in a Mylar bag with oxygen-absorbent packets.
- The Mylar bags were sealed with no headspace and placed in a secured iced cooler.
- Samples were stored on ice and shipped to the Anchor QEA Environmental Geochemistry Laboratory (EGL) in Portland, Oregon, for analysis.

Aquifer solids (soil) samples were also collected from borings and analyzed to conduct column laboratory experiments to determine capacity, rates, and stability of MNA. Soil samples were collected on March 29 through April 2, 2021, from the soil boring locations shown in Figure 7. Soil samples were collected using sonic drilling technology at four locations (11 borings) at the Site along potential groundwater flow paths (downgradient) from the CCR unit. One composite soil sample was collected per boring from Unit 2 (poorly graded sands with gravel lenses). Photographs of representative soil samples are shown in Figure 8. Samples were selected in the field, packaged to preserve field redox conditions (airtight containers packed in Mylar bags with oxygen-scavenging packets), and shipped on ice to the EGL for column study experiments.

Each soil sample collected for laboratory analyses was assigned a unique alphanumeric identifier. Analytical sample identification was based on the following designations:

- 1 through 4 (transect number "1")
- A through C (location identifier where "A" is closest to the Site, and "C" is farthest downgradient)

5.2 Sample Analysis

Upon arrival at the EGL, well solids (precipitates) and soil samples were inspected and checked against the chain of custody. Samples were then stored under refrigeration until processing. To maintain in situ geochemical conditions, well solids (precipitates) were removed from the filters under a nitrogen atmosphere in an aerobic glove box for analysis and geochemical characterization. Solids retained on the sample filters was scraped and rinsed into centrifuge tubes. This mixture was then centrifuged, and the solids were transferred into a pre-weighed glass jar. The solids were then placed into the incubator portion of the glove box at 38°C for 24 to 72 hours until dry.

The well solids and soil samples were analyzed by the following methods:

- X-ray fluorescence (XRF) to determine the chemical composition of the matrix (e.g., iron compounds) and presence of COIs
- X-ray diffraction (XRD) to determine mineral phases
- SSE to determine association of COIs with attenuating phases, determine relative strength of attenuation, and provide a sense of permanence
- Cation exchange capacity (CEC) to assess ion exchange as a mechanism for attenuation
- Scanning electron microscopy (SEM) to directly observe attenuating phases (well solids only)

Additional detail (including the relevance of each analysis to the MNA evaluation) is included in Table 5.

All samples with sufficient volume were analyzed by XRF to determine the chemical composition. After drying, processed samples were loaded and sealed in plastic sample containers for elemental analysis by XRF. XRF testing was performed by EGL staff using a Niton XL3t GOLDD+ XRF Analyzer rented from Thermo Fisher Scientific. Individual samples were analyzed by XRF using the "Test All Geo" method under the "Mining" profile, which includes most elements heavier than sodium.

Powder XRD analysis was performed on selected well solids and aquifer soil samples to determine mineralogy. Samples were selected based on several factors, including well location, groundwater chemistry, bulk chemical composition data (XRF), and, for well solids samples, available sample mass.

Samples for XRD were delivered to RC Imaging and Analysis in Portland under chain of custody for analysis.

After XRF analysis, samples for SSE analysis were selected using the criteria above and the results of the XRF analysis. SSE targets a series of operationally defined mineral fractions. In SSE, samples are leached with increasingly aggressive solutions to determine the chemical associations. Generally, each successive step represents stronger attenuation and greater permanence than the previous step. The fractions, from most to least environmentally available, are as follows:

- F1: Water soluble
- F2: Exchangeable (e.g., clay minerals)
- F3: Reducible (e.g., poorly crystalline metal oxides such as iron oxides)
- F4: Oxidizable (e.g., crystalline oxide and crystalline sulfide minerals)
- F5: Residual (e.g., silicate phases)

The F3, F4, and F5 fractions represent relatively stable (permanent) attenuating mechanisms, provided Site geochemical conditions do not change drastically.

Ion exchange is a common attenuation mechanism for some COIs, such as lithium and cobalt. After XRF analysis, samples for CEC analysis were selected using the criteria above and the results of the XRF analysis. Exchange capacity is calculated after adding ammonium acetate to samples and leaching for 16 hours, then analyzing the leachate for released exchangeable cations.

Select well solids samples were submitted for examination by SEM to confirm attenuating mineral phases and compositions and to identify amorphous coatings on mineral grains (documented by elemental mapping) that can attenuate COIs. Samples for SEM were delivered to RC Imaging and Analysis in Portland under chain of custody for analysis.

5.3 Well Solids Results

The XRF chemical analysis of the well solids (Table 6) showed a relationship with at least one COI and elements associated with natural attenuation (iron, calcium, and/or manganese) detected in samples from 12 monitoring wells. The relationship of arsenic and iron is shown in Figure 9. Solids from upgradient wells were used to define the geogenic (natural) relationship of arsenic to iron (open circles and orange dashed line in Figure 9). Arsenic values above the line represent arsenic enrichment in iron compounds, which demonstrates arsenic attenuation in downgradient wells. XRD identified goethite, an attenuating iron oxide, in solids from one well (Table 7). Figure 10 shows the results of SSE for four samples from the Site. Interpretation by COI includes the following:

• Arsenic: Bound primarily in the F4 (oxidizable) and F5 (residual) fractions, though some samples also show an association with the F2 (exchangeable) fraction. This is consistent with

the identification of crystalline iron oxides from the other investigations and possibly barium arsenate (predicted by geochemical modeling).

- Cobalt: Bound primarily in the F4 (oxidizable) fraction, though some cobalt is associated with all fractions. This is consistent with the identification of crystalline iron oxides from the other investigations.
- Lithium: Bound primarily in the F2 (exchangeable/clay), and in some samples F4 (oxidizable) and F5 (residual) fractions. This is consistent with the other investigations identifying cation exchange (F2) as the main attenuating mechanism.

Select samples with suspected clay content were submitted for CEC testing. CEC was variable in the samples, ranging from 15 to 432 milliequivalents per kilogram (meq/kg; Table 8), which is sufficient to provide significant attenuating capacity. Exchangeable lithium was detected in solids from two downgradient wells, indicating attenuation of lithium by clay minerals.

SEM and associated elemental mapping were conducted on select samples to confirm mineral phases and attenuating mechanisms. SEM results indicate that the solids collected from both GC-AP-MW-1 and GC-AP-MW-11 are a mix of quartz, iron-rich, and feldspar grains. In GC-AP-MW-1, extensive alteration with coatings of aluminum and iron material were observed on many quartz grains, and much of the iron material appears to be well solids (precipitates). In GC-AP-MW-11, extensive alteration, with heavy coatings of aluminum, iron, and (rare) calcium materials were observed (Figure 11). The colors on Figure 11 are not natural but are added to show the locations of the various elements analyzed.

5.4 Aquifer Solids (Soil) Results

XRF analysis of soil samples show total iron content in the range of 0.08 to 1.5 weight percent (wt%), which likely reflects iron oxide content and provides substantial attenuating capacity (Table 9). The mineralogy of the soil samples (as determined by XRD) consists mostly of quartz, with lesser amounts of feldspar, mica, and clay minerals (Table 10). The clay minerals include bentonite, montmorillonite, kaolinite, and vermiculite, all of which have attenuating capacity (the bentonite could be naturally occurring or possibly an artifact from use in well construction).

CEC for the soil samples was in the same range as well solids samples (3.6 and 16 meq/kg) and reflects differences in the clay mineral content of the two samples (Table 11).

Analytical results are included in Appendix C.

6 Mechanisms for Natural Attenuation

To support MNA, the following laboratory analyses of groundwater and well solids (precipitates) (attenuating solids) were conducted:

- Performed geochemical modeling using PHREEQC with WATEQ4F
- Analyzed samples of well solids (precipitates) by XRF and XRD
- Directly observed attenuating mineral phases by SEM
- Determined association of COI with attenuating phases, determined relative strength of attenuation, and provided a sense of permanence by SSE
- Assessed ion exchange as an attenuation mechanism by CEC

As discussed in Section 5, results from groundwater data analysis, geochemical modeling, and well solids analyses provide multiple lines of evidence for multiple attenuation mechanisms for COI, as summarized in Table 12. The attenuating mechanisms include sorption-coprecipitation with iron oxides and ion exchange on clay minerals. Precipitation of barium arsenate for arsenic was predicted by geochemical modeling but not identified in solid samples.

As discussed in Section 5, results from groundwater data analysis, geochemical modeling, and well solids analyses provide multiple lines of evidence for multiple attenuation mechanisms for COIs, as summarized in Table 12. The attenuating mechanisms include sorption-coprecipitation with iron oxides and ion exchange on clay minerals. Precipitation of barium arsenate for arsenic was predicted by geochemical modeling but not identified in solid samples. XRF detected at least one COI and elements associated with natural attenuation (iron, calcium, manganese, magnesium, and/or barium). The XRF bulk chemical analysis show relatively high concentrations of iron (an attenuating species) ranging between 15,000 and 260,000 milligrams per kilogram (mg/kg) at 1.5 to 26.3 wt%. The positive correlation between iron and arsenic and cobalt, respectively, indicates that iron compounds are attenuating these two COIs.

XRD identified at least one of six potentially attenuating clay minerals (montmorillonite, kaolinite, vermiculite, clinochlore, greenalite, and muscovite/illite) in six soil samples. CEC, SSE and SEM were performed on select samples to verify the results of the XRD work. The well solids samples exhibit moderate but variable CEC, which ranges from 15.3 to 432 meq/kg. Exchangeable lithium and cobalt concentrations show a positive relationship to CEC, which supports a conclusion that cation exchange on clays is a significant attenuation mechanism for lithium and cobalt.

SEM identified iron oxide coatings on sand grains and abundant aluminosilicate clays such as muscovite-illite, which supports other investigations that indicated these species as attenuating compounds.

As discussed in greater detail in Section 5.3, SSE indicated an association of COIs with multiple attenuation mechanisms as follows:

- Arsenic: Primarily in the oxidizable (crystalline oxide) and residual fractions, with some arsenic associated with the exchangeable fraction. This is consistent with attenuation in, and sorption on iron oxides.
- Cobalt: Primarily in the oxidizable (crystalline oxide) fraction, which is consistent with incorporation into a cobalt-iron oxide. Some cobalt associated with all fractions.
- Lithium: Occurs in the water soluble, exchangeable (e.g., on clay minerals), oxidizable, and residual fractions. Lithium in the exchangeable fraction is consistent with the CEC data, i.e., attenuation as ion exchange on clays.

All three COIs occur in the oxidizable and residual fractions, which indicate very stable attenuation phases. The residual fraction, however, likely represents residual mineral phases (grains) that are part of the aquifer matrix.

7 Reactive Transport Modeling

Reactive transport modeling was performed to assess the post-closure fate and transport of COIs (arsenic, cobalt, and lithium) along select groundwater flow paths at the Site. The objective of the modeling was to quantitatively assess the effectiveness and estimate the timeframes for natural attenuation to reduce COI concentrations in groundwater outside the Site boundary to below groundwater protection standard (GWPS) following source removal.

Four 1-dimensional transects, extending along groundwater flow paths from the boundary of the Site to downgradient surface water features, were modeled using PHREEQC (Figure 7). Following source removal and installation of a barrier wall, groundwater currently present along these transects will be progressively replaced by upgradient groundwater with COI concentrations less than the GWPS. In addition, COI concentrations will be attenuated along the flow path due to reactions with the aquifer matrix. Specific attenuating mechanisms for the three COIs included in the models are as follows:

- Arsenic: Sorption to iron and aluminum oxide binding sites in aquifer soil, as well as precipitation of a barium arsenate mineral phase
- Cobalt: Sorption to iron and aluminum oxide binding sites in aquifer soil
- Lithium: Cation exchange on clay minerals in aquifer soil

Selection of these attenuation mechanisms was based on observed attenuation mechanisms, geochemical modeling, and laboratory studies described previously, including data on extractable iron and aluminum oxides and CEC of aquifer solids samples collected in the vicinity of the model transects (Table 13).

Sorption reactions of COI were simulated using the surface complexation models for iron and aluminum oxide binding sites based on Dzombak and Morel (1990) and Karamalidis and Dzombak (2010), respectively. Transect-specific data, including groundwater chemistry, as well as CEC and extractable iron and aluminum oxide concentration data for aquifer solids were used to define initial groundwater and aquifer matrix geochemistry.

Groundwater chemistry along each transect was based on data for samples collected in 2020 for which complete chemical analyses (major ions and COIs) were available. Initial chemistry was defined by data from at least two wells along each transect and background¹ groundwater chemistry defined by data from a nearby well with no SSLs. Along each flowpath, groundwater chemistry was assigned in segments, extending to the midpoints between adjacent wells. The groundwater chemistry data used in the models are presented in Table 14. CEC and extractable iron and aluminum oxide data

¹ "Background" indicates chemical background.

(Table 15) for aquifer soil samples collected along each transect were used to assign cation exchange and sorption capacity (concentrations of iron and aluminum binding sites) parameters in the models.

Model simulations were run for a total time representing five pore volumes of flow along each transect. Simulation times ranged from 2 to 40 years depending on the groundwater flow velocity and length of each transect. Groundwater velocities were calculated from hydraulic conductivity, hydraulic gradients, and effective porosity. The average horizontal hydraulic conductivity (30 feet per day) was taken from the *Groundwater Modeling Report, Rev. 0* (Wood 2019) for fine to medium sand, and a value of 0.25 was assumed for effective porosity. The hydraulic gradients were calculated from April 2020 groundwater elevation data for wells along transects 1 and 2 and from May 2020 groundwater elevation data for wells along transects 3 and 4. Reactive transport models for the four transects, including model results, are described in more detail as follows:

- Transect 1, Arsenic and Lithium at SSLs
 - Transect length = 2,570 feet; hydraulic gradient = 0.0061; linear groundwater velocity = 0.73 feet per day; one pore volume = 9.6 years
 - Transect wells for chemistry: Background: MW-6; Downgradient: MW-5 (0-60 feet), MW-54H (60-170 feet), MW-57H (170-360 feet), MW-44H (360-950 feet), PZ-4 (950-1,500 feet), and MW-34HA (1,500-2,570 feet)
 - Arsenic concentrations are predicted to be attenuated over time along this transect but remain above the GWPS along the upgradient portion of the transect for at least 40 years. The downgradient extent of GWPS exceedances is predicted to slowly increase as the maximum concentration decreases (Figure 12).
 - Lithium concentrations are predicted to be attenuated over time and decrease below the GWPS along this transect within 8 years (Figure 12).
- Transect 2, Arsenic and Cobalt at SSLs
 - Transect length = 1,360 feet; hydraulic gradient = 0.0059; linear groundwater velocity = 0.71 feet per day; one pore volume = 5.2 years
 - Transect wells for chemistry: Background: MW-25; Downgradient: MW-1 (0-680 feet) and MW-35H (680-1,360 feet)
 - Arsenic concentrations are predicted to be attenuated over time along this transect and will decrease to less than a factor of 2 above the GWPS within approximately 10 years. Small exceedances for arsenic (less than 2 times the GWPS) are predicted to persist downgradient for at least 26 years (Figure 13).
 - Cobalt concentrations are predicted to be attenuated over time along this transect and will decrease below the GWPS along this transect within approximately 10 years (Figure 13).
- Transect 3, Arsenic and Lithium at SSLs

- Transect length = 370 feet; hydraulic gradient = 0.0081; linear groundwater velocity = 0.97 feet per day; one pore volume = 0.51 years
- Transect wells for chemistry: Background: MW-25; Downgradient: MW-17 (0-40 feet) and MW-38H (40-180 feet); although transect 2 soils are located adjacent to MW-18, MW-17 data were selected to define groundwater chemistry in this area for modeling because the COI concentrations are higher at MW-17.
- Arsenic concentrations are predicted to be attenuated over time along this transect but remain above the GWPS for at least 5 years. The downgradient extent of GWPS exceedances is predicted to increase as the maximum concentration decreases (Figure 14).
- Lithium concentrations are predicted to be attenuated over time and decrease below the GWPS along this transect within 2 years (Figure 14).
- Transect 4, Lithium at SSL
 - Transect length = 530 feet; hydraulic gradient = 0.0052; linear groundwater velocity = 0.63 feet per day; one pore volume = 2.3 years
 - Transect wells for chemistry: Background: MW-41H; Downgradient: MW-13 (0-210 feet) and MW-45H (210-530 feet)
 - Lithium concentrations are predicted to be attenuated over time and decrease below the GWPS along this transect within 10 years (Figure 15).

The reactive transport model results presented here indicate that, following completion of source control measures that will reduce COI concentrations in groundwater (including consolidation, capping, and barrier wall placement that will occur in and around the Site), natural attenuation processes will play an important role in achieving GWPS. For cobalt and lithium, model predictions indicate that GWPS could be achieved within 10 years after source control measures are implemented. The timeframes for achieving GWPS for arsenic by natural attenuation alone, however, are significantly longer (e.g., more than 26 to 40 years along the northern portion of the Site). The modeling results indicate that natural attenuation is occurring and demonstrate that it can be a component of the final remedy; however, attenuation capacity will likely need to be enhanced in some areas (e.g., via injection treatment) to reduce the timeframe for achieving GWPS for all COIs sitewide.

8 Column Studies

8.1 Methodology (Setup)

Column tests were performed using Site aquifer media (soil) and impacted groundwater to evaluate effectiveness of removal of COIs under flow conditions and provide a basis for estimating the natural attenuation capacity of the aquifer matrix (part of USEPA's Tier 3).

Two groundwater samples were collected on April 15, 2021, from monitoring wells GC-AP-MW-1 and GC-AP-MW-17. Upon receipt, groundwater samples were submitted to ALS Environmental in Kelso, Washington, for chemical analysis prior to beginning the column testing. Analytical results are summarized in Table 16 and included in Appendix C. Four column tests were prepared with four Site soils (GC-1A-UNIT2-20-25, GC-2A-UNIT2-15-25, GC-3A-UNIT2-40-45, and GC-4A-UNIT2-30-35). Two different Site groundwaters (from GC-AP-MW-1 and GC-AP-MW-17) were pumped through the columns (Table 17). The laboratory column setup is shown in Figure 16, and a detailed schematic is provided in Figure 17.

Column tests were carried out in 12.8-centimeter (cm)-long, 2.6-cm-diameter polypropylene columns. The Site soils were packed into the columns to achieve a total depth of 12.8 cm. Site groundwater was pumped in an up-flow direction through the columns at a flow rate of approximately 0.4 milliliters per minute for 14 days using a peristatic pump with a multichannel pump head. Flow rates were regularly checked and adjusted as needed to maintain a constant flow rate. Table 18 provides a summary of the column test operating conditions.

The initial arsenic concentration in GC-AP-MW-1 and GC-AP-MW-17 groundwater were lower than expected based on historical data (0.01 micrograms per liter [µg/L] versus historical concentrations of approximately 20 µg/L in GC-AP-MW-1 and 300 µg/L in GC-AP-MW-17). For the column tests, GC-AP-MW-1 and GC-AP-MW-17 groundwater were, therefore, spiked with arsenic. An arsenic stock solution was prepared from sodium arsenate heptahydrate and added to the influent reservoir of MW-1 to produce an influent concentration of approximately 400 µg/L.

Column influents and effluents were sampled periodically over the duration of the test. The samples were tested for pH at the time of sampling and filtered using 0.45-micron nylon syringe filters and preserved with nitric acid. Flow rates and cumulative flow volumes were also recorded for each column at the time of sampling to calculate the total number of pore volumes (PVs) treated. The column influent and effluent samples were analyzed for dissolved COIs by USEPA method 200.8 (inductively coupled plasma mass spectrometry) at ALS Environmental.

The laboratory column tests were operated at a higher linear velocity (102 cm per day) than the groundwater flow conditions in the vicinity of the Site, which ranges from 24.7 to 74.4 cm per day (SCS 2021). As a result, the hydraulic residence time in the columns was also much shorter than the

15

hydraulic residence time at the Site. The attenuation measured in the columns, therefore, provides a conservative estimate of the attenuation in the field.

8.2 Column Test Results

Column test results for arsenic, cobalt, and lithium are shown in Figures 18 through 21, respectively. Analytical summary reports are included in Appendix C. For Columns 1 and 2, arsenic in the effluents was significantly attenuated by the Site soils up to approximately 150 PVs and remained at less than 13% of the influent level (Figure 18). Slightly higher arsenic concentrations from 0-50 PVs could be attributed to desorption of arsenic from the Site soils. After 150 PVs, arsenic concentrations were gradually elevated. In Columns 3 and 4, arsenic concentrations in the effluents gradually increased from the start of the test but were reduced by the Site soils to some extent and did not reach to the influent level throughout the tests (Figure 19). As mentioned above, the hydraulic residence time in the columns was shorter than the hydraulic residence time at the Site. The hydraulic residence time in the column could be short for the kinetics of arsenic attenuation mechanisms such as adsorption, which might result in incomplete arsenic attenuation.

In contrast, cobalt and lithium were not attenuated to the extent of arsenic by the Site soils (Figures 20 and 21, respectively). Cobalt was not effectively attenuated by the Site soils due to elevated cobalt concentrations in the soils. The Site soil GC-1A-UNIT2 20'-25' released cobalt up to approximately 20 PVs. This is likely due to desorption of cobalt from the native soil. The Site soil GC-2A-UNIT2-15-25 feet also did not remove cobalt well due to cobalt present in the soil. After 20 PVs, the effluent cobalt concentrations from the column packed with GC-2A-UNIT2-15-25 reached to the influent level. Lithium concentrations in the column effluents rose from 1 PV and reached to the influent concentration in less than 5 PVs.

9 Aquifer Capacity for Attenuation

Geospatial methods were used to calculate the estimated saturated volume of the aquifer, and the estimated mass of COIs in the aquifer. The volume of aquifer within the footprint of the barrier wall was excluded from these calculations because it will be physically isolated (encapsulated) and will neither contribute mass of COIs nor be available for attenuation. ArcGIS software (Esri 2021a) was used to perform all geospatial operations. Saturated aquifer thickness data (interpreted from boring and well construction logs), groundwater chemistry data (collected from Site monitoring wells), and previously reported Site porosity values (SCS 2021) were used to create interpolated (Thiessens) saturated aquifer thickness and COI concentration polygons for the entire Site (Esri 2021b).

Vector and raster geospatial data, in combination with results from the column tests, were used as inputs for calculations to estimate the aquifer capacity for attenuating COIs. Vector data consist of points, lines, and polygons and are used to spatially represent precise locations or discrete boundaries in real-world space. Raster data are matrices of cells organized into rows and columns (i.e., a grid) where each cell carries a data value. Thiessen polygons delineate area around each input point such that any location within the polygon is closer to that point than any of the other input points—effectively allocating area to each point based on the way the points are distributed across a site. A value encoded in the point, such as aquifer thickness, is applied across the entire area of the Thiessen polygon surrounding the point.

The primary geospatial data sources used in this analysis are as follows:

- Aquifer extent (the estimated maximum lateral extent of the aquifer available for attenuating COIs; based on parcel boundaries in the downgradient flow direction)
- Barrier wall alignment
- Isoconcentration boundaries (the estimated extent of COIs at concentrations greater than the GWPS)
- Sitewide estimates for the saturated aquifer thickness and COI concentrations

A workflow was developed using the ArcGIS Model Builder application to calculate estimated saturated aquifer volumes and the mass of COIs in the aquifer. The workflow was divided into modular steps, with separate models created to execute one or more steps. A summary of each step in the workflow is as follows:

 Interpolate Saturated Aquifer Thickness using Thiessen Polygons: The saturated aquifer thickness across the Site was determined by interpolating saturated aquifer thickness values from boring and well construction logs. Thiessen polygons were generated from the aquifer thickness points. Because data within the Site footprint is limited, Thiessen polygons were used because they are an interpolation method that estimates data values across large distances between data points without reducing the magnitude of the values, allowing for the estimate of aquifer thickness in the interior portion of the Site where no data points were available.

- 2. Convert Saturated Aquifer Thickness Thiessen Polygons into Saturated Aquifer Thickness Raster: Saturated aquifer thickness Thiessen polygons were then converted into a saturated aquifer thickness raster surface with a grid cell resolution of 50 feet by 50 feet, where each cell is encoded with the interpolated saturated aquifer thickness at that location. A 50-foot by 50-foot grid captures adequate detail given that the Site is hundreds of acres in size.
- 3. Create Saturated Aquifer Volume Raster: The saturated aquifer thickness raster was used to create a saturated aquifer volume raster by multiplying all thickness cells by their respective area (i.e., 50 feet by 50 feet equals 2,500 square feet). The saturated aquifer volume could then be estimated by taking the summation of all the grid cell values in the saturated aquifer volume raster. Any portion of the aquifer volume within the slurry wall boundary was not included in the volume summation.
- 4. Create Plume Volume Raster: For a given COI, a plume volume raster was created by taking the summation of all the grid cell values from the Saturated Aquifer Volume Raster within the isoconcentration boundary.
- 5. Interpolate COI Concentrations Using Thiessen Polygons: Thiessen polygons were created from the groundwater chemistry data for each COI following the same methods used to create the saturated aquifer thickness polygons by applying groundwater chemistry data to the areas surrounding each point instead of aquifer thickness values.
- 6. Convert COI Concentrations Thiessen Polygons into COI Concentrations Raster Surfaces: COI concentration Thiessen polygons were then converted into COI concentration raster surfaces using the same 50-foot by 50-foot cell size.
- 7. Estimate COI Mass within Plumes: For each COI, mass within the plume was estimated using Equation 1.
- 8. Extrapolate Column Test Results to Entire Aquifer: Aquifer capacity for attenuation was determined by multiplying the mass of COIs attenuated in the column studies by the total volume of saturated aquifer calculated in Step 3.

Equation	n 1	
$M_C = \sum_{i=1}^{n}$	$\left[(V_i \times V_i) \right]$	C_i) × A × B × p
where:		
Mc	=	estimated mass of COIs within the plume
n	=	number of grid cells in raster
V	=	volume of grid cell
С	=	COI concentration at grid cell
Α	=	conversion factor for cubic feet to liters
В	=	conversion factor for either μq or mg to kg
р	=	porosity

The aquifer has far more potential for attenuation than the mass of arsenic requiring attenuation. Specifically, the aquifer has an attenuating capacity 890 times greater than the mass of arsenic in groundwater. As discussed in Section 8.2, lithium and cobalt were poorly chemically attenuated (sorbed).

10 Time to Achieve Groundwater Protection Standards (Rates) and Stability of Attenuated COIs

The slope of trend lines through recent monitoring data on concentration versus time graphs and results from reactive transport modeling were used to estimate time to achieve the applicable GWPS. Constituents that are already less than their applicable GWPSs were not included in this analysis. Depending on constituent and well, the estimated time to achieve natural attenuation ranges from 2 to 40 years, which is very reasonable compared to durations of other corrective-action technologies. Figure 1 shows typical concentration versus time graphs that served as the basis for the rate analysis, and Appendix A contains all time versus concentration graphs.

SSE performed on soils used in the column studies provides a measure of relative stability of the attenuated COIs and their hosts, such as iron oxides. The SSE fractions, from least stable to most stable, are as follows:

- F1: Water soluble
- F2: Exchangeable (e.g., clay minerals)
- F3: Reducible (e.g., poorly crystalline metal oxides such as iron oxides)
- F4: Oxidizable (e.g., crystalline oxide and crystalline sulfide minerals)
- F5: Residual (e.g., silicate phases)

The F5 fraction is likely not related to attenuation processes occurring at the Site; rather, this phase likely reflects the composition of residual silicate minerals, such as micas or amphiboles, from the aquifer. However, for completeness, the F5 fraction is shown in Table 19, which provides a summary of post-column-testing SSE results. Because relatively small amounts of COI were taken up by column soils, the results of the SSE analysis were all less than the laboratory method detection limits.

11 Conclusions and Interpretation

Extensive geochemical and related studies demonstrate that MNA is a viable corrective action for groundwater impacts associated with the Site. The preponderance of evidence indicates that Site conditions meet USEPA's evaluation criteria for the use of MNA, specifically: area of impacts stable or shrinking, identified mechanisms for attenuation, stability of the attenuating mechanisms, sufficient aquifer capacity for attenuation, and time to achieve GWPSs reasonable as compared to other corrective-action alternatives. However, MNA is one component of the Site's corrective action remedy. As noted in the *Groundwater Remedy Selection Report*, the following corrective measures were selected for the Site: source control to include dewatering, consolidation, capping of the Site, and installation of a barrier (slurry) wall completely around the consolidated perimeter keyed into the relatively impermeable chalk aquitard; geochemical manipulation via injections in areas of relatively high concentrations of COIs to remove them from groundwater and immobilize them in situ; and MNA over the entire Site.

Investigations performed to support the use of MNA at the Site included the following:

- Preparation of concentration versus time and concentration versus distance graphs for COIs in groundwater
- Groundwater, well solids (precipitates), and soil sampling and analysis
- Laboratory analysis of well solids samples for bulk chemistry (XRF), mineralogy (XRD and SEM), and CEC
- Geochemical modeling
- SSE to determine associations of COIs with attenuating solids
- Column studies to assess the attenuation capacity of the aquifer and to determine the stability of the attenuating phases
- Calculation of the time to achieve natural attenuation

Graphs of concentration versus time for COIs at the Site indicate a reduction of some COIs in groundwater through time in some areas, specifically the following:

- Arsenic is decreasing or stable over time at GC-AP-MW-10, GC-AP-MW-14, GC-AP-MW-16, and GC-AP-MW-18.
- Cobalt is decreasing over time in GC-AP-MW-11.
- Lithium is decreasing or stable over time in GC-AP-MW-10, GC-AP-MW-12, GC-AP-MW-15, GC-AP-MW-16, GC-AP-MW-17, GC-AP-MW-18, and GC-AP-MW-21.

Concentration versus distance graphs along four downgradient transects indicate that arsenic, cobalt, and lithium are decreasing with distance from the Site. Isoconcentration maps from 2020 and 2021 were also compared and show plume stability for all COIs.

Results from existing groundwater data analysis, geochemical modeling, and well solids (precipitates) analyses provide multiple lines of evidence for attenuation mechanisms for COIs operating at the Site. The major attenuation mechanisms operating at the Site include the following:

- Sorption on (or coprecipitation with) iron oxides and possibly precipitation of barium arsenate for arsenic
- Cobalt attenuation by incorporation into a cobalt-iron oxide
- Lithium attenuation by ion exchange on oxides and clay minerals

All COIs are subject to physical attenuation mechanisms such as dispersion and flushing, which will contribute to decreased concentrations with time and distance from the Site.

Column studies were performed to assess the ability for the aquifer media (soil) to take up COIs. Laboratory results were then extrapolated to the entire saturated mass of aquifer (downgradient of the consolidated pond footprint) using quantitative GIS-based techniques. Based on the column studies and saturated volume of the downgradient aquifer, the aquifer has much more capability to attenuate (sorb) arsenic than the mass currently in groundwater. Specifically, the aquifer has an attenuating capacity 890 times greater than the mass of arsenic in groundwater.

Cobalt and lithium showed limited ability to sorb to the aquifer media based on column studies. However, these constituents are still subject to other attenuating mechanisms, such as physical attenuation (dispersion and flushing) and coprecipitation, as indicated by the concentration versus time and distance graphs, and geochemical studies.

SSE was performed on samples of well solids (precipitates) and soils used in the column studies to assess the stability of the attenuated COIs and their host minerals. Because relatively small amounts of COI were taken up by column soils, the results of the SSE analysis were all less than the laboratory method detection limits. Specific results for the three COIs in well solids samples are as follows:

- Arsenic: Bound primarily in the F4 (oxidizable) and F5 (residual) fractions, though some samples also show an association with the F2 (exchangeable) fraction. This is consistent with the identification of crystalline iron oxides from the other investigations and possibly barium arsenate (predicted by geochemical modeling).
- Cobalt: Bound primarily in the F4 (oxidizable) fraction, though some cobalt is associated with all fractions. This is consistent with the identification of crystalline iron oxides from the other investigations.
- Lithium: Bound primarily in the F2 (exchangeable/clay) and in some samples F4 (oxidizable) and F5 (residual) fractions. This is consistent with the other investigations identifying cation exchange (F2) as the main attenuating mechanism.

Based on the SSE results for well solids, attenuated arsenic and cobalt are very stable under ambient groundwater conditions, as they are bound primarily in the oxidizable fraction. Lithium is somewhat less stable, as it is bound primarily in the exchangeable fraction.

Trend lines through recent groundwater data and results from reactive transport modeling were used to estimate time to achieve the applicable GWPS. Depending on the COI and well, the estimated time to achieve GWPSs ranges from 2 to 40 years following completion of source control measures. The estimated time to achieve natural attenuation is very reasonable compared to durations of other corrective action technologies. Source control and geochemical manipulation (injections) will reduce the time to achieve natural attenuation.

12 References

- Bethke, C.M., and S. Yeakel, 2013. *The Geochemist's Workbench Release 9.0. GWB Essentials Guide*. Champaign, Illinois: Aqueous Solutions, LLC. 2013.
- Dzombak, D.A., and F.M.M. Morel, 1990. *Surface Complexation Modeling: Hydrous Ferric Oxide*. New York: John Wiley and Sons, Inc.
- Esri, 2021a. ArcGIS Desktop: Release 10.8. Redlands, CA: Environmental Systems Research Institute.
- Esri, 2021b. ArcGIS Help, Create Thiessens Polygons Tool.
- Karamalidis, A.K., and D.A. Dzombak, 2010. *Surface Complexation Modeling: Gibbsite*. New Jersey: John Wiley and Sons, Inc.
- Parc, S., D. Nahon, Y. Tardy, and P. Vieillard, 1989. "Estimated Solubility Products and Fields of Stability for Cryptomelane, Nsutite, Birnessite, and Lithiophorite Based on Natural Lateritic Weathering Sequences." American Mineralogist. 74:466-475.
- Parkhurst, D.L., and C.A.J. Appelo, 2013. "Description of Input and Examples for PHREEQC Version 3—
 A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and
 Inverse Geochemical Calculations." U.S. Geological Survey Techniques and Methods, Book 6.
 Washington, DC: U.S. Department of the Interior; p. 497.
- SCS (Southern Company Services, Inc.), 2021. 2020 Annual Groundwater Monitoring and Corrective Action Report. Plant Greene County. Prepared for Alabama Power Company. January 31, 2021.
- USEPA (U.S. Environmental Protection Agency), 1999. Use of Monitored Natural Attenuation of Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Office of Solid Waste and Emergency Response. EPA/OSWER No. 9200.4-17P. April 1999.
- USEPA, 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. USEPA Office of Solid Waste and Emergency Response Directive 9283.1-36. August 2015.
- Wood (John Wood Group, PLC), 2019. *Groundwater Modeling Report, Rev. 0, Alabama Power Company – Plant Greene County*. Prepared for: Alabama Power Company/Southern Company Services. February 15, 2019.

Tables

Table 1Monitored Natural Attenuation Demonstration Status

Tier	Approach	Status of MNA Demonstration
Tier 1: Area of Impacts Stable or Shrinking	Concentration vs. time and/or distance graphs, statistics, isoconcentrations in plan and/or section view, Ricker Method (part of ongoing monitoring)	Satisfied
Tier 2a: Determine Mechanisms of Attenuation	Analysis of well solids: XRF, XRD, SEM, CEC, SSE; complete analysis of groundwater (major cations and anions); geochemical modeling	Satisfied
Tier 2b: Determine Rates of Attenuation	Derived from concentration vs. time graphs, batch and/or column tests, geochemical modeling	Satisfied
Tier 3a: Determine System (Aquifer) Capacity for Attenuation	Batch and/or column tests, geochemical modeling	Satisfied
Tier 3b: Determine Stability of the Attenuating Mechanisms (Solids) and COI	SSE on tested materials from batch and column tests, geochemical modeling, inference from mechanisms	Satisfied
Tier 4a: Design a Performance Monitoring Program	Additional wells, repeat well solids and/or complete groundwater analysis, triggers	Satisfied
Tier 4b: Identify Alternative Remedies Should MNA Not Perform as Expected	Completed as part of the ACM; some technologies may need further testing and/or development (bench and pilot)	Satisfied

Notes:

ACM: Assessment of Corrective Measures

CEC: cation exchange capacity

COI: constituent of interest

MNA: monitored natural attenuation

SEM: scanning electron microscopy

SSE: selective sequential extraction

XRD: X-ray diffraction

XRF: X-ray fluorescence

Table 2 Sampling Locations

	Groundwater Sampling Locations												
GC-AP-MW-1	GC-AP-MW-14	GC-AP-MW-18	GC-AP-MW-27										
GC-AP-MW-5	GC-AP-MW-15	GC-AP-MW-23	GC-AP-MW-28										
GC-AP-MW-10	GC-AP-MW-16	GC-AP-MW-24	GC-AP-MW-29										
GC-AP-MW-11	GC-AP-MW-17	GC-AP-MW-26	GC-AP-MW-30										
	Well Solids San	npling Locations											
GC-AP-MW-1	GC-AP-MW-5	GC-AP-MW-10	GC-AP-MW-11										
GC-AP-MW-14	GC-AP-MW-15	GC-AP-MW-16	GC-AP-MW-17										
GC-AC-MW-18	GC-AP-MW-23	GC-AP-MW-24	GC-AP-MW-29										

Table 3Analyzed Constituents and Laboratory Analytical Methods

Constituent	Analytical Method	Constituent	Analytical Method	
Alkalinity (Total as CaCO ₃)	SM 2320 B	Lead (Dissolved)	EPA 200.8	
Aluminum (Dissolved)	EPA 200.8	Iron (Total)	EPA 200.7	
Aluminum (Total)	EPA 200.8	Lead (Total)	EPA 200.8	
Antimony (Dissolved)	EPA 200.8	Lithium (Total)	EPA 200.7	
Antimony (Total)	EPA 200.8	Magnesium (Total)	EPA 200.7	
Arsenic (Dissolved)	EPA 200.8	Manganese (Dissolved)	EPA 200.8	
Arsenic (Total)	EPA 200.8	Manganese (Total)	EPA 200.8	
Barium (Total)	EPA 200.8	Molybdenum (Dissolved)	EPA 200.8	
Beryllium (Dissolved)	EPA 200.8	Molybdenum (Total)	EPA 200.8	
Beryllium (Total)	EPA 200.8	Nitrogen Nitrate (Calculated)	EPA 353.2	
Bicarbonate Alkalinity (Calculated)	SM 4500CO2 D	Nitrogen Nitrate/Nitrite	EPA 353.2	
Boron (Total)	EPA 200.7	Nitrogen Nitrite	EPA 353.2	
Cadmium (Dissolved)	EPA 200.8	Ortho Phosphate	SM 4500PF-OP	
Cadmium (Total)	EPA 200.8	Potassium (Total)	EPA 200.8	
Calcium (Total)	EPA 200.7	Selenium (Dissolved)	EPA 200.8	
Carbonate Alkalinity (Calculated)	SM 4500CO2 D	Selenium (Total)	EPA 200.8	
Chloride	SM4500CI E	Silica (Total; Calculated)	EPA 200.7	
Chromium (Dissolved)	EPA 200.8	Silicon (Total)	EPA 200.7	
Chromium (Total)	EPA 200.8	Sodium (Total)	EPA 200.7	
Cobalt (Dissolved)	EPA 200.8	Sulfate	SM 4500SO4 E 2011	
Cobalt (Total)	EPA 200.8	Thallium (Dissolved)	EPA 200.8	
Fluoride	SM 4500F G 2017	Thallium (Total)	EPA 200.8	
Iron (Dissolved)	EPA 200.7	Total Organic Carbon	SM 5310 B	

Notes:

CaCO₃: calcium carbonate

EPA: Environmental Protection Agency

SM: Standard Method

Table 4Saturation Indices for Groundwater Samples

Sample ID	Well Designation	Gibbsite	Fe(OH) ₃ (a)	Goethite	Hematite	Magnetite	Siderite	CoFe ₂ O ₄	Ba ₃ (AsO ₄) ₂	Pyrolusite	Bixbyite	Birnessite	Hausmannite	Manganite	Pyrochroite	Lithiophorite	Rhodochrosite
GC-AP-MW-1	downgradient	0.72	0.53	6.24	14.5	15.1	0.14	19.4	-0.29	-15.0	-16.8	-16.4	-20.5	-8.11	-7.91	17.8	-0.94
GC-AP-MW-5	downgradient		0.18	5.89	13.8	15.3	1.02	19.0	8.99	-16.5	-17.3	-18.0	-20.0	-8.36	-6.89		0.04
GC-AP-MW-10	downgradient	1.97	0.23	5.99	14.0	15.0	0.62	19.5	5.82	-15.2	-15.8	-16.8	-18.4	-7.74	-6.84	22.5	0.24
GC-AP-MW-11	downgradient	1.96	0.42	6.19	14.4	14.8	-0.35	20.2	4.75	-13.1	-13.6	-14.8	-15.9	-6.65	-6.61	23.8	0.18
GC-AP-MW-14	downgradient	1.78	0.64	6.36	14.7	16.4	1.26	20.6	5.62	-15.5	-16.0	-16.9	-18.4	-7.7	-6.60	22.9	0.47
GC-AP-MW-15	downgradient		0.57	6.25	14.5	14.0	-0.83	19.5		-12.5	-13.9	-13.8	-17.3	-6.60	-7.53		-0.45
GC-AP-MW-16	downgradient		0.31	6.00	14.0	14.9	0.72	19.3	6.46	-15.2	-16.1	-16.5	-19.0	-7.74	-7.06		0.23
GC-AP-MW-17	downgradient		0.10	5.81	13.6	15.0	1.15	19.2	10.4	-16.5	-17.2	-17.9	-20.0	-8.32	-6.90		0.30
GC-AP-MW-18	downgradient		0.18	5.89	13.8	14.5	0.59	19.1	6.18	-15.1	-16.0	-16.5	-19.0	-7.72	-7.10		0.25
GC-AP-MW-23	upgradient																
GC-AP-MW-24	upgradient	0.75								-15.1	-19.9	-16.4	-26.8	-9.6	-11.0	9.84	-3.96
GC-AP-MW-26	upgradient	1.96								-15.5	-18.9	-16.7	-24.4	-9.06	-9.54	16.8	-3.89
GC-AP-MW-27	upgradient									-17.9	-23.6	-19.1	-31.3	-11.4	-11.8		-5.40
GC-AP-MW-28	upgradient	-0.09								-17.7	-22.9	-18.8	-30.2	-11.0	-11.3	7.56	-5.21
GC-AP-MW-29	upgradient	0.46								-13.8	-18.9	-14.8	-26.3	-9.00	-11.3	8.78	-4.72
GC-AP-MW-30	upgradient									-13.7	-19.2	-14.8	-26.9	-9.15	-11.6		-4.98

Notes:

SI for Greene County groundwater samples collected in March 2020.

Bold indicates positive SI values (i.e., groundwater supersaturated with respect to mineral phase).

--: No SI calculated because one or more constituent(s) in phase was not detected in groundwater sample.

SI: saturation indices

Table 5Geochemical Analysis of Monitoring Well and Aquifer Solids

Analysis	Description	Relevance to MNA Demonstration
CEC	Determines if cation exchange on clays is an attenuating mechanism.	Supports Tier 2 (mechanisms) and Tier 3 (stability) for cation exchange.
SEM	Allows direct visual observation of attenuating phases, such as framboidal pyrite and iron oxide coatings on sand grains.	Supports Tier 2 (mechanisms) and Tier 3 (stability) of attenuating phases.
SSE	Determines which attenuating solid phases are associated with arsenic and lithium.	Supports Tier 2 (mechanisms) and Tier 3 (stability) of attenuating phases.
XRD	Identifies and provides mineralogy of crystalline attenuating phases.	Supports Tier 2 (mechanisms) and Tier 3 (stability) of attenuation involving crystalline mineral phases.
XRF	Provides bulk chemistry and presence of arsenic. (Lithium is too light to be detected by XRF.)	Relationships are determined among elements in attenuating phases (e.g., iron and manganese) and arsenic. Supports Tier 2 (mechanisms) and Tier 3 (stability).

Notes:

CEC: cation exchange capacity

MNA: monitored natural attenuation

SEM: scanning electron microscopy

SSE: selective sequential extraction

XRD: X-ray diffraction

XRF: X-ray fluorescence

Table 6 Bulk Chemistry by XRF (Well Solids)

Well ID	Arsenic	Cobalt	Iron	Manganese	Aluminum	Calcium	Magnesium	Potassium	Silicon
GC-AP-MW-1	336	ND	263,630	ND	19,150	760	ND	4,350	190,000
GC-AP-MW-10	517	ND	234,930	ND	11,460	15,350	ND	3,910	160,000
GC-AP-MW-11	644	ND	231,160	ND	18,090	2,480	ND	5,410	133,000
GC-AP-MW-16	5,128	ND	212,580	ND	3,240	245,920	ND	820	37,000
GC-AP-MW-23	3	ND	15,220	ND	16,130	1,430	ND	4,330	370,000
GC-AP-MW-29	ND	ND	14,960	ND	13,960	360	ND	4,780	375,000

Notes:

Elements lighter than magnesium (including lithium) can not be determined by portable XRF.

Units are in parts per million

ND: below limit of detection

XRF: X-ray fluorescence

Table 7

Minerals Identified in Well Solids Samples by XRD¹

Well ID	Quartz	Calcite	Goethite
GC-AP-MW-1	Х		Х
GC-AP-MW-10	97	3	
GC-AP-MW-11	100		
GC-AP-MW-16	17	83	
GC-AP-MW-17	100		
GC-AP-MW-23	100		
GC-AP-MW-29	100		

Notes:

1. Estimated concentration (weight %) reported where available

--: not detected

X: Positive identification, not quantified

XRD: X-ray diffraction

Table 8

Cation Exchange Capacity of Well Solids Samples

Well ID	Aluminum	Boron	Calcium	Lithium	Magnesium	Potassium	Sodium	Sum
GC-AP-MW-29	< 0.003	<0.003	8.0	<0.005	3.5	0.34	3.5	15.3
GC-AP-MW-1	0.10 J	< 0.05	120	0.072 J	30	3.5	53	207
GC-AP-MW-11	<0.03	<0.03	250	0.43	61	6.5	115	432

Notes:

Units are in milliequivalents per kilogram

<: Indicates the compound was analyzed for but not detected

J: Detected but results below method reporting limit

Table 9 Bulk Chemistry by XRF (Aquifer Solids)

Boring Location	Depth Interval (ft bgs)	Units	Antimony	Arsenic	Barium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Potassium	Rubidium	Strontium	Sulfur	Titanium	Zinc	Zirconium
GC1A	20-25	ppm	<lod< th=""><th><lod< th=""><th>154</th><th><lod< th=""><th>511</th><th>36</th><th><lod< th=""><th>22</th><th>5,819</th><th><lod< th=""><th>-</th><th><lod< th=""><th>2</th><th>47</th><th>7,022</th><th>11</th><th>17</th><th>222</th><th>2,101</th><th>17</th><th>468</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>154</th><th><lod< th=""><th>511</th><th>36</th><th><lod< th=""><th>22</th><th>5,819</th><th><lod< th=""><th>-</th><th><lod< th=""><th>2</th><th>47</th><th>7,022</th><th>11</th><th>17</th><th>222</th><th>2,101</th><th>17</th><th>468</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	154	<lod< th=""><th>511</th><th>36</th><th><lod< th=""><th>22</th><th>5,819</th><th><lod< th=""><th>-</th><th><lod< th=""><th>2</th><th>47</th><th>7,022</th><th>11</th><th>17</th><th>222</th><th>2,101</th><th>17</th><th>468</th></lod<></th></lod<></th></lod<></th></lod<>	511	36	<lod< th=""><th>22</th><th>5,819</th><th><lod< th=""><th>-</th><th><lod< th=""><th>2</th><th>47</th><th>7,022</th><th>11</th><th>17</th><th>222</th><th>2,101</th><th>17</th><th>468</th></lod<></th></lod<></th></lod<>	22	5,819	<lod< th=""><th>-</th><th><lod< th=""><th>2</th><th>47</th><th>7,022</th><th>11</th><th>17</th><th>222</th><th>2,101</th><th>17</th><th>468</th></lod<></th></lod<>	-	<lod< th=""><th>2</th><th>47</th><th>7,022</th><th>11</th><th>17</th><th>222</th><th>2,101</th><th>17</th><th>468</th></lod<>	2	47	7,022	11	17	222	2,101	17	468
GC1B	15-20	ppm	<lod< td=""><td>3</td><td>156</td><td><lod< td=""><td>615</td><td>13</td><td><lod< td=""><td>17</td><td>6,229</td><td><lod< td=""><td>154</td><td><lod< td=""><td><lod< td=""><td>52</td><td>10,107</td><td>16</td><td>16</td><td><lod< td=""><td>2,711</td><td>14</td><td>583</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	3	156	<lod< td=""><td>615</td><td>13</td><td><lod< td=""><td>17</td><td>6,229</td><td><lod< td=""><td>154</td><td><lod< td=""><td><lod< td=""><td>52</td><td>10,107</td><td>16</td><td>16</td><td><lod< td=""><td>2,711</td><td>14</td><td>583</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	615	13	<lod< td=""><td>17</td><td>6,229</td><td><lod< td=""><td>154</td><td><lod< td=""><td><lod< td=""><td>52</td><td>10,107</td><td>16</td><td>16</td><td><lod< td=""><td>2,711</td><td>14</td><td>583</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	17	6,229	<lod< td=""><td>154</td><td><lod< td=""><td><lod< td=""><td>52</td><td>10,107</td><td>16</td><td>16</td><td><lod< td=""><td>2,711</td><td>14</td><td>583</td></lod<></td></lod<></td></lod<></td></lod<>	154	<lod< td=""><td><lod< td=""><td>52</td><td>10,107</td><td>16</td><td>16</td><td><lod< td=""><td>2,711</td><td>14</td><td>583</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>52</td><td>10,107</td><td>16</td><td>16</td><td><lod< td=""><td>2,711</td><td>14</td><td>583</td></lod<></td></lod<>	52	10,107	16	16	<lod< td=""><td>2,711</td><td>14</td><td>583</td></lod<>	2,711	14	583
GC1C	15-20	ppm	<lod< td=""><td><lod< td=""><td>96</td><td><lod< td=""><td>694</td><td><lod< td=""><td><lod< td=""><td>15</td><td>915</td><td><lod< td=""><td>110</td><td>4</td><td><lod< td=""><td>38</td><td>1,540</td><td>3</td><td>8</td><td><lod< td=""><td>898</td><td>7</td><td>230</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>96</td><td><lod< td=""><td>694</td><td><lod< td=""><td><lod< td=""><td>15</td><td>915</td><td><lod< td=""><td>110</td><td>4</td><td><lod< td=""><td>38</td><td>1,540</td><td>3</td><td>8</td><td><lod< td=""><td>898</td><td>7</td><td>230</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	96	<lod< td=""><td>694</td><td><lod< td=""><td><lod< td=""><td>15</td><td>915</td><td><lod< td=""><td>110</td><td>4</td><td><lod< td=""><td>38</td><td>1,540</td><td>3</td><td>8</td><td><lod< td=""><td>898</td><td>7</td><td>230</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	694	<lod< td=""><td><lod< td=""><td>15</td><td>915</td><td><lod< td=""><td>110</td><td>4</td><td><lod< td=""><td>38</td><td>1,540</td><td>3</td><td>8</td><td><lod< td=""><td>898</td><td>7</td><td>230</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>15</td><td>915</td><td><lod< td=""><td>110</td><td>4</td><td><lod< td=""><td>38</td><td>1,540</td><td>3</td><td>8</td><td><lod< td=""><td>898</td><td>7</td><td>230</td></lod<></td></lod<></td></lod<></td></lod<>	15	915	<lod< td=""><td>110</td><td>4</td><td><lod< td=""><td>38</td><td>1,540</td><td>3</td><td>8</td><td><lod< td=""><td>898</td><td>7</td><td>230</td></lod<></td></lod<></td></lod<>	110	4	<lod< td=""><td>38</td><td>1,540</td><td>3</td><td>8</td><td><lod< td=""><td>898</td><td>7</td><td>230</td></lod<></td></lod<>	38	1,540	3	8	<lod< td=""><td>898</td><td>7</td><td>230</td></lod<>	898	7	230
GC2A	15-25	ppm	<lod< td=""><td><lod< td=""><td>114</td><td><lod< td=""><td>378</td><td>9</td><td><lod< td=""><td>16</td><td>5,971</td><td><lod< td=""><td>128</td><td><lod< td=""><td><lod< td=""><td>44</td><td>2,672</td><td>7</td><td>8</td><td><lod< td=""><td>885</td><td>14</td><td>104</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>114</td><td><lod< td=""><td>378</td><td>9</td><td><lod< td=""><td>16</td><td>5,971</td><td><lod< td=""><td>128</td><td><lod< td=""><td><lod< td=""><td>44</td><td>2,672</td><td>7</td><td>8</td><td><lod< td=""><td>885</td><td>14</td><td>104</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	114	<lod< td=""><td>378</td><td>9</td><td><lod< td=""><td>16</td><td>5,971</td><td><lod< td=""><td>128</td><td><lod< td=""><td><lod< td=""><td>44</td><td>2,672</td><td>7</td><td>8</td><td><lod< td=""><td>885</td><td>14</td><td>104</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	378	9	<lod< td=""><td>16</td><td>5,971</td><td><lod< td=""><td>128</td><td><lod< td=""><td><lod< td=""><td>44</td><td>2,672</td><td>7</td><td>8</td><td><lod< td=""><td>885</td><td>14</td><td>104</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	16	5,971	<lod< td=""><td>128</td><td><lod< td=""><td><lod< td=""><td>44</td><td>2,672</td><td>7</td><td>8</td><td><lod< td=""><td>885</td><td>14</td><td>104</td></lod<></td></lod<></td></lod<></td></lod<>	128	<lod< td=""><td><lod< td=""><td>44</td><td>2,672</td><td>7</td><td>8</td><td><lod< td=""><td>885</td><td>14</td><td>104</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>44</td><td>2,672</td><td>7</td><td>8</td><td><lod< td=""><td>885</td><td>14</td><td>104</td></lod<></td></lod<>	44	2,672	7	8	<lod< td=""><td>885</td><td>14</td><td>104</td></lod<>	885	14	104
GC2B	15-20	ppm	<lod< td=""><td><lod< td=""><td>111</td><td><lod< td=""><td>474</td><td><lod< td=""><td><lod< td=""><td>12</td><td>4,080</td><td><lod< td=""><td>167</td><td><lod< td=""><td><lod< td=""><td>38</td><td>2,284</td><td>4</td><td>6</td><td><lod< td=""><td>1,233</td><td>9</td><td>99</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>111</td><td><lod< td=""><td>474</td><td><lod< td=""><td><lod< td=""><td>12</td><td>4,080</td><td><lod< td=""><td>167</td><td><lod< td=""><td><lod< td=""><td>38</td><td>2,284</td><td>4</td><td>6</td><td><lod< td=""><td>1,233</td><td>9</td><td>99</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	111	<lod< td=""><td>474</td><td><lod< td=""><td><lod< td=""><td>12</td><td>4,080</td><td><lod< td=""><td>167</td><td><lod< td=""><td><lod< td=""><td>38</td><td>2,284</td><td>4</td><td>6</td><td><lod< td=""><td>1,233</td><td>9</td><td>99</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	474	<lod< td=""><td><lod< td=""><td>12</td><td>4,080</td><td><lod< td=""><td>167</td><td><lod< td=""><td><lod< td=""><td>38</td><td>2,284</td><td>4</td><td>6</td><td><lod< td=""><td>1,233</td><td>9</td><td>99</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>12</td><td>4,080</td><td><lod< td=""><td>167</td><td><lod< td=""><td><lod< td=""><td>38</td><td>2,284</td><td>4</td><td>6</td><td><lod< td=""><td>1,233</td><td>9</td><td>99</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	12	4,080	<lod< td=""><td>167</td><td><lod< td=""><td><lod< td=""><td>38</td><td>2,284</td><td>4</td><td>6</td><td><lod< td=""><td>1,233</td><td>9</td><td>99</td></lod<></td></lod<></td></lod<></td></lod<>	167	<lod< td=""><td><lod< td=""><td>38</td><td>2,284</td><td>4</td><td>6</td><td><lod< td=""><td>1,233</td><td>9</td><td>99</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>38</td><td>2,284</td><td>4</td><td>6</td><td><lod< td=""><td>1,233</td><td>9</td><td>99</td></lod<></td></lod<>	38	2,284	4	6	<lod< td=""><td>1,233</td><td>9</td><td>99</td></lod<>	1,233	9	99
GC2C	15-20	ppm	<lod< td=""><td><lod< td=""><td>83</td><td><lod< td=""><td>131</td><td><lod< td=""><td>19</td><td><lod< td=""><td>906</td><td><lod< td=""><td>91</td><td><lod< td=""><td><lod< td=""><td>27</td><td>882</td><td>2</td><td>4</td><td><lod< td=""><td>317</td><td>4</td><td>42</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>83</td><td><lod< td=""><td>131</td><td><lod< td=""><td>19</td><td><lod< td=""><td>906</td><td><lod< td=""><td>91</td><td><lod< td=""><td><lod< td=""><td>27</td><td>882</td><td>2</td><td>4</td><td><lod< td=""><td>317</td><td>4</td><td>42</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	83	<lod< td=""><td>131</td><td><lod< td=""><td>19</td><td><lod< td=""><td>906</td><td><lod< td=""><td>91</td><td><lod< td=""><td><lod< td=""><td>27</td><td>882</td><td>2</td><td>4</td><td><lod< td=""><td>317</td><td>4</td><td>42</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	131	<lod< td=""><td>19</td><td><lod< td=""><td>906</td><td><lod< td=""><td>91</td><td><lod< td=""><td><lod< td=""><td>27</td><td>882</td><td>2</td><td>4</td><td><lod< td=""><td>317</td><td>4</td><td>42</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	19	<lod< td=""><td>906</td><td><lod< td=""><td>91</td><td><lod< td=""><td><lod< td=""><td>27</td><td>882</td><td>2</td><td>4</td><td><lod< td=""><td>317</td><td>4</td><td>42</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	906	<lod< td=""><td>91</td><td><lod< td=""><td><lod< td=""><td>27</td><td>882</td><td>2</td><td>4</td><td><lod< td=""><td>317</td><td>4</td><td>42</td></lod<></td></lod<></td></lod<></td></lod<>	91	<lod< td=""><td><lod< td=""><td>27</td><td>882</td><td>2</td><td>4</td><td><lod< td=""><td>317</td><td>4</td><td>42</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>27</td><td>882</td><td>2</td><td>4</td><td><lod< td=""><td>317</td><td>4</td><td>42</td></lod<></td></lod<>	27	882	2	4	<lod< td=""><td>317</td><td>4</td><td>42</td></lod<>	317	4	42
GC2C ¹	15-20	ppm	<lod< td=""><td><lod< td=""><td>75</td><td><lod< td=""><td>152</td><td><lod< td=""><td><lod< td=""><td>8</td><td>811</td><td><lod< td=""><td>100</td><td><lod< td=""><td><lod< td=""><td>31</td><td>859</td><td>1</td><td>4</td><td><lod< td=""><td>283</td><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>75</td><td><lod< td=""><td>152</td><td><lod< td=""><td><lod< td=""><td>8</td><td>811</td><td><lod< td=""><td>100</td><td><lod< td=""><td><lod< td=""><td>31</td><td>859</td><td>1</td><td>4</td><td><lod< td=""><td>283</td><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	75	<lod< td=""><td>152</td><td><lod< td=""><td><lod< td=""><td>8</td><td>811</td><td><lod< td=""><td>100</td><td><lod< td=""><td><lod< td=""><td>31</td><td>859</td><td>1</td><td>4</td><td><lod< td=""><td>283</td><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	152	<lod< td=""><td><lod< td=""><td>8</td><td>811</td><td><lod< td=""><td>100</td><td><lod< td=""><td><lod< td=""><td>31</td><td>859</td><td>1</td><td>4</td><td><lod< td=""><td>283</td><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>8</td><td>811</td><td><lod< td=""><td>100</td><td><lod< td=""><td><lod< td=""><td>31</td><td>859</td><td>1</td><td>4</td><td><lod< td=""><td>283</td><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	8	811	<lod< td=""><td>100</td><td><lod< td=""><td><lod< td=""><td>31</td><td>859</td><td>1</td><td>4</td><td><lod< td=""><td>283</td><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	100	<lod< td=""><td><lod< td=""><td>31</td><td>859</td><td>1</td><td>4</td><td><lod< td=""><td>283</td><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>31</td><td>859</td><td>1</td><td>4</td><td><lod< td=""><td>283</td><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<>	31	859	1	4	<lod< td=""><td>283</td><td><lod< td=""><td>41</td></lod<></td></lod<>	283	<lod< td=""><td>41</td></lod<>	41
GC3A	40-45	ppm	<lod< td=""><td><lod< td=""><td>122</td><td><lod< td=""><td>191</td><td>8</td><td>21</td><td>12</td><td>1,419</td><td><lod< td=""><td>114</td><td><lod< td=""><td><lod< td=""><td>39</td><td>2,361</td><td>4</td><td>9</td><td><lod< td=""><td>1,367</td><td>7</td><td>145</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>122</td><td><lod< td=""><td>191</td><td>8</td><td>21</td><td>12</td><td>1,419</td><td><lod< td=""><td>114</td><td><lod< td=""><td><lod< td=""><td>39</td><td>2,361</td><td>4</td><td>9</td><td><lod< td=""><td>1,367</td><td>7</td><td>145</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	122	<lod< td=""><td>191</td><td>8</td><td>21</td><td>12</td><td>1,419</td><td><lod< td=""><td>114</td><td><lod< td=""><td><lod< td=""><td>39</td><td>2,361</td><td>4</td><td>9</td><td><lod< td=""><td>1,367</td><td>7</td><td>145</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	191	8	21	12	1,419	<lod< td=""><td>114</td><td><lod< td=""><td><lod< td=""><td>39</td><td>2,361</td><td>4</td><td>9</td><td><lod< td=""><td>1,367</td><td>7</td><td>145</td></lod<></td></lod<></td></lod<></td></lod<>	114	<lod< td=""><td><lod< td=""><td>39</td><td>2,361</td><td>4</td><td>9</td><td><lod< td=""><td>1,367</td><td>7</td><td>145</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>39</td><td>2,361</td><td>4</td><td>9</td><td><lod< td=""><td>1,367</td><td>7</td><td>145</td></lod<></td></lod<>	39	2,361	4	9	<lod< td=""><td>1,367</td><td>7</td><td>145</td></lod<>	1,367	7	145
GC3B	40-45	ppm	<lod< td=""><td><lod< td=""><td>114</td><td><lod< td=""><td>331</td><td><lod< td=""><td>20</td><td>9</td><td>1,500</td><td><lod< td=""><td>119</td><td><lod< td=""><td><lod< td=""><td>37</td><td>4,879</td><td>6</td><td>8</td><td><lod< td=""><td>952</td><td>9</td><td>63</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>114</td><td><lod< td=""><td>331</td><td><lod< td=""><td>20</td><td>9</td><td>1,500</td><td><lod< td=""><td>119</td><td><lod< td=""><td><lod< td=""><td>37</td><td>4,879</td><td>6</td><td>8</td><td><lod< td=""><td>952</td><td>9</td><td>63</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	114	<lod< td=""><td>331</td><td><lod< td=""><td>20</td><td>9</td><td>1,500</td><td><lod< td=""><td>119</td><td><lod< td=""><td><lod< td=""><td>37</td><td>4,879</td><td>6</td><td>8</td><td><lod< td=""><td>952</td><td>9</td><td>63</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	331	<lod< td=""><td>20</td><td>9</td><td>1,500</td><td><lod< td=""><td>119</td><td><lod< td=""><td><lod< td=""><td>37</td><td>4,879</td><td>6</td><td>8</td><td><lod< td=""><td>952</td><td>9</td><td>63</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	20	9	1,500	<lod< td=""><td>119</td><td><lod< td=""><td><lod< td=""><td>37</td><td>4,879</td><td>6</td><td>8</td><td><lod< td=""><td>952</td><td>9</td><td>63</td></lod<></td></lod<></td></lod<></td></lod<>	119	<lod< td=""><td><lod< td=""><td>37</td><td>4,879</td><td>6</td><td>8</td><td><lod< td=""><td>952</td><td>9</td><td>63</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>37</td><td>4,879</td><td>6</td><td>8</td><td><lod< td=""><td>952</td><td>9</td><td>63</td></lod<></td></lod<>	37	4,879	6	8	<lod< td=""><td>952</td><td>9</td><td>63</td></lod<>	952	9	63
GC4A	30-35	ppm	<lod< td=""><td>7</td><td>136</td><td><lod< td=""><td>575</td><td>11</td><td><lod< td=""><td>9</td><td>15,470</td><td><lod< td=""><td>430</td><td><lod< td=""><td><lod< td=""><td>47</td><td>2,170</td><td>3</td><td>6</td><td><lod< td=""><td>469</td><td>10</td><td>34</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	7	136	<lod< td=""><td>575</td><td>11</td><td><lod< td=""><td>9</td><td>15,470</td><td><lod< td=""><td>430</td><td><lod< td=""><td><lod< td=""><td>47</td><td>2,170</td><td>3</td><td>6</td><td><lod< td=""><td>469</td><td>10</td><td>34</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	575	11	<lod< td=""><td>9</td><td>15,470</td><td><lod< td=""><td>430</td><td><lod< td=""><td><lod< td=""><td>47</td><td>2,170</td><td>3</td><td>6</td><td><lod< td=""><td>469</td><td>10</td><td>34</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	9	15,470	<lod< td=""><td>430</td><td><lod< td=""><td><lod< td=""><td>47</td><td>2,170</td><td>3</td><td>6</td><td><lod< td=""><td>469</td><td>10</td><td>34</td></lod<></td></lod<></td></lod<></td></lod<>	430	<lod< td=""><td><lod< td=""><td>47</td><td>2,170</td><td>3</td><td>6</td><td><lod< td=""><td>469</td><td>10</td><td>34</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>47</td><td>2,170</td><td>3</td><td>6</td><td><lod< td=""><td>469</td><td>10</td><td>34</td></lod<></td></lod<>	47	2,170	3	6	<lod< td=""><td>469</td><td>10</td><td>34</td></lod<>	469	10	34
GC4B	15-31	ppm	<lod< td=""><td>5</td><td>140</td><td><lod< td=""><td>161</td><td><lod< td=""><td><lod< td=""><td>9</td><td>3,043</td><td><lod< td=""><td>165</td><td><lod< td=""><td>4</td><td>43</td><td>2,369</td><td>4</td><td>8</td><td><lod< td=""><td>959</td><td>9</td><td>252</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	5	140	<lod< td=""><td>161</td><td><lod< td=""><td><lod< td=""><td>9</td><td>3,043</td><td><lod< td=""><td>165</td><td><lod< td=""><td>4</td><td>43</td><td>2,369</td><td>4</td><td>8</td><td><lod< td=""><td>959</td><td>9</td><td>252</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	161	<lod< td=""><td><lod< td=""><td>9</td><td>3,043</td><td><lod< td=""><td>165</td><td><lod< td=""><td>4</td><td>43</td><td>2,369</td><td>4</td><td>8</td><td><lod< td=""><td>959</td><td>9</td><td>252</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>9</td><td>3,043</td><td><lod< td=""><td>165</td><td><lod< td=""><td>4</td><td>43</td><td>2,369</td><td>4</td><td>8</td><td><lod< td=""><td>959</td><td>9</td><td>252</td></lod<></td></lod<></td></lod<></td></lod<>	9	3,043	<lod< td=""><td>165</td><td><lod< td=""><td>4</td><td>43</td><td>2,369</td><td>4</td><td>8</td><td><lod< td=""><td>959</td><td>9</td><td>252</td></lod<></td></lod<></td></lod<>	165	<lod< td=""><td>4</td><td>43</td><td>2,369</td><td>4</td><td>8</td><td><lod< td=""><td>959</td><td>9</td><td>252</td></lod<></td></lod<>	4	43	2,369	4	8	<lod< td=""><td>959</td><td>9</td><td>252</td></lod<>	959	9	252
GC4C	15-35	ppm	<lod< td=""><td><lod< td=""><td>133</td><td><lod< td=""><td>250</td><td><lod< td=""><td><lod< td=""><td>13</td><td>4,284</td><td><lod< td=""><td>159</td><td><lod< td=""><td>2</td><td>39</td><td>5,354</td><td>9</td><td>16</td><td><lod< td=""><td>2,105</td><td>13</td><td>225</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>133</td><td><lod< td=""><td>250</td><td><lod< td=""><td><lod< td=""><td>13</td><td>4,284</td><td><lod< td=""><td>159</td><td><lod< td=""><td>2</td><td>39</td><td>5,354</td><td>9</td><td>16</td><td><lod< td=""><td>2,105</td><td>13</td><td>225</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	133	<lod< td=""><td>250</td><td><lod< td=""><td><lod< td=""><td>13</td><td>4,284</td><td><lod< td=""><td>159</td><td><lod< td=""><td>2</td><td>39</td><td>5,354</td><td>9</td><td>16</td><td><lod< td=""><td>2,105</td><td>13</td><td>225</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	250	<lod< td=""><td><lod< td=""><td>13</td><td>4,284</td><td><lod< td=""><td>159</td><td><lod< td=""><td>2</td><td>39</td><td>5,354</td><td>9</td><td>16</td><td><lod< td=""><td>2,105</td><td>13</td><td>225</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>13</td><td>4,284</td><td><lod< td=""><td>159</td><td><lod< td=""><td>2</td><td>39</td><td>5,354</td><td>9</td><td>16</td><td><lod< td=""><td>2,105</td><td>13</td><td>225</td></lod<></td></lod<></td></lod<></td></lod<>	13	4,284	<lod< td=""><td>159</td><td><lod< td=""><td>2</td><td>39</td><td>5,354</td><td>9</td><td>16</td><td><lod< td=""><td>2,105</td><td>13</td><td>225</td></lod<></td></lod<></td></lod<>	159	<lod< td=""><td>2</td><td>39</td><td>5,354</td><td>9</td><td>16</td><td><lod< td=""><td>2,105</td><td>13</td><td>225</td></lod<></td></lod<>	2	39	5,354	9	16	<lod< td=""><td>2,105</td><td>13</td><td>225</td></lod<>	2,105	13	225

Notes:

1. Duplicate

Samples were analyzed on April 20, 2021.

ft bgs: feet below ground surface

ppm: parts per million

XRF: X-ray fluorescence

<LOD: Less than limit of detection

Table 10

Minerals Identified in Aquifer Soil Samples by XRD

Boring	Depth Interval	Quartz	Feldspars					Micas		Clay Minerals				
Location	(ft bgs)		Albite	Anorthite	Anorthoclase	Orthoclase	Biotite	Muscovite	Other	Bentonite	Kaolinite	Montmorillonite	Vermiculite	
GC1A	20-25	95	3.8				1					0.1		
GC1B	15-20	94		2.5				2.5			1	0.1		
GC1C	15-20	99								0.4		0.1		
GC2B	15-20	99								0.4		0.1		
GC3A	40-45	95			4					1			0.01	
GC3B	40-45	99.8					0.1					0.1		
GC4A	30-35	99.7								0.2		0.1		
GC4C	15-30	98				0.3			1.5			0.1		

Notes:

Results are presented as weight percentage

ft bgs: feet below ground surface

XRD: X-Ray Diffraction Analysis

Table 11 Cation Exchange Capacity of Aquifer Solids Samples

	Depth Interval			Exchange	able Cations (m	neq/kg soil)			CEC
Boring Location	(ft bgs)	Aluminum	Calcium	Cobalt	Magnesium	Potassium	Sodium	Lithium	(meq/kg soil)
GC1A	20-25	0.0695 U	7.81	0.00612	3.86	2.59	0.489	0.0156 J	14.8
GC1B	15-20	0.0695 U	10.8	0.000462 J	2.81	1.04	0.363	0.00901 U	15.0
GC1C	15-20	0.0695 U	12.6	0.00157	1.27	1.5	0.33	0.0215	15.7
GC2A	15-25	0.0694 U	5.98	0.000424 U	2.36	1.24	0.486	0.00899 U	10.1
GC2B	15-20	0.0694 U	6.6	0.000513 J	0.891	1.39	0.18	0.00899 U	9.1
GC2C	15-20	0.0694 U	2.49	0.000517 J	0.324	0.499	0.187	0.00899 U	3.5
GC3A	40-45	0.0694 U	3.31	0.000635 J	0.949	1.13	0.682	0.0413	6.1
GC3A ¹	40-45	0.0694 U	2.77	0.000588 J	0.863	0.945	0.595	0.037	5.2
GC3B	40-45	0.0694 U	4.83	0.000571 J	1.96	1	0.506	0.0265	8.3
GC4A	30-35	0.0694 U	7.1	0.000881	2.47	0.893	0.395	0.0347	10.9
GC4B	15-31	0.0695 U	3.69	0.000711 J	1.65	1.62	0.365	0.0828	7.4
GC4C	15-35	0.0694 U	4.41	0.00127	2.45	1.01	0.317	0.0439	8.2

Notes:

Bold indicates detected values.

1. Duplicate

CEC: cation exchange capacity

ft bgs: feet below ground surface

J: Estimated value

meq/kg: milliequivalents per kilogram

ND: non detect

U: Compound analyzed but not detected above detection limit

Table 12Lines of Evidence for Attenuation Mechanisms

Mechanism	Geochemical Modeling	XRF	XRD	SSE	CEC
Sorption on iron oxides (arsenic and cobalt)	Х	Х	Х	Х	
Cation exchange on clays (cobalt, lithium)		Х		Х	Х
Coprecipitation in iron oxides (cobalt)	Х			Х	
Precipitation in barium arsenate (arsenic)	Х				

Notes:

CEC: cation exchange capacity

SSE: selective sequential extraction

XRD: X-ray diffraction

XRF: X-ray fluorescence

Table 13

Extractable Aluminum, Manganese, and Iron Oxides in Aquifer Soils

Boring Location	Depth Interval (ft bgs)	Aluminum (mg/kg)	lron (mg/kg)	Manganese (mg/kg)
GC1A	20-25	923	1190	14.6
GC1B	15-20	435	866	18.8
GC1C	15-20	440	879	18.7
GC2A	15-25	929	384	4.39
GC2B	15-20	453	300	4.92
GC2C	15-20	626	528	40.4
GC3A	40-45	245	91.5	2.95
GC3A ¹	40-45	297	168	3.21
GC3B	40-45	289	159	3.1
GC4A	30-35	247	794	148
GC4B	15-31	420	374	27.7
GC4C	15-35	313	302	19.7

Notes:

1. Duplicate

Extractable oxides determined by acid ammonium oxalate method.

Bold indicates detected values.

ft bgs: feet below ground surface

mg/kg: milligrams per kilogram

Table 14Groundwater Chemistry Data Used in the 1D Reactive Transport Models

		Transect 1							Transect 2		Transect 3			Transect 4			
Sample Loca	ation ID	MW-6	MW-5	MW-54H	MW-57H	MW-44H	PZ-4	MW-34HA	MW-25	MW-1	MW-35H	MW-25	MW-17	MW-38H	MW-41H	MW-13	MW-45H
Analyte	Units	Background	Downgradient	Downgradient	Downgradient	Downgradient	Downgradient	Downgradient	Background	Downgradient	Downgradient	Background	Downgradient	Downgradient	Background	Downgradient	Downgradient
Eh	V	0.249	0.145	0.097	0.133	0.252	0.233	0.459	0.432	0.234	0.316	0.432	0.126	0.271	0.222	0.332	0.164
ре	s.u.	4.28	2.49	1.67	2.27	4.34	3.97	7.82	7.40	4.00	5.41	7.40	2.17	4.62	3.81	5.64	2.80
рН	s.u.	6.49	6.36	6.67	6.48	6.27	5.94	4.78	4.81	5.54	6.03	4.81	6.71	6.57	5.93	6.76	6.94
DO	mg/L	0.72	0.70	0.27	0.21	0.26	0.28	3.53	0.58	0.63	7.47	0.58	0.23	2.65	0.22	1.38	0.76
Alkalinity	mg/L	483	205	205	84.8	98.8	93.6	21.6	29.0	75.7	31.3	29.0	402	183	160	117	104
Arsenic	mg/L	0.005 U	0.415	0.467	0.047	0.002	0.002	0.005 U	0.005 U	0.027	0.005 U	0.005 U	0.581	0.005 U	0.002	0.002	0.005 U
Barium	mg/L	0.078	0.134	0.221	0.080	0.059	0.072	0.047	0.111	0.022	0.033	0.111	0.290	0.068	0.088	0.199	0.063
Calcium	mg/L	162	92.2	101	79.1	173	153	9.68	10.7	81.5	22.9	10.7	73.0	96.0	66.7	95.3	57.2
Chloride	mg/L	39.6	13.0	10.8	6.30	10.8	9.78	2.07	16.7	23.2	1.12	16.7	15.4	3.40	15.9	8.24	8.99
Cobalt	mg/L	0.003	0.007	0.027	0.086	0.273	0.148	0.002	0.013	0.195	0.005 U	0.013	0.012	0.005 U	0.008	0.005 U	0.005
Iron (dissolved)	mg/L	0.256	30.5	45.0	62.7	3.26	30.0	0.05 U	0.749	298	0.05 U	0.749	26.4	0.054	4.36	0.05 U	0.501
Lithium	mg/L	0.020	0.132	0.105	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.552	0.02 U	0.0390	0.420	0.212
Magnesium	mg/L	35.9	17.4	21.4	22.6	19.8	30.7	1.82	9.68	38.5	2.96	9.68	22.4	7.43	6.47	19.2	17.7
Manganese (dissolved)	mg/L	1.07	1.70	1.88	3.38	12.1	6.00	0.008	0.273	13.9	0.005 U	0.273	1.84	0.089	1.65	0.074	3.37
Potassium	mg/L	1.34	6.74	6.72	6.15	2.67	5.96	1.19	0.772	3.56	1.31	0.772	12.5	2.02	4.63	7.87	4.05
Sodium	mg/L	85.8	24.6	24.7	21.0	28.7	25.9	5.72	33.2	64.1	1.24	33.2	70.3	3.26	27.5	18.4	17.9
Sulfate	mg/L	163	132	180	274	415	493	13.5	79.5	919	28.8	79.5	46.7	70.0	76.6	203	128

Notes:

Groundwater chemistry data from August 2020

Thick border indicates Transect COI at a statistically significant level.

DO: dissolved oxygen

mg/L: milligrams per liter

s.u.: standard units

U: non-detect

V: volts

Table 15

Cation Exchange and Sorption Capacity for the 1D Model Transects

Constituent	Units	Transect 1	Transect 2	Transect 3	Transect 4
Average cation exchange capacity	meq/kg	16	8.0	7.0	9.0
х	meq/L	0.127	0.064	0.056	0.072
Average extractable iron oxides	mg/kg	979	404	140	490
≡FeOH (weak)	mol/L	0.028	0.012	0.004	0.014
≡FeOH (strong)	mol/L	0.0007	0.0003	0.0001	0.00035
Average extractable aluminum oxides	mg/kg	322	670	277	327
≡AIOH	mol/L	0.00315	0.0065	0.0027	0.0032

Notes:

X: ion exchange site

 \equiv FeOH (weak): weak surface binding site on Fe(OH)₃

 \equiv FeOH (strong): strong surface binding site on Fe(OH)₃

≡AIOH: surface binding site on AI(OH)₃

meq/kg: milliequivalents per kilogram

meq/L: milliequivalents per liter

mg/kg: milligrams per kilogram

mol/L: moles per liter

Table 16Initial Groundwater Characterization Results

	Re	sult	
Parameter	MW-1	MW-17	Units
Alkalinity	7 J	446	mg/L as CaCO ₃
Ammonia as N	1.90	0.388	mg/L
Total organic carbon	2.40	1.60	mg/L
Chloride	24.3		mg/L
Fluoride	0.01 U	0.94	mg/L
Nitrate as N ¹	0.02 U	0.04 J	mg/L
Nitrite as N	0.006 U	0.006 U	mg/L
Orthophosphate	0.020 U	0.020 U	mg/L
Sulfate	1,240	83.7	mg/L
Aluminum, dissolved	1.90	1.3 J	μg/L
Aluminum, total	7.60	1.2 J	μg/L
Antimony, dissolved	0.020 U	0.020 U	μg/L
Arsenic, dissolved	4.19	343	μg/L
Barium, dissolved	22.4	299	μg/L
Beryllium	0.05 U	0.10 U	μg/L
Boron, dissolved	156	2,350	μg/L
Cadmium, dissolved	0.035	0.008 U	μg/L
Calcium, dissolved	112	117	mg/L
Chromium, dissolved	0.13 J	0.06 J	μg/L
Cobalt, dissolved	284	12.6	μg/L
Iron, dissolved	214,000	19,300	μg/L
Iron, total	213,000	25,100	μg/L
Lead, dissolved	0.006 U	0.006 U	μg/L
Lithium, dissolved	2.6	685	μg/L
Magnesium, dissolved	43.6	30.9	mg/L
Manganese, dissolved	14,100	2,280	μg/L
Manganese, total	14,400	2,350	μg/L
Molybdenum, dissolved	0.04 J	65.1	μg/L
Nickel, dissolved	58.9	7.46	μg/L
Potassium, dissolved	3.57	13,800	mg/L
Selenium, dissolved	0.2 U	0.2 U	μg/L
Silicon, dissolved	6.35	9.24	mg/L
Silver, dissolved	0.009 U	0.009 U	μg/L
Sodium, dissolved	64.0	58.1	mg/L
Thallium, dissolved	0.127	0.009 U	μg/L
Zinc, dissolved	58.1	2.7	μg/L
рН	6.28	7.19	

Notes:

Samples were field filtered with a 0.45-micron filter at the time of collection and filtered again prior to analysis for dissolved constituents.

1. Calculated as: (nitrogen, nitrate + nitrite) – (nitrogen, nitrite)

--: not applicable

µg/L: micrograms per liter

CaCO₃: calcium carbonate

.

J: Indicates that the result is an estimated value.

mg/L: milligrams per liter

mV: millivolts

N: nitrogen

ORP: oxidation-reduction potential

U: Indicates that the compound was analyzed for but not detected.

Monitored Natural Attenuation Demonstration Plant Greene County

Table 17Site Soils and Groundwater Used in Column Tests

Column Number	Soil ID	Groundwater ID	COI(s) in Groundwater
1	GC-1A-UNIT2-20-25	MW-1	Arsenic, Cobalt
2	GC-2A-UNIT2-15-25	MW-1	Arsenic, Cobalt
3	GC-3A-UNIT2-40-45	MW-17	Arsenic, Lithium
4	GC-4A-UNIT2-30-35	MW-17	Arsenic, Lithium

Note:

COI: constituent of interest

Table 18 Column Test Operating Conditions

Parameter	Value	Unit
Soil/sand mixture depth	12.8	cm
Column Inside diameter	2.68	cm
Flow rate	0.4	mL per minute
Empty bed contact time	3.01	hours
Porosity	32-38	%
Dry mass of soil in column	104-111	gram
Hydraulic residence time	0.96-1.18	hours
Darcy flux	32.6-38.8	cm per day
Linear velocity	102	cm per day
Column test duration	14	days

Notes:

cm: centimeter

mL: milliliter

Table 19 Post-Column Test Soil SSE Results

	Arsenic (mg/kg)				Cobalt (mg/kg)					Lithium (mg/kg)					Iron (mg/kg)					Manganese (mg/kg)					
Sample ID	F1	F2	F3	F4	F5	F1	F2	F3	F4	F5	F1	F2	F3	F4	F5	F1	F2	F3	F4	F5	F1	F2	F3	F4	F5
GC-1A-UNIT2-15-25	2.03 U	2.03 U	2.03 U	2.03 U	2.65 U	2.03 U	2.03 U	2.03 U	2.03 U	2.65 U							102 U	121 J	2250	1810		2.03 U	4.69	2.03 U	4.27
GC-1A-UNIT2-15-25 ¹	1.95 U	1.95 U	1.95 U	2.39 J	2.60 U	1.95 U	1.95 U	1.95 U	1.95 U	2.60 U							97.7 U	148 J	2520	1290		1.95 U	4.66	1.95 U	3.73
GC-1A-UNIT2-20-25	1.97 U	1.97 U	1.97 U	1.97 U	2.65 U	1.97 U	1.97 U	1.97 U	1.97 U	2.65 U							98.4 U	132 J	2230	1070		1.97 U	5.03	1.97 U	2.65 U
GC-1A-UNIT2-30-35	1.91 U	1.91 U	1.91 U	1.91 U	2.65 U						9.54 U	9.54 U	9.54 U	9.54 U	13.2 U		114 J	95.4 U	1210	4100		14.5	160	6.06	13.4
GC-1A-UNIT2-40-45	1.91 U	1.91 U	1.91 U	1.91 U	2.66 U						9.54 U	9.54 U	9.54 U	9.54 U	13.3 U		95.4 U	95.4 U	95.4 U	471		5.96	6.43	1.91 U	2.66 U

Notes:

Bold indicates detected values.

1. Duplicate

F1: Soluble

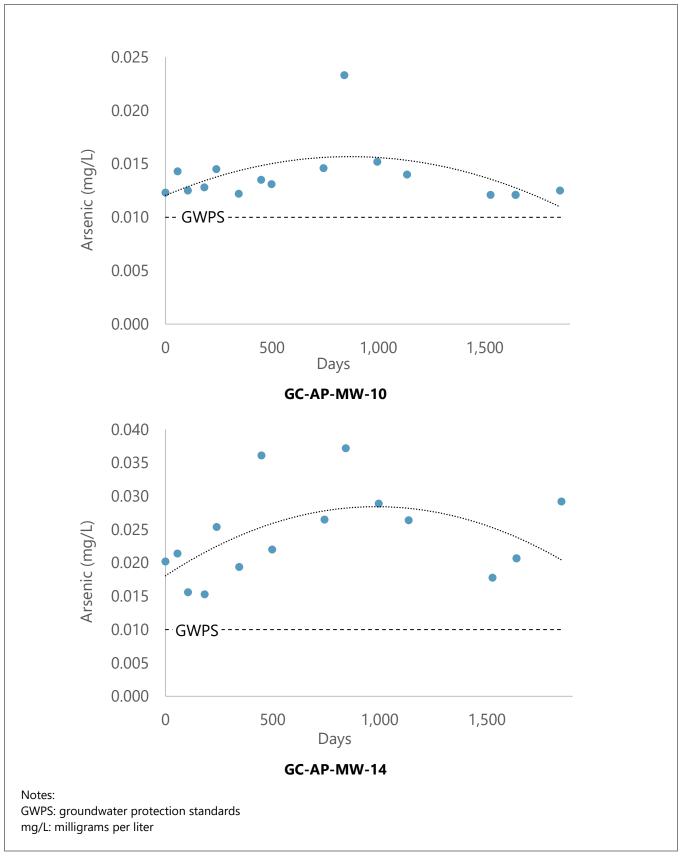
F2: Exchangeable

F3: Reducible (Fe/Mn oxide bound)

F4: Oxidizable (Sulfide/organic/crystalline oxide bound)

F5: Residual

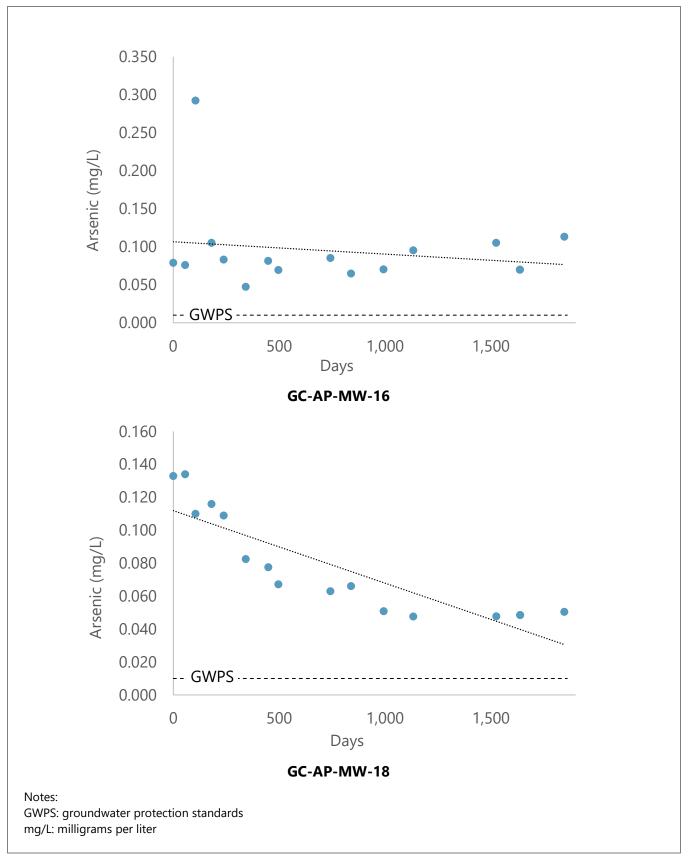
--: not measured


J: Estimated value

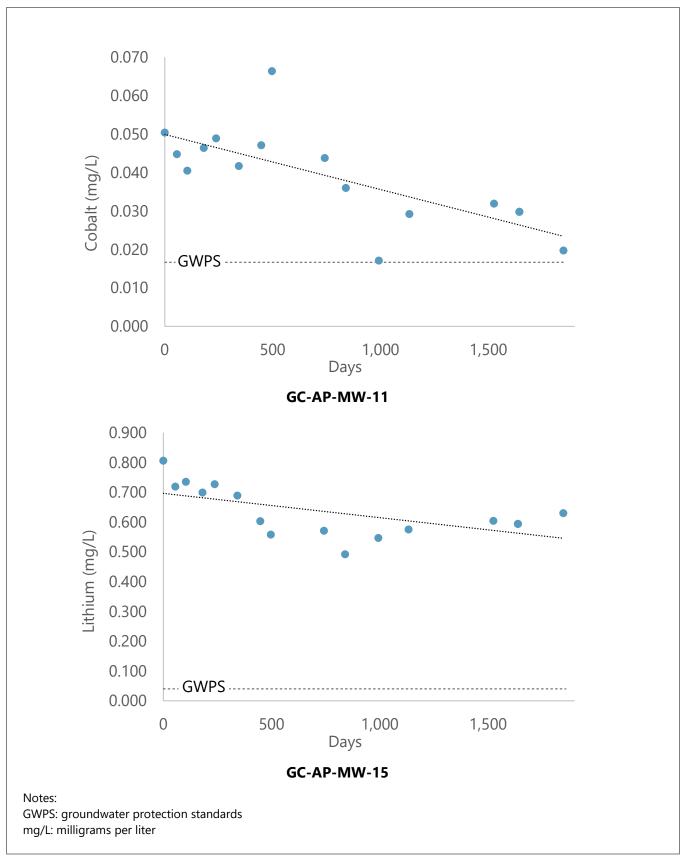
mg/kg: milligrams per kilogram

SSE: selective sequential extraction

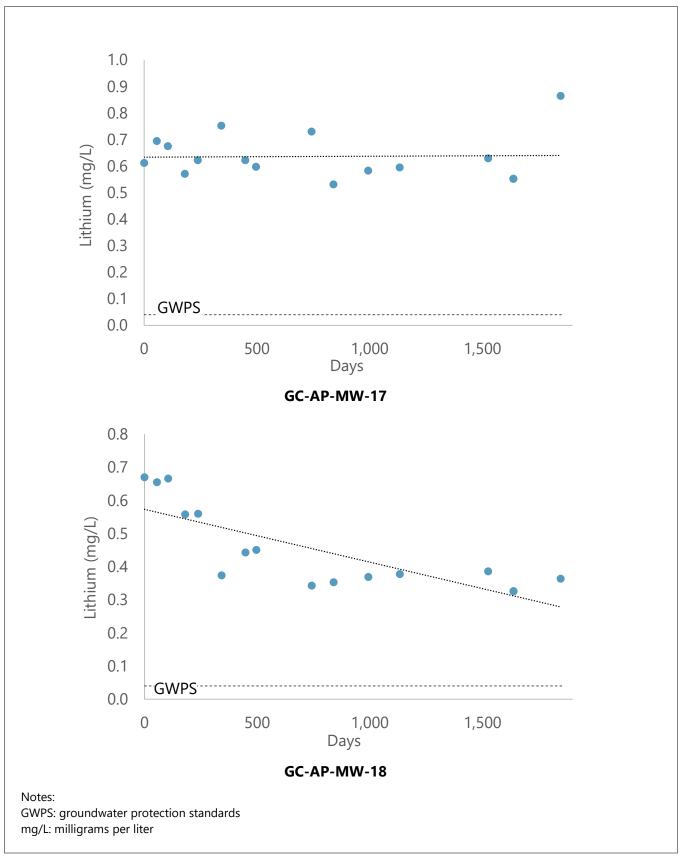
U: Compound analyzed but not detected above detection limit


Figures

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 1a - Concentration vs Time.docx

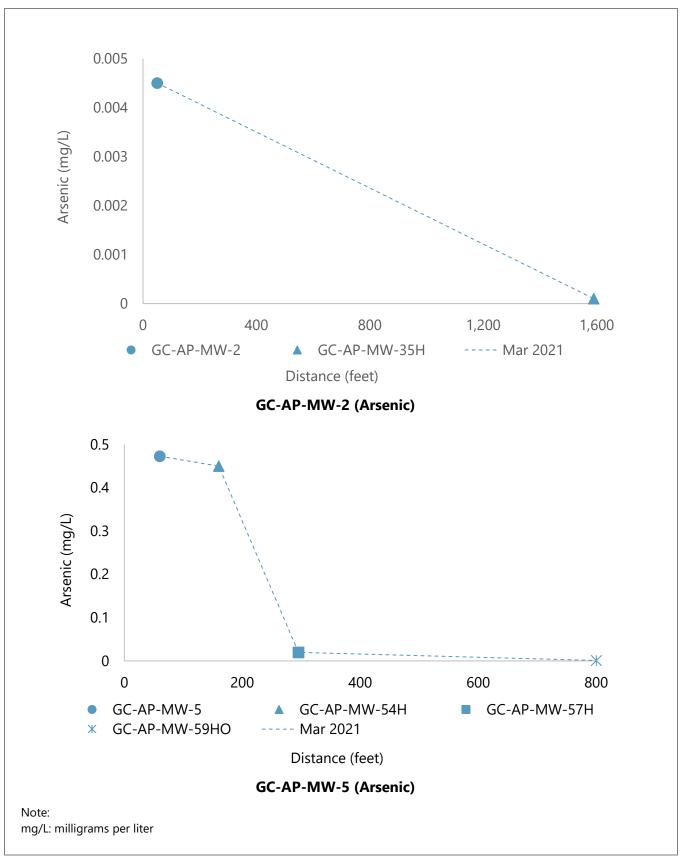

Figure 1a Concentration Versus Time Graphs Monitored Natural Attenuation Demonstration

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 1b - Concentration vs Time.docx


Figure 1b Concentration Versus Time Graphs

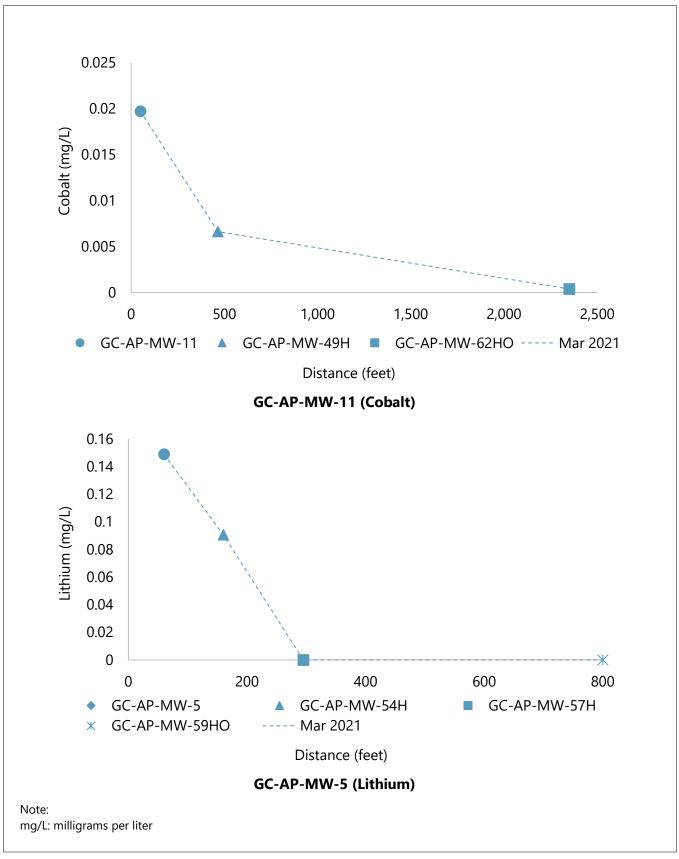
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 1c - Concentration vs Time.docx

Figure 1c Concentration Versus Time Graphs Monitored Natural Attenuation Demonstration

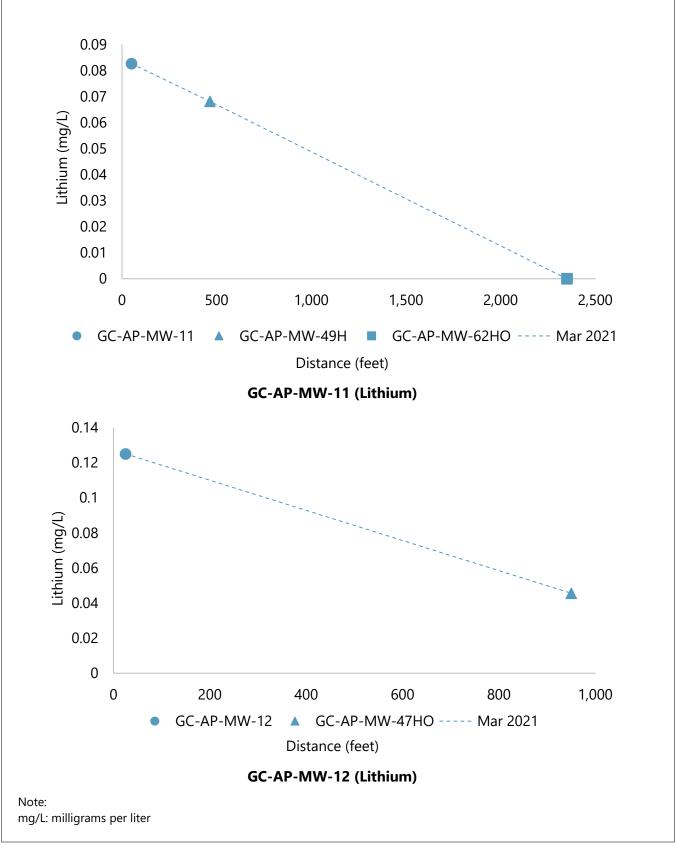


Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 1d - Concentration vs Time.docx

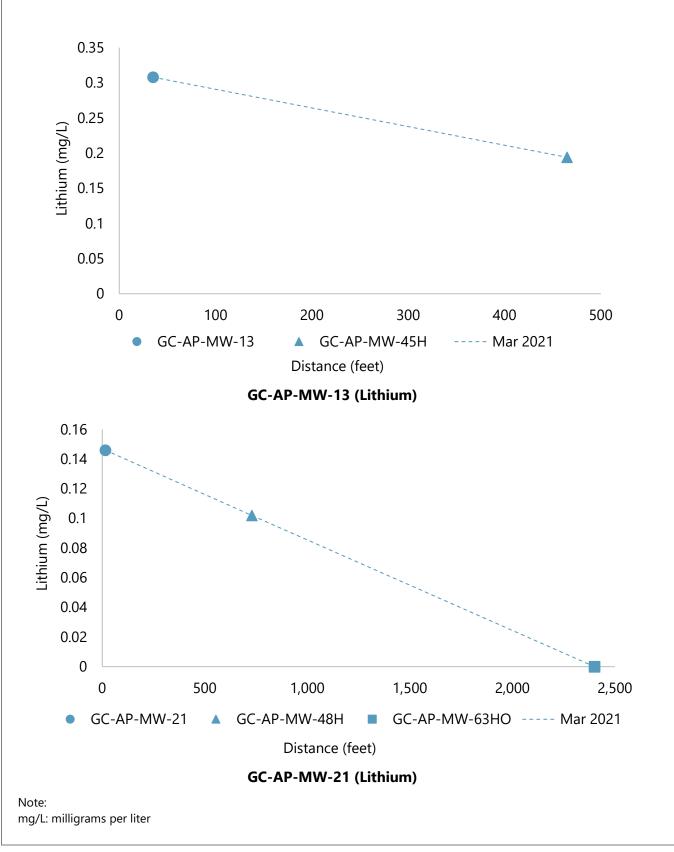
Figure 1d Concentration Versus Time Graphs Monitored Natural Attenuation Demonstration


Plant Greene County

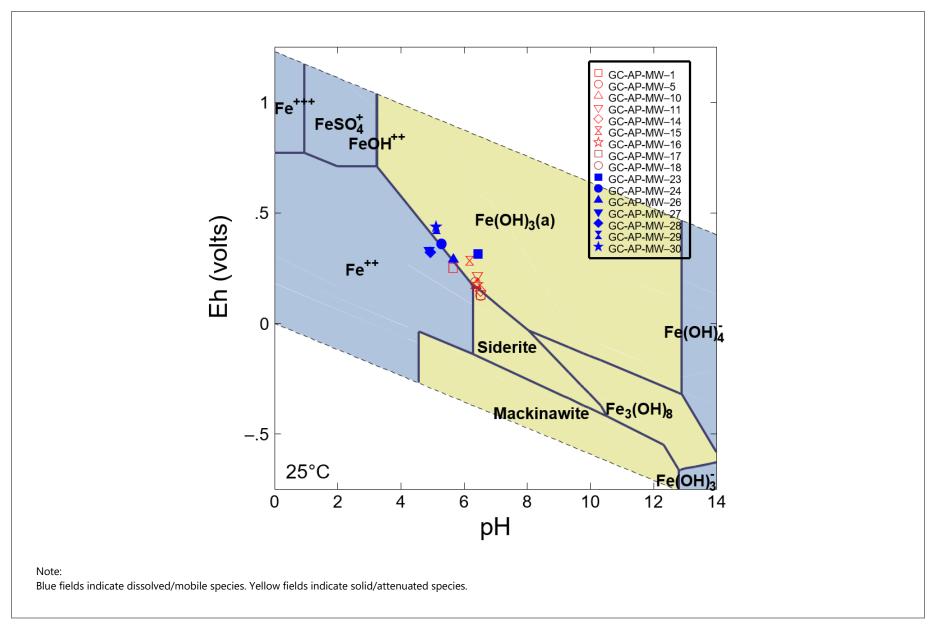
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 2a - Concentration vs Distance.docx


Figure 2a Concentration Versus Distance Graphs

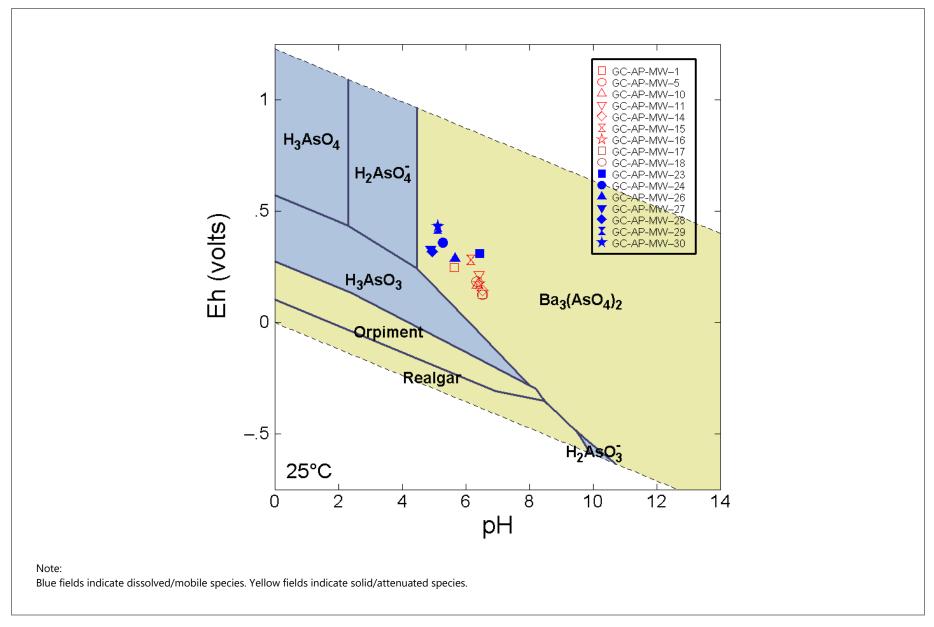
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 2b - Concentration vs Distance.docx


Figure 2b Concentration Versus Distance Graphs

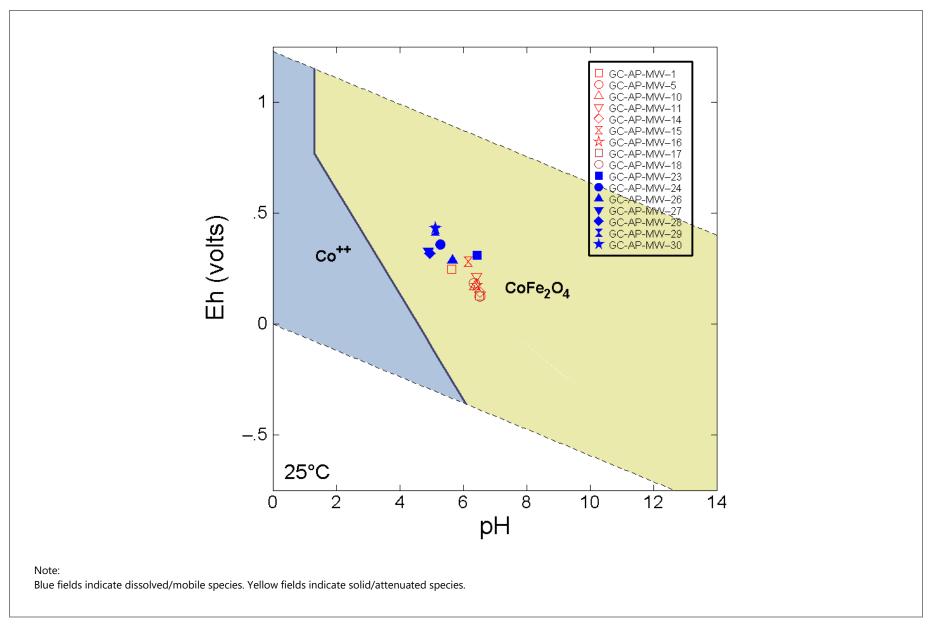
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 2c - Concentration vs Distance.docx


Figure 2c Concentration Versus Distance Graphs

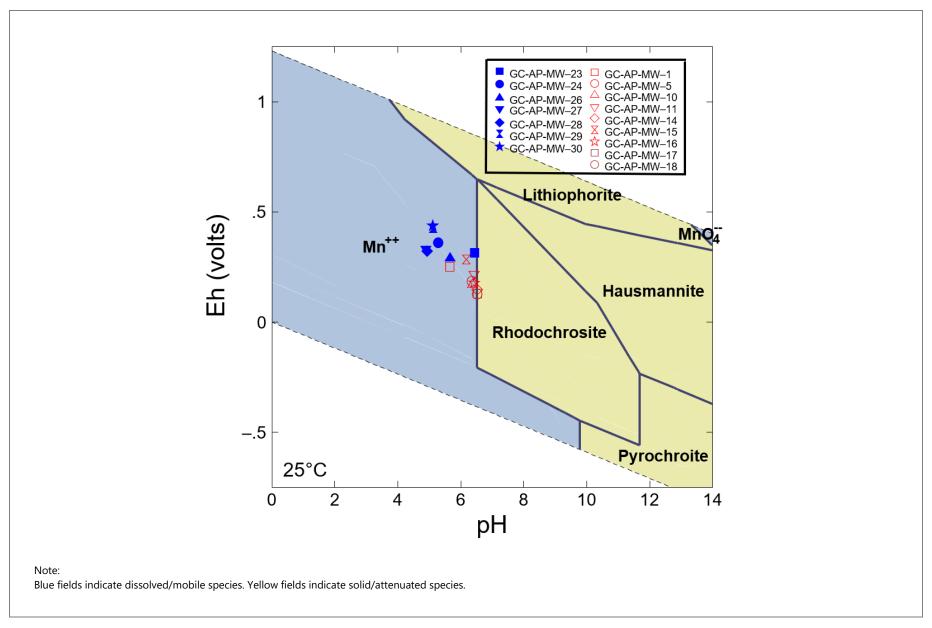
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 2d - Concentration vs Distance.docx


Figure 2d Concentration Versus Distance Graphs

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 3 - GreeneCounty - Fe.docx


Figure 3 Eh-pH Stability Diagram for Dissolved and Solid Iron Phases

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 4 - GreeneCounty - As.docx


Figure 4 Eh-pH Stability Diagram for Dissolved and Solid Arsenic Phases

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 5 - GreeneCounty - Co.docx


Figure 5 Eh-pH Stability Diagram for Dissolved and Solid Cobalt Phases

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 6 - GreeneCounty - Mn.docx

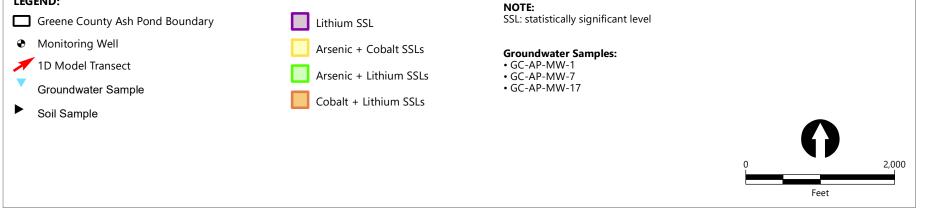


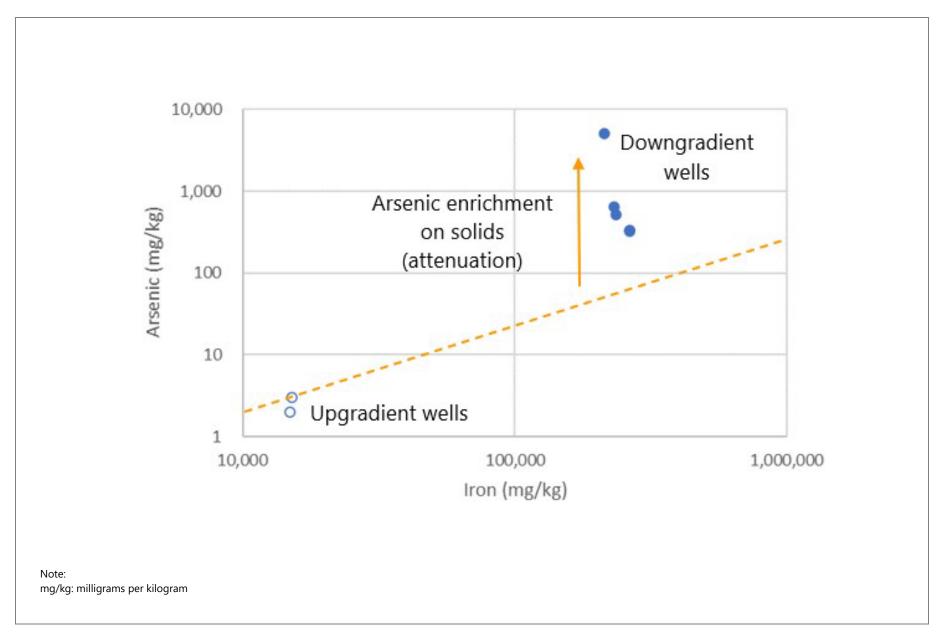
Figure 6 Eh-pH Stability Diagram for Dissolved and Solid Manganese Phases

LEGEND:

Publish Date: 2021/09/29, 1:39 PM | User: jquinley Filepath: \\orcas\GIS\Jobs\SouthernCompany_1114\GreeneCounty\Maps\2021_MNA_Demonstration_Report\AQ_GreeneCo_2021_MNA_Report_1D_TransectLines.mxd

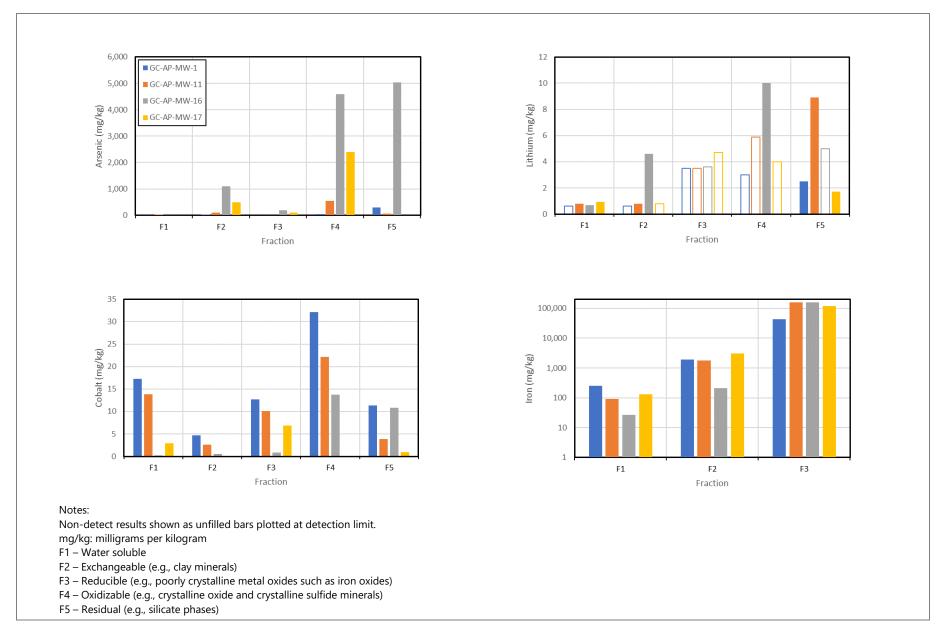
Figure 7 **1D Model Transects**

CC-1A Unit 2 NO-25



Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 8 - Soil Samples.docx

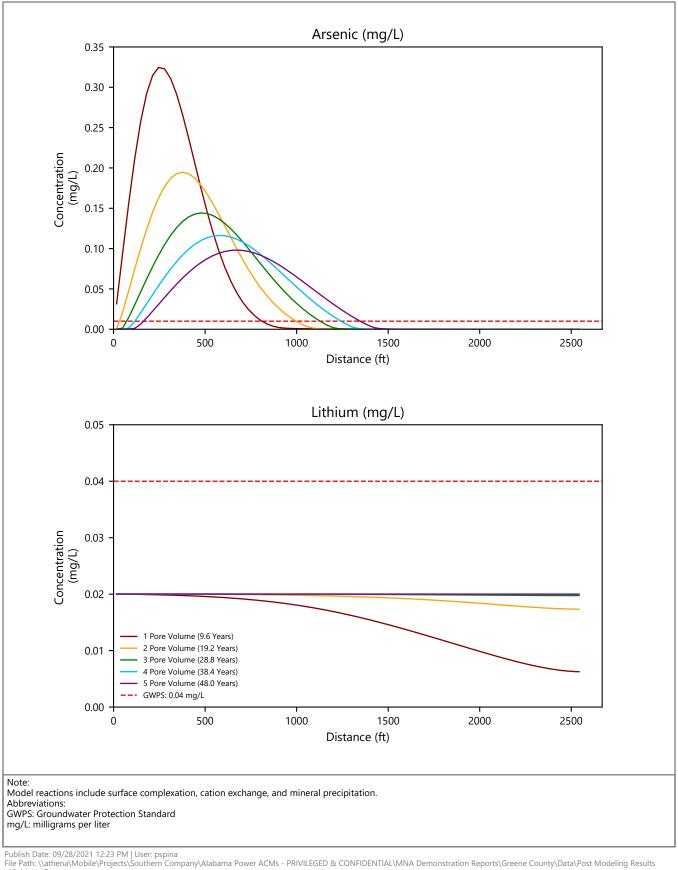
Figure 8 Representative Soil Samples Monitored Natural Attenuation Demonstration


Plant Greene County

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 9 - Bulk Chemistry.docx

Figure 9 Bulk Chemistry Relationship Between Arsenic and Iron

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 10 - SSE (Well Solids).docx


Figure 10 SSE Results for Well Solids

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 11 - SEM (GC-AP-MW-11).docx

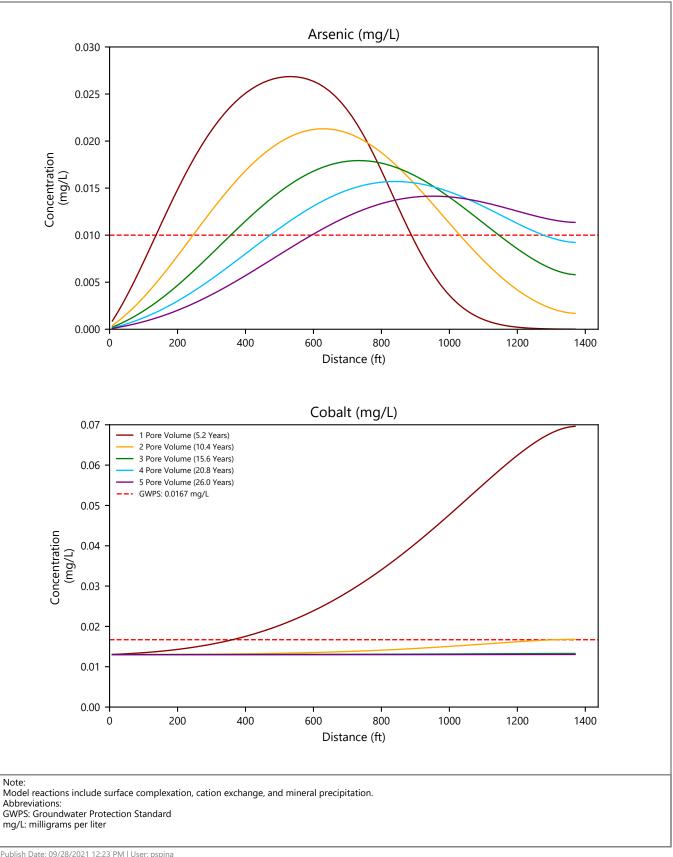
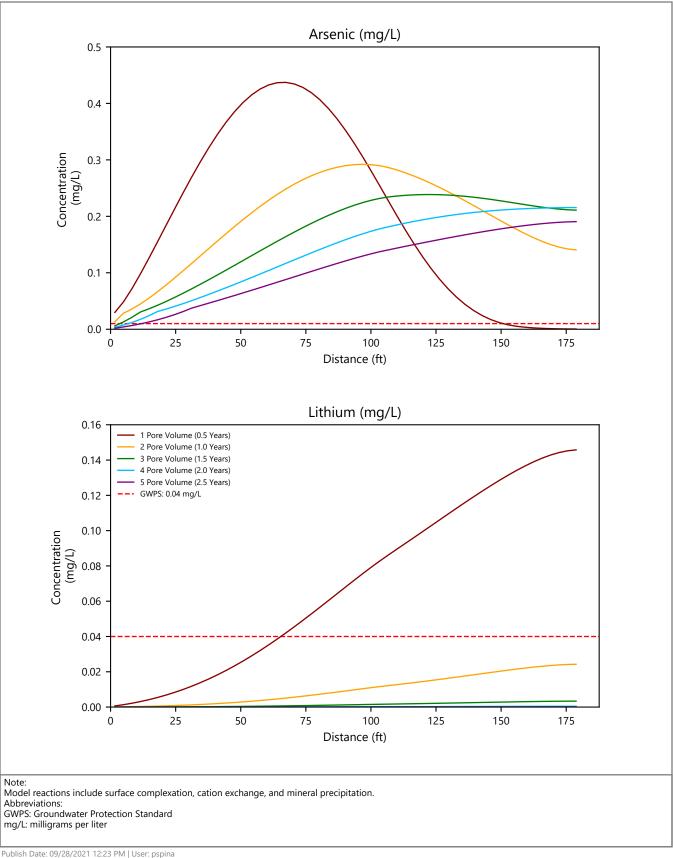
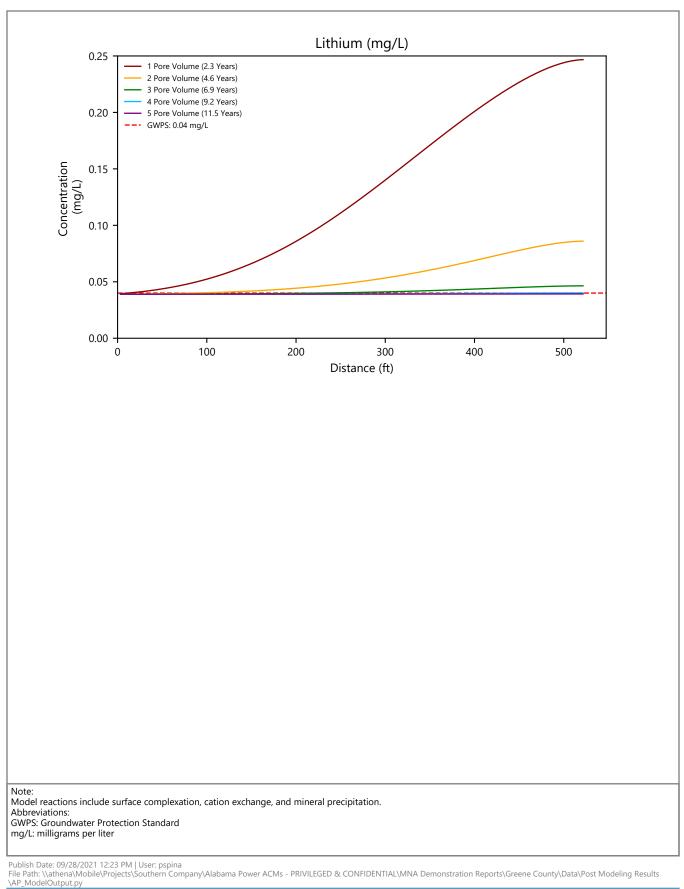
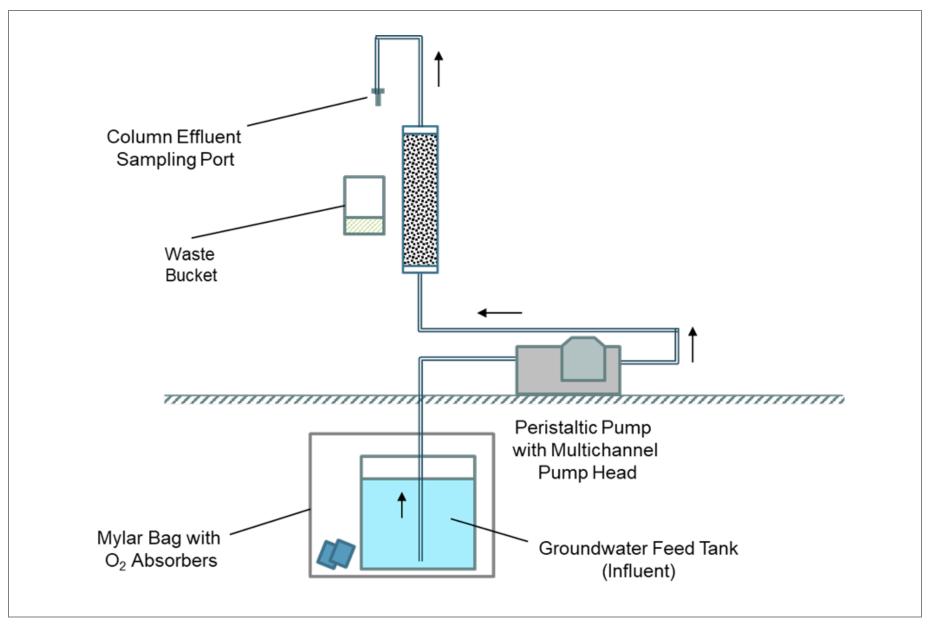


Figure 11 SEM Results for GC-AP-MW-11 Monitored Natural Attenuation Demonstration Plant Greene County

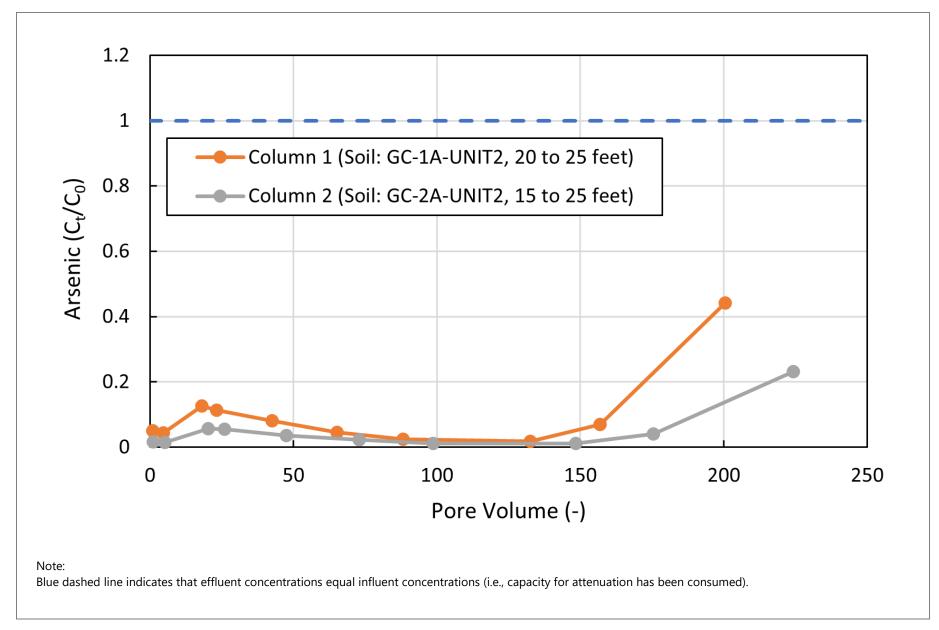

\AP_ModelOutput.py


Publish Date: 09/28/2021 12:23 PM | User: pspina File Path: \\athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Data\Post Modeling Results \AP_ModelOutput.py

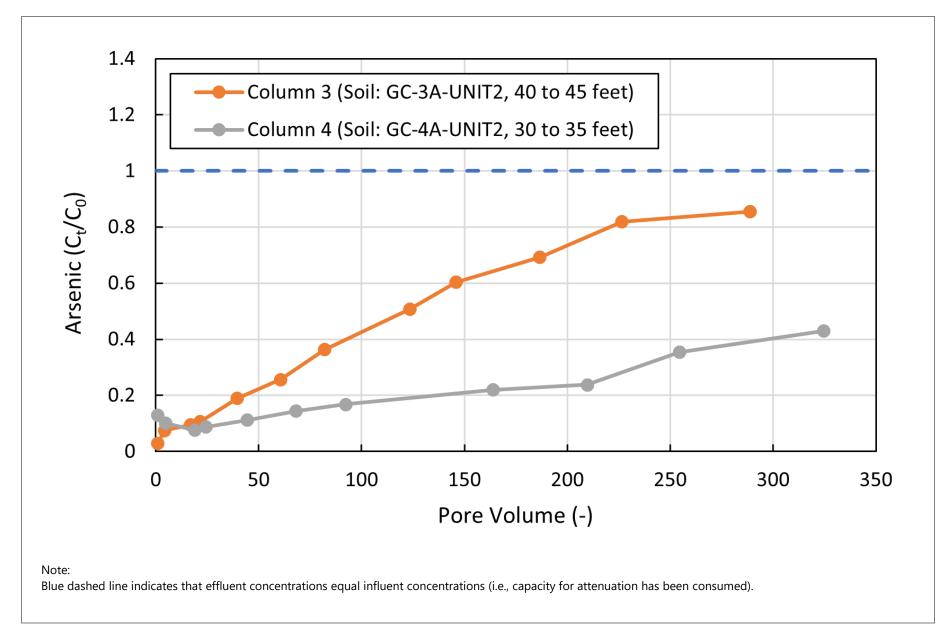
Publish Date: 09/28/2021 12:23 PM | User: pspina File Path: \\athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Data\Post Modeling Results \AP_ModelOutput.py



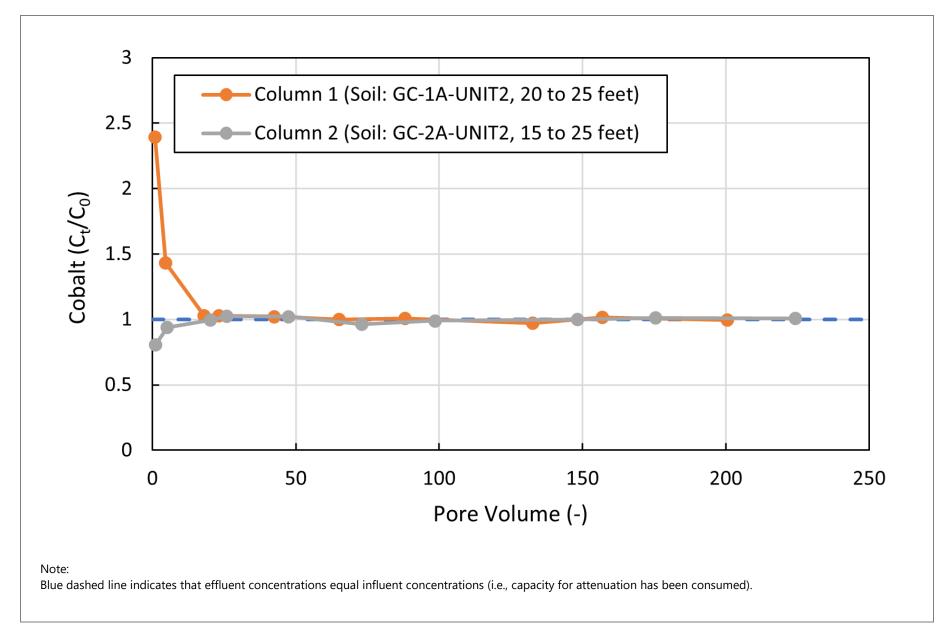
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 16 - Column Test Equipment Setup.docx


Figure 16 Column Test Equipment Setup Monitored Natural Attenuation Demonstration Plant Greene County

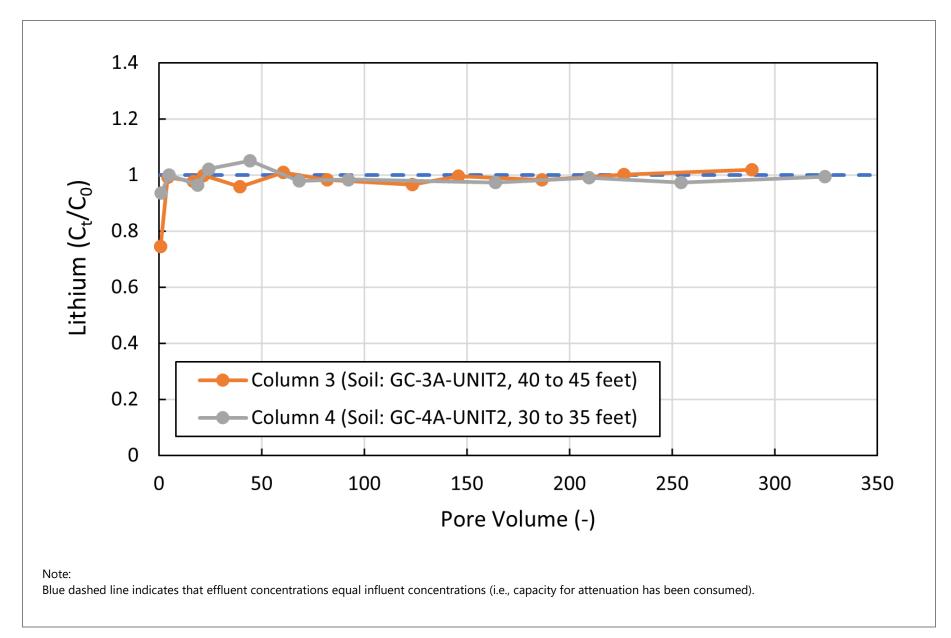
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 17 - Schematic of Columns.docx


Figure 17 Schematic of Column Test Setup Monitored Natural Attenuation Demonstration Plant Greene County

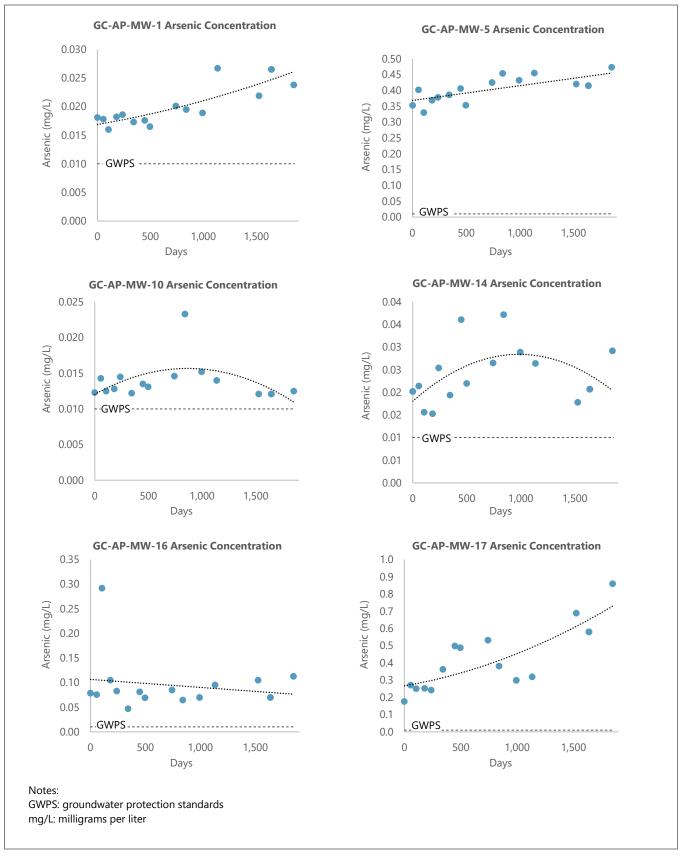
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 18 - Column As Breakthrough 1.docx


Figure 18 Dissolved Arsenic Breakthrough Curves: Columns 1 and 2

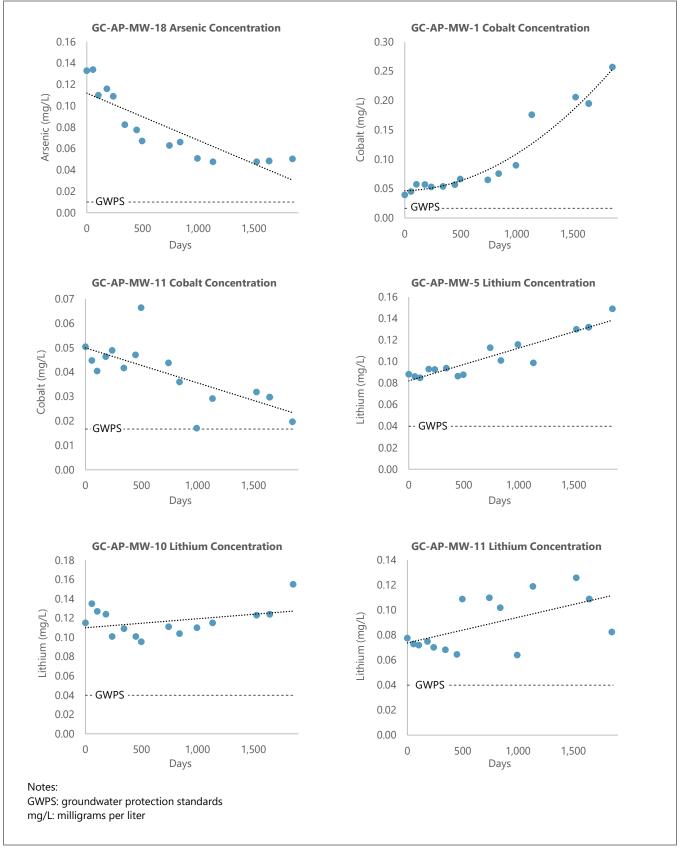
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 19 - Column As Breakthrough 2.docx


Figure 19 Dissolved Arsenic Breakthrough Curves: Columns 3 and 4

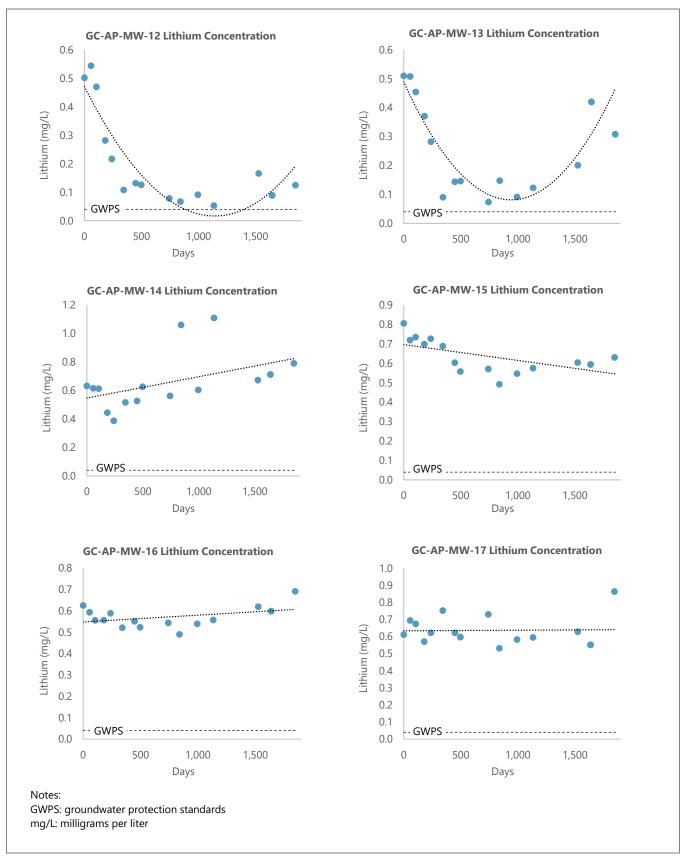
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 20 - Column Co Breakthrough.docx


Figure 20 Dissolved Cobalt Breakthrough Curves Monitored Natural Attenuation Demonstration

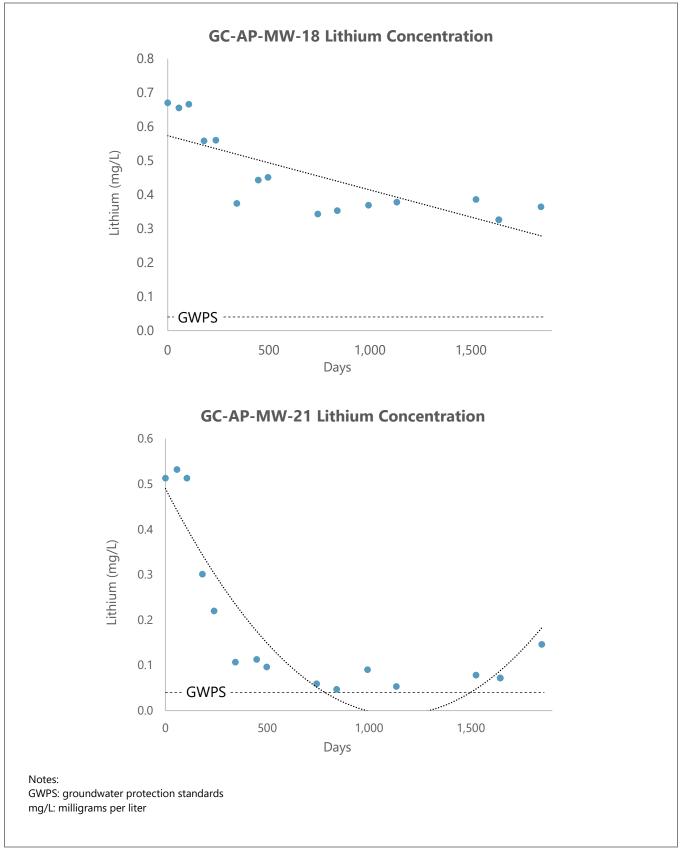
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Figures\Figure 21 - Column Li Breakthrough.docx


Figure 21 Dissolved Lithium Breakthrough Curves Monitored Natural Attenuation Demonstration Plant Greene County Appendix A Concentration Versus Time Graphs

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Appendices\Appendix A - Concentration vs Time Graphs All SSLs.docx

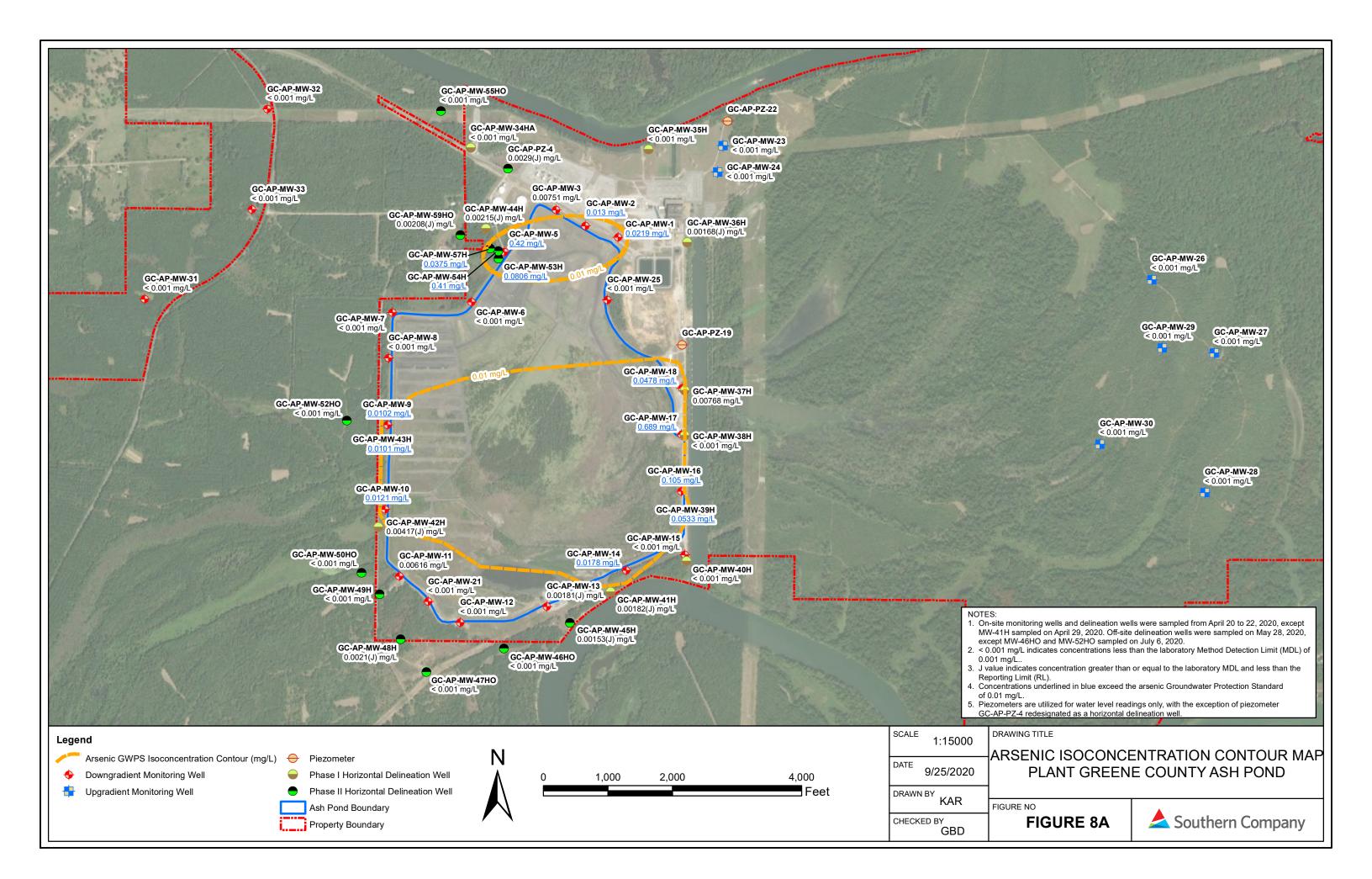

Appendix A Concentration Versus Time Graphs

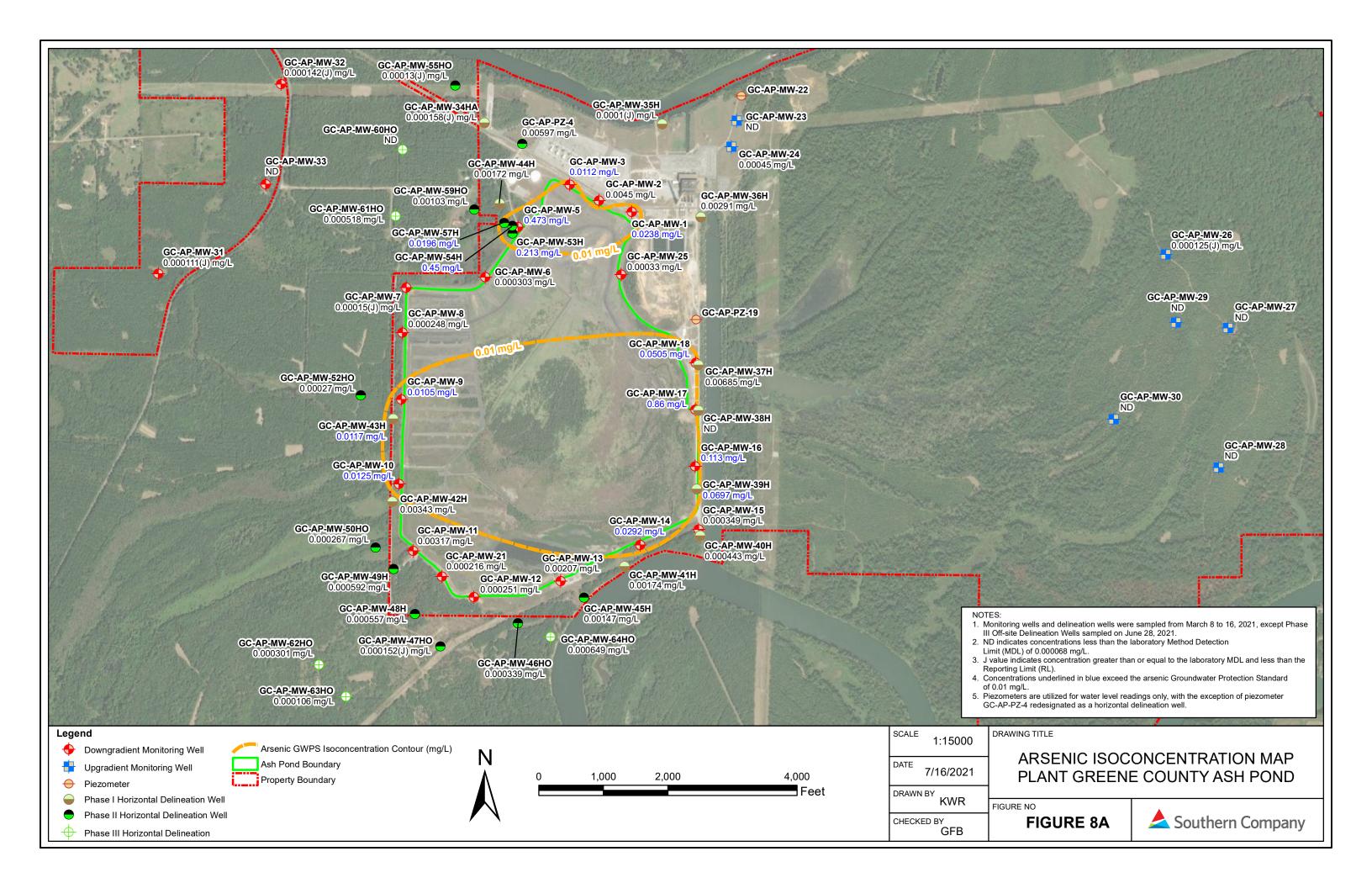
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Appendices\Appendix A - Concentration vs Time Graphs\Alpsendix A - Concentration vs Time Graphs All SSLs.docx

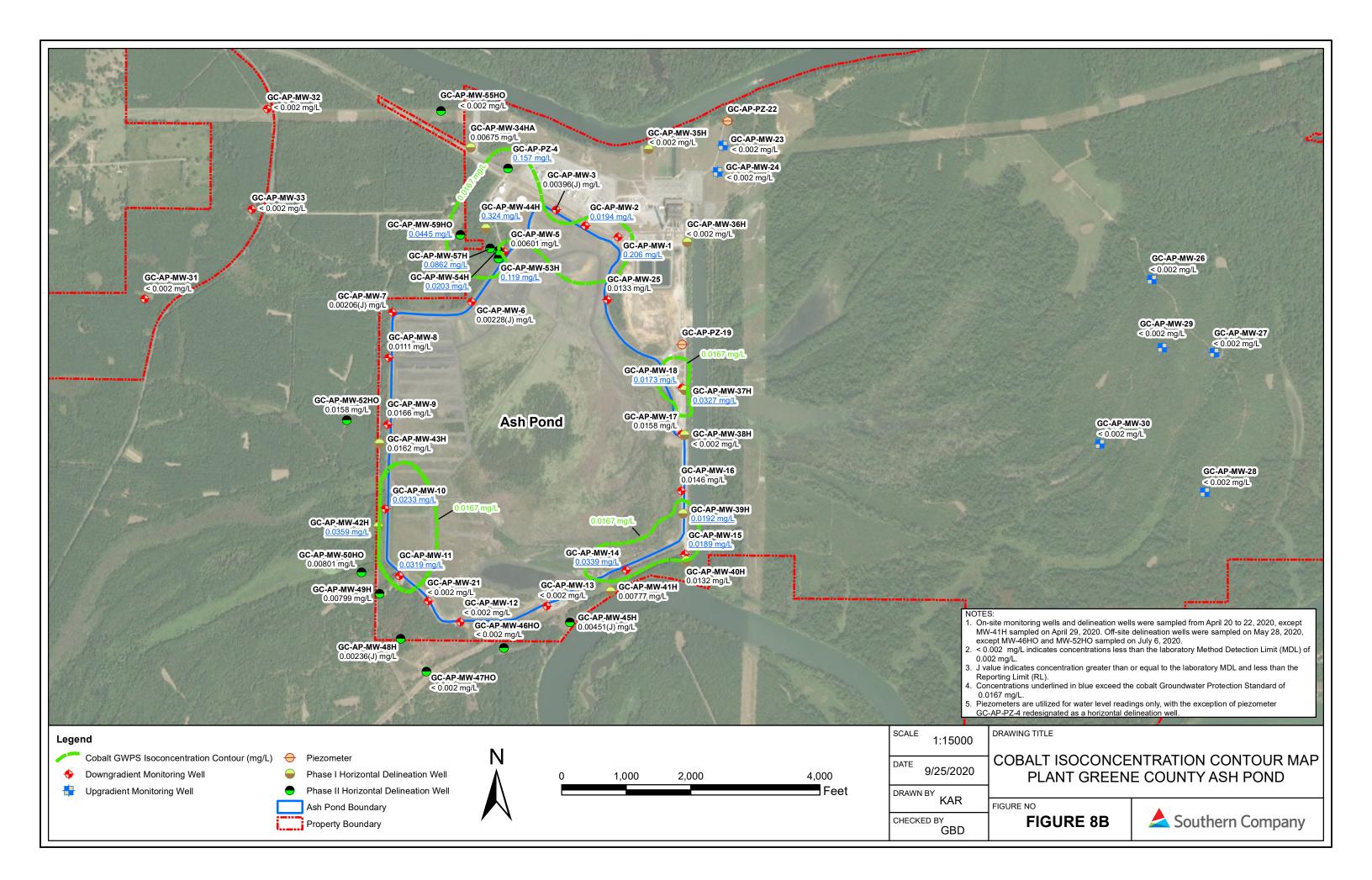

Appendix A Concentration Versus Time Graphs

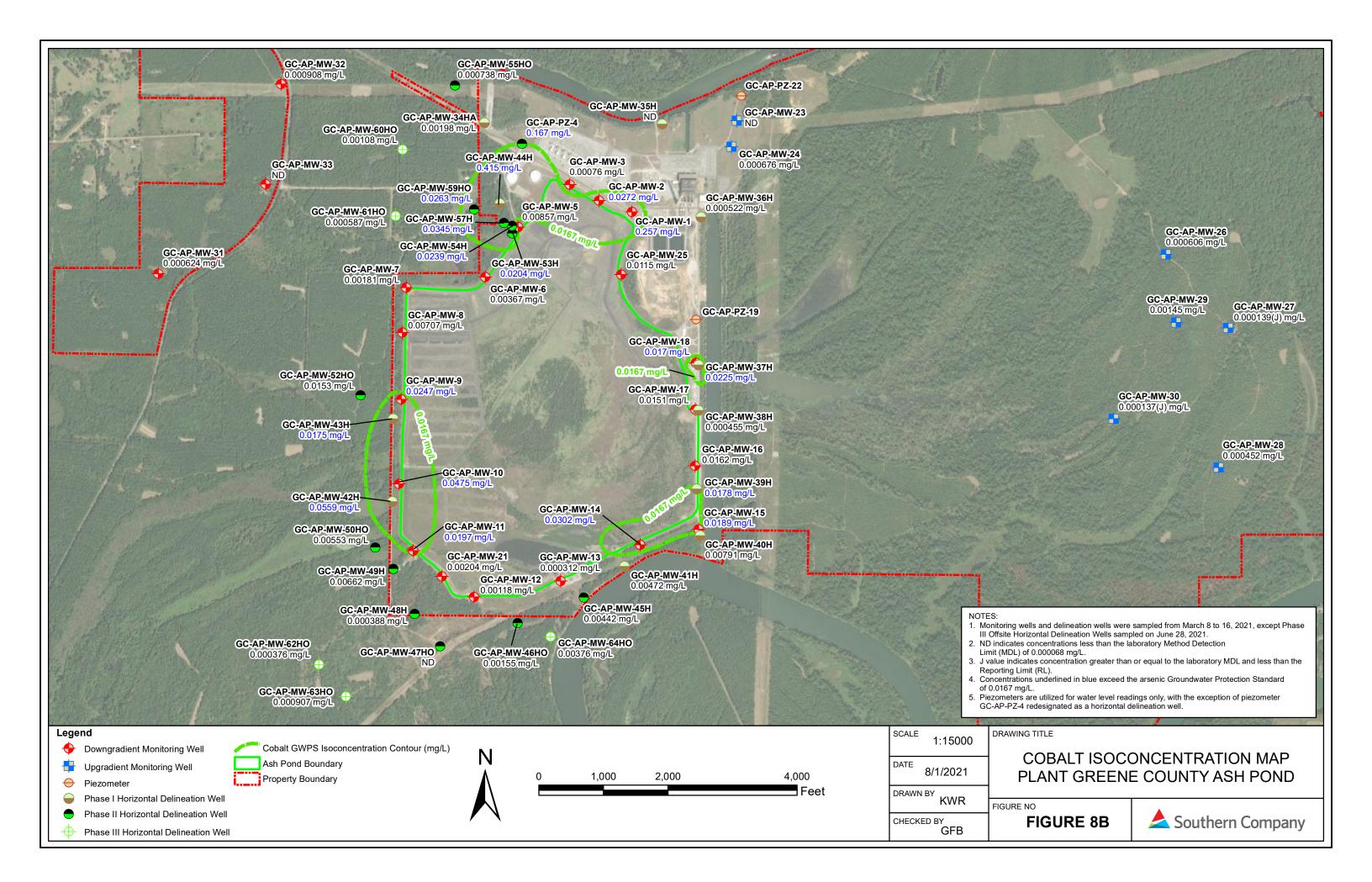
Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Appendices\Appendix A - Concentration vs Time Graphs All SSLs.docx

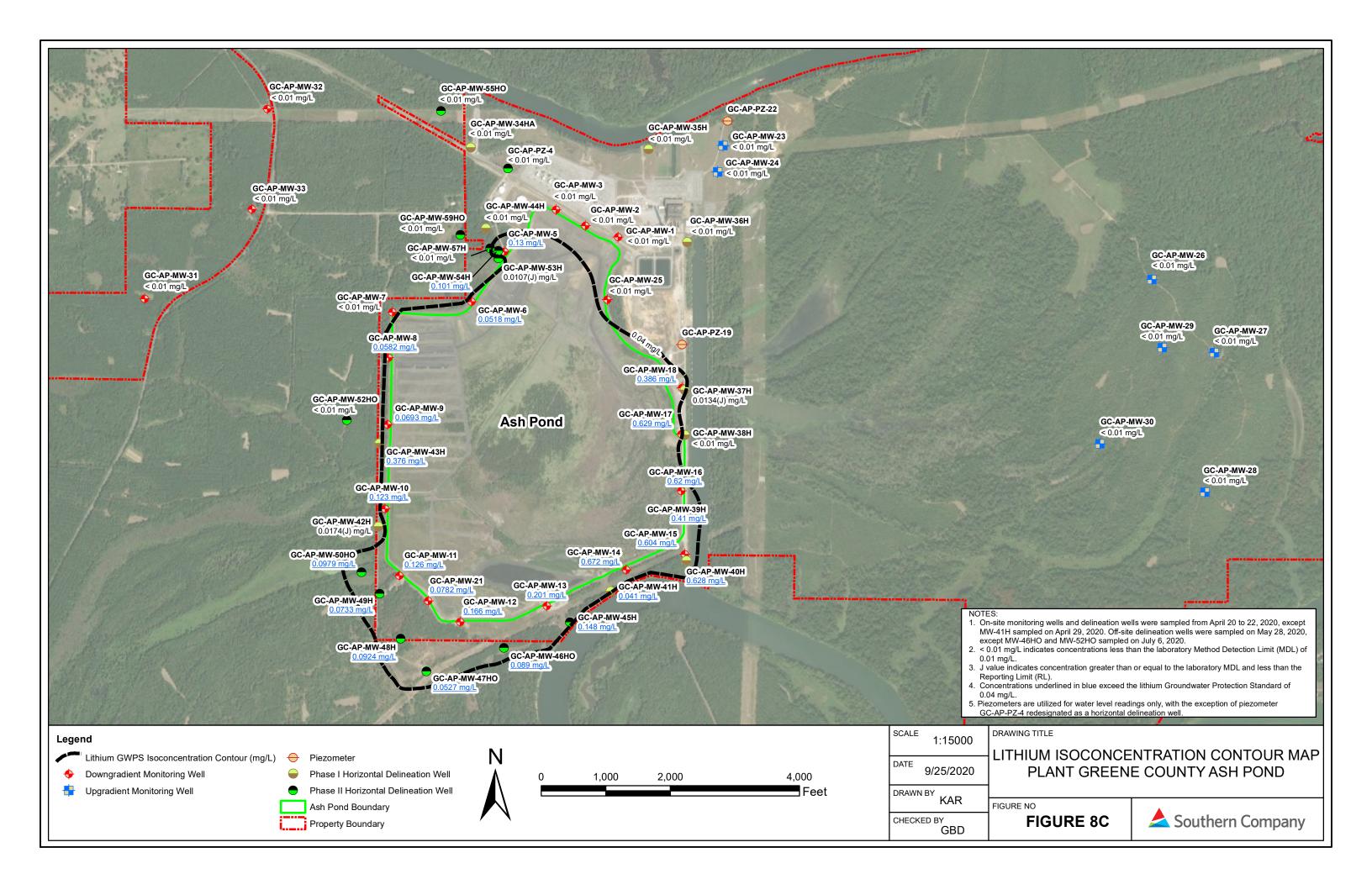
Appendix A Concentration Versus Time Graphs

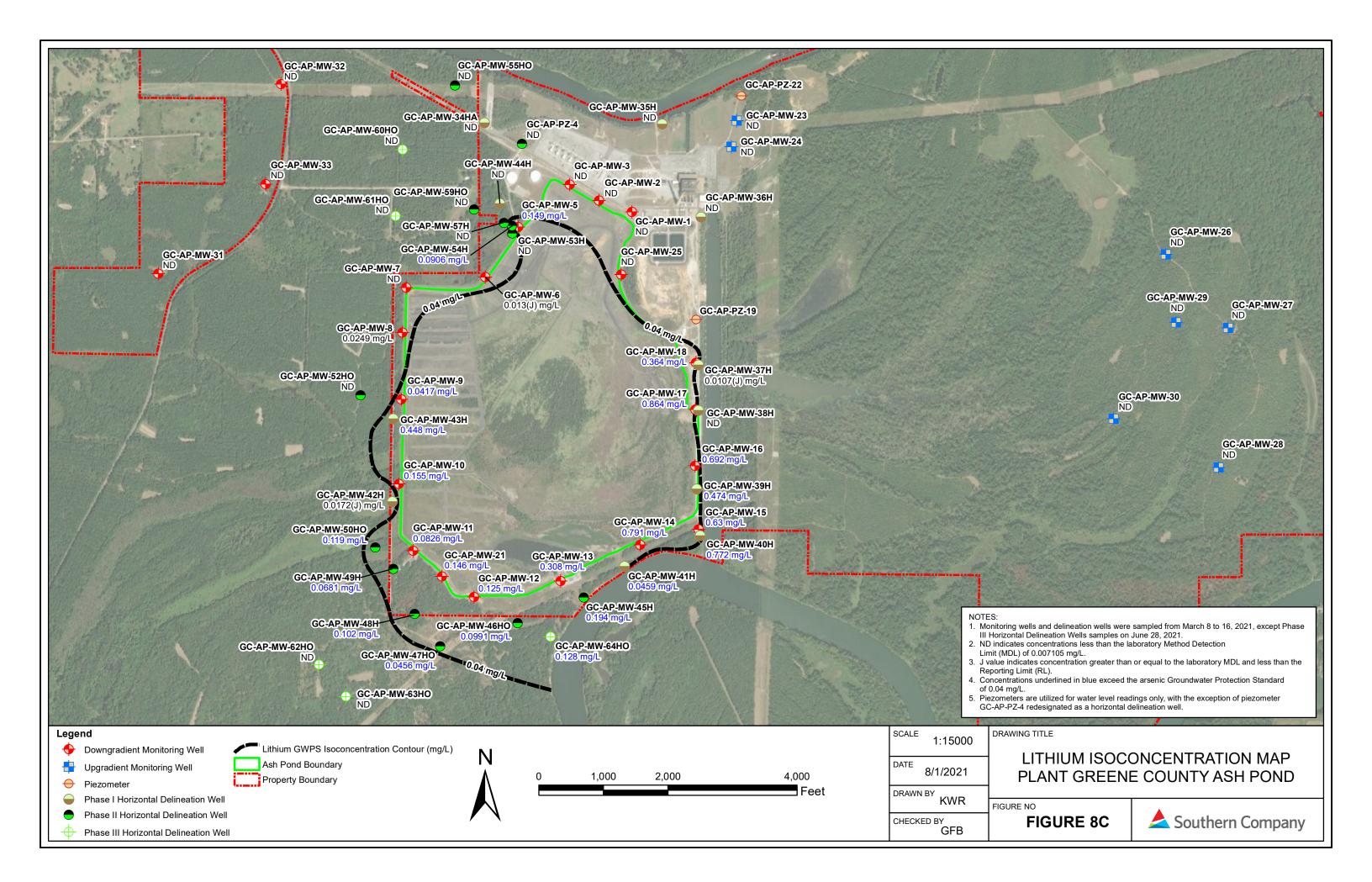


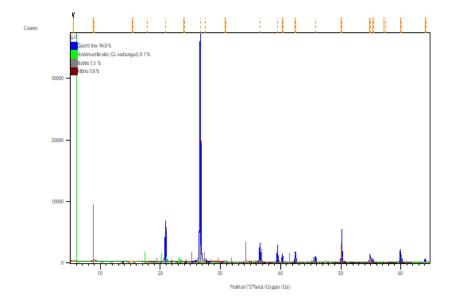

Filepath: \\Athena\Mobile\Projects\Southern Company\Alabama Power ACMs - PRIVILEGED & CONFIDENTIAL\MNA Demonstration Reports\Greene County\Appendices\Appendix A - Concentration vs Time Graphs All SSLs.docx



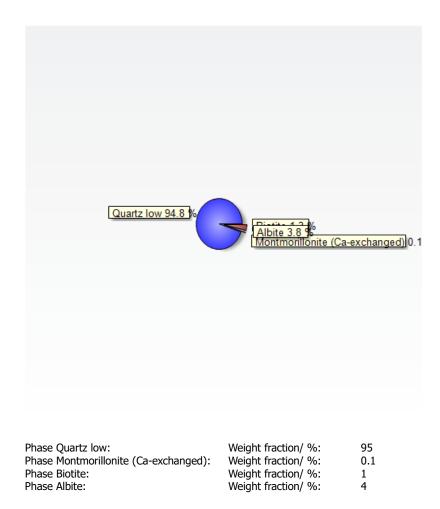

Appendix A Concentration Versus Time Graphs


Appendix B Isoconcentration Maps





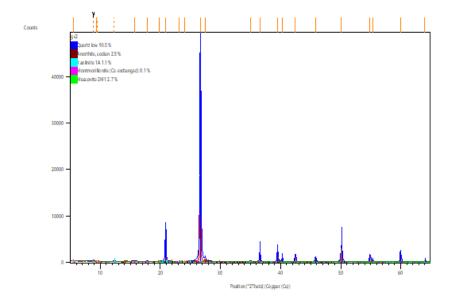
Appendix C Analytical Data


Ref.Code	Score	Compound Name	Chem. Formula
98-008-3849	81	Quartz low	02 Si1
98-005-1636	1	Montmorillonite (C	H8.2 Al4 Ca1.2 O27
96-900-1584	20	Biotite	Sill.14 Al4.86 Fe4
98-009-0142	9	Albite	Al1.02 Ca0.02 Na0

Graphics

<u>Peak List</u>

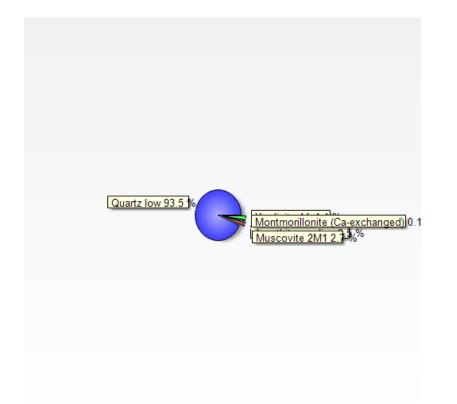
Pos.[°2Th.]	d-spacing [Å]	Rel. Int. [%]	Matched by
5.51(2)	16.03765	0.44	
8.900(7)	9.92815	0.81	96-900-1584
15.35(4)	5.76634	0.15	98-005-1636;98
17.78(2)	4.98507	0.16	98-005-1636;96
20.8584(6)	4.25531	16.69	98-008-3849;96
23.991(7)	3.70625	0.39	98-009-0142
26.6283(2)	3.34491	100.00	98-008-3849;98
27.467(5)	3.24469	0.96	98-005-1636;96
30.82(1)	2.89868	0.24	98-005-1636;96
36.546(1)	2.45673	7.51	98-008-3849;98
39.459(1)	2.28185	4.94	98-008-3849;98
40.286(2)	2.23685	3.56	98-008-3849;96
42.446(1)	2.12791	5.22	98-008-3849;98
45.784(2)	1.98022	3.22	98-008-3849;98
50.1287(8)	1.81830	10.78	98-008-3849;98
54.863(1)	1.67205	4.36	98-008-3849;98
55.314(2)	1.65949	1.72	98-008-3849;96
57.27(3)	1.60736	0.11	98-008-3849;98
59.9488(9)	1.54179	7.44	98-008-3849;98
64.027(2)	1.45307	1.76	98-008-3849;98



Dataset Name: File name: Sample Identification: Comment: Measurement Date / Time: Raw Data Origin: Scan Axis: Gonio Start Position [°2Th.]: 5.0200 End Position [°2Th.]: Step Size [°2Th.]: 64.9400 0.0400 Scan Step Time [s]: 4.5000 Scan Type: Offset [°2Th.]: 0.0000 Divergence Slit Type: Divergence Slit Size [°]: Fixed 0.5000 Specimen Length [mm]: 10.00 Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 0.00 Anode Material: Cu K-Alpha1 [Å]: K-Alpha2 [Å]: 1.54060 1.54443 K-Beta [Å]: 1.39225 K-A2 / K-A1 Ratio: 0.50000 Generator Settings: Diffractometer Type: XPert MPD Diffractometer Number: 1 200.00 Goniometer Radius [mm]: Dist. Focus-Diverg. Slit [mm]: 91.00 Incident Beam Monochromator: No Spinning: No

gc1 C:\Users\Rick\Documents\RCIA_Win10\AnchorQEA\AnchorQEA-2021July26\GreeneCounty\gc1.rd GC1-GC1A-Unit2_20-25 Exported by X'Pert SW Generated by hugo in project AnchorQEA-2 8/10/2021 8:06:00 AM PHILIPS-binary (scan) (.RD) Gonio 5.0200 64.9400 0.0400 4.5000 Continuous 0.0000 Fixed 0.5000 10.00 0.1000 0.1000 0.1000 0.00 Cu 1.54060 1.54443 1.39225 0.50000 30 mA, 40 kV XPert MPD 1 200.00 91.00 No

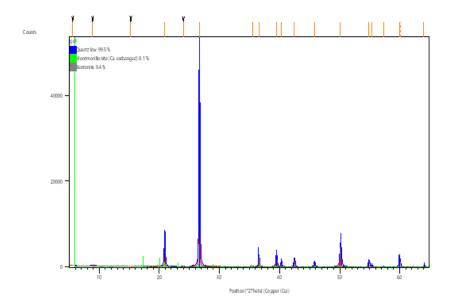
Ref.Code	Score	Compound Name	Chem. Formula
98-008-3849	79	Quartz low	02 Si1
98-020-1648	4	Anorthite, sodian	Al1.66 Ca0.66 Na0
98-008-0082	20	Kaolinite 1A	H4 Al2 O9 Si2
98-005-1636	17	Montmorillonite (C	H8.2 Al4 Ca1.2 O27
98-002-5803	0	Muscovite 2M1	H2 Al3 K1 O12 Si3


Graphics

<u>Peak List</u>

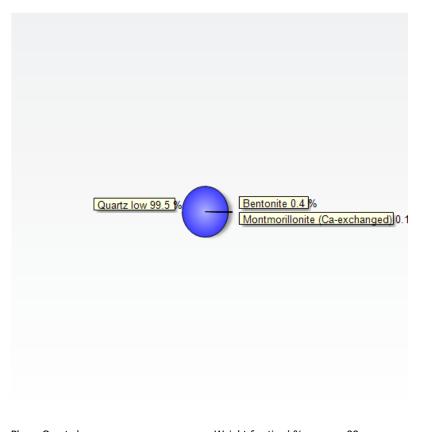
Pos.[°2Th.]	d-spacing [Å]	Rel. Int. [%]	Matched by
5.5197	16.01117	0.30	98-005-1636
8.878(6)	9.95284	0.70	
9.45(2)	9.34714	0.24	98-020-1648
12.30(1)	7.18972	0.22	98-008-0082
15.7259	5.63533	0.06	98-020-1648
17.7993	4.98329	0.21	98-020-1648;98
19.8471	4.47351	0.48	98-008-0082;98
20.8685	4.25681	17.24	98-008-3849;98
23.1628	3.84009	0.31	98-020-1648;98
24.0375	3.70230	0.31	98-020-1648;98
26.6467	3.34540	100.00	98-008-3849;98
27.4357	3.25096	1.59	98-020-1648
34.9636	2.56634	0.42	98-020-1648;98
36.5527	2.45834	4.76	98-008-3849;98
39.4796	2.28257	5.17	98-008-3849;98
40.2868	2.23868	2.30	98-008-3849;98
42.4500	2.12947	3.71	98-008-3849;98
45.7863	1.98177	2.61	98-008-3849;98
50.1188	1.82015	7.80	98-008-3849;98

54.8558	1.67365	3.64	98-008-3849;98
55.3191	1.66073	1.01	98-008-3849;98
59.9374	1.54333	5.94	98-008-3849;98
64.0113	1.45459	0.96	98-008-3849;98


Phase Quartz low:	Weight fraction/ %:	94
Phase Anorthite, sodian:	Weight fraction/ %:	2.5
Phase Kaolinite 1A:	Weight fraction/ %:	1
Phase Montmorillonite (Ca-exchanged):	Weight fraction/ %:	0.1
Phase Muscovite 2M1:	Weight fraction/ %:	2.5

Dataset Name: File name: Sample Identification: Comment: Measurement Date / Time: Raw Data Origin: Scan Axis: Gonio Start Position [°2Th.]: 5.0200 End Position [°2Th.]: Step Size [°2Th.]: 64.9400 0.0400 Scan Step Time [s]: 4.5000 Scan Type: Continuous Offset [°2Th.]: 0.0000 Divergence Slit Type: Divergence Slit Size [°]: Fixed 0.5000 Specimen Length [mm]: 10.00 Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 0.00 Anode Material: Cu K-Alpha1 [Å]: K-Alpha2 [Å]: 1.54060 1.54443 K-Beta [Å]: 1.39225 K-A2 / K-A1 Ratio: 0.50000 Generator Settings: 30 mA, 40 kV Diffractometer Type: XPert MPD Diffractometer Number: 1 200.00 Goniometer Radius [mm]: Dist. Focus-Diverg. Slit [mm]: 91.00 Incident Beam Monochromator: No Spinning: No

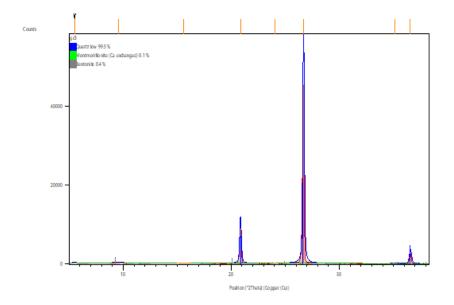
gc2 C:\Users\Rick\Documents\RCIA_Win10\AnchorQEA\AnchorQEA-2021July26\GreeneCounty\gc2.rd GC2-1B-Unit2_15-20 Exported by X'Pert SW Generated by hugo in project AnchorQEA-2 8/9/2021 2:02:00 PM PHILIPS-binary (scan) (.RD) Gonio 5.0200 64.9400 0.0400 4.5000 Continuous 0.0000 Fixed 0.5000 10.00 0.1000 0.1000 0.1000 0.00 Cu 1.54060 1.54443 1.39225 0.5000 30 mA, 40 kV XPert MPD 1 200.00 91.00 No


Ref.Code	Score	Compound Name	Chem. Formula
98-008-3849	84	Quartz low	02 Si1
98-005-1636	3	Montmorillonite (C	H8.2 Al4 Ca1.2 O27
98-016-0437	6	Bentonite	H2 Al1.93 Ca0.06 F

Graphics

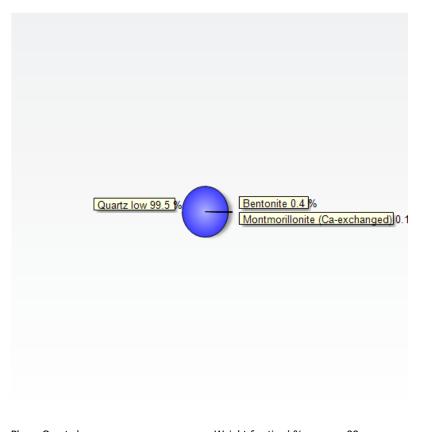
<u>Peak List</u>

Pos.[°2Th.]	d-spacing [Å]	Rel. Int. [%]	Matched by
5.6004	15.78066	0.27	
8.8878	9.94978	0.26	
15.2302	5.81761	0.17	
20.8936	4.25175	14.66	98-008-3849;98
24.0253	3.70415	0.24	
26.6527	3.34466	100.00	98-008-3849;98
35.5343	2.52643	0.12	98-005-1636;98
36.5607	2.45782	5.45	98-008-3849;98
39.4753	2.28281	5.85	98-008-3849;98
40.2964	2.23817	2.55	98-008-3849;98
42.4622	2.12889	4.11	98-008-3849;98
45.7921	1.98153	2.58	98-008-3849;98
50.1301	1.81976	10.66	98-008-3849;98
54.8580	1.67359	3.31	98-008-3849;98
55.3123	1.66091	0.96	98-008-3849;98
57.3017	1.60789	0.13	98-008-3849;98
59.9423	1.54194	6.99	98-008-3849;98
64.0189	1.45323	1.17	98-008-3849;98



Phase Quartz low:	Weight fraction/ %:	99
Phase Montmorillonite (Ca-exchanged):	Weight fraction/ %:	0.1
Phase Bentonite:	Weight fraction/ %:	0.4

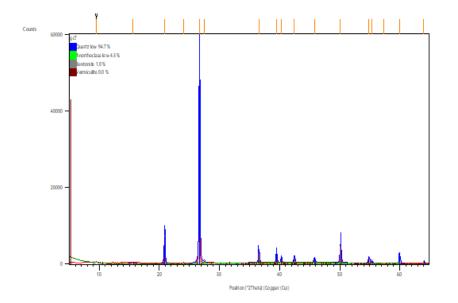
Dataset Name: gc3 File name: C:\Users\Rick\Documents\RCIA_Win10\AnchorQEA\AnchorQEA-2021July26\GreeneCounty\gc3.rd Sample Identification: GC3-GC1C-Unit2-15-20 Exported by X'Pert SW Comment: Generated by hugo in project AnchorQEA-2 Measurement Date / Time: 8/9/2021 3:59:00 PM PHILIPS-binary (scan) (.RD) Raw Data Origin: Scan Axis: Gonio Start Position [°2Th.]: 5.0200 End Position [°2Th.]: Step Size [°2Th.]: 64.9400 0.0400 Scan Step Time [s]: 4.5000 Scan Type: Continuous Offset [°2Th.]: 0.0000 Divergence Slit Type: Divergence Slit Size [°]: Fixed 0.5000 Specimen Length [mm]: 10.00 Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 0.00 Anode Material: Cu K-Alpha1 [Å]: K-Alpha2 [Å]: 1.54060 1.54443 K-Beta [Å]: 1.39225 K-A2 / K-A1 Ratio: 0.50000 Generator Settings: 30 mA, 40 kV Diffractometer Type: XPert MPD Diffractometer Number: 1 200.00 Goniometer Radius [mm]: Dist. Focus-Diverg. Slit [mm]: 91.00 Incident Beam Monochromator: No Spinning: No


Ref.Code	Score	Compound Name	Chem. Formula
98-006-2405	59	Quartz low	02 Si1
98-005-1636	0	Montmorillonite (C	H8.2 Al4 Ca1.2 O27
98-016-0437	8	Bentonite	H2 Al1.93 Ca0.06 F

Graphics

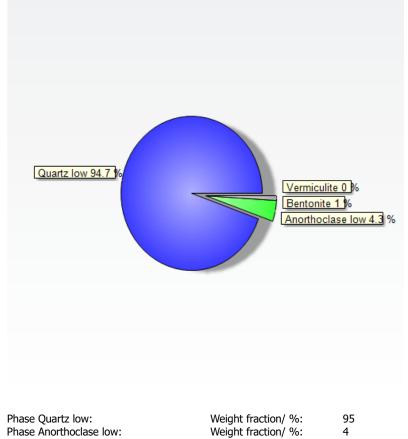
<u>Peak List</u>

Pos.[°2Th.]	d-spacing [Å]	Rel. Int. [%]	Matched by
5.5167	16.01978	0.29	
9.5964	9.21663	0.32	98-016-0437
15.5945	5.68254	0.14	98-005-1636
20.8507	4.26039	19.73	98-006-2405;98
24.0463	3.70097	0.21	98-016-0437
26.6678	3.34281	100.00	98-006-2405;98
35.1275	2.55474	0.08	98-005-1636;98
36.5620	2.45774	6.24	98-006-2405;98



Phase Quartz low:	Weight fraction/ %:	99
Phase Montmorillonite (Ca-exchanged):	Weight fraction/ %:	0.1
Phase Bentonite:	Weight fraction/ %:	0.4

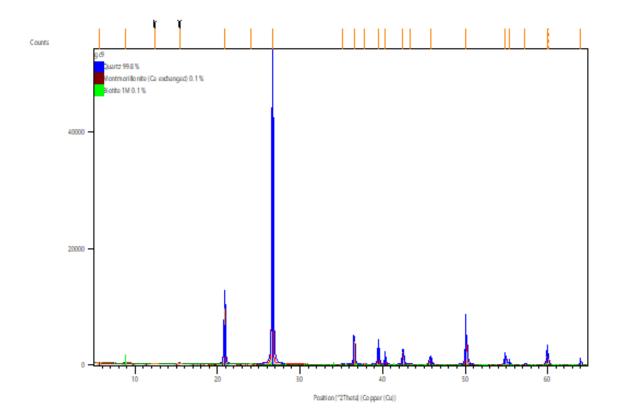
Dataset Name: gc5 File name: C:\Users\Rick\Documents\RCIA_Win10\AnchorQEA\AnchorQEA-2021July26\GreeneCounty\gc5.rd GC5-GC2B-Unit2_15-20 Sample Identification: Exported by X'Pert SW Comment: Generated by hugo in project AnchorQEA-2 Measurement Date / Time: 8/11/2021 3:05:00 PM PHILIPS-binary (scan) (.RD) Raw Data Origin: Scan Axis: Gonio Start Position [°2Th.]: 5.0200 End Position [°2Th.]: Step Size [°2Th.]: 38.3400 0.0400 Scan Step Time [s]: 4.5000 Scan Type: Continuous Offset [°2Th.]: 0.0000 Divergence Slit Type: Divergence Slit Size [°]: Fixed 0.5000 Specimen Length [mm]: 10.00 Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 0.00 Anode Material: Cu K-Alpha1 [Å]: K-Alpha2 [Å]: 1.54060 1.54443 K-Beta [Å]: 1.39225 K-A2 / K-A1 Ratio: 0.50000 Generator Settings: 30 mA, 40 kV Diffractometer Type: XPert MPD Diffractometer Number: 1 200.00 Goniometer Radius [mm]: Dist. Focus-Diverg. Slit [mm]: 91.00 Incident Beam Monochromator: No Spinning: No


Ref.Code	Score	Compound Name	Chem. Formula
98-008-3849	80	Quartz low	02 Si1
98-003-1180	9	Anorthoclase low	All K0.333 Na0.667
98-016-0437	9	Bentonite	H2 Al1.93 Ca0.06 F
98-015-9357	1	Vermiculite	C3 H10.5 Al1.28 Mg

Graphics

<u>Peak List</u>

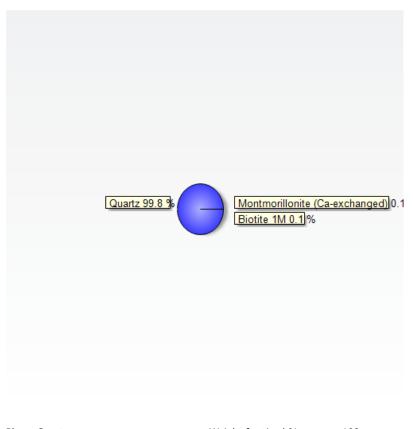
Pos.[°2Th.]	d-spacing [Å]	Rel. Int. [%]	Matched by
9.5230	9.28750	0.29	
15.5972	5.68156	0.50	98-015-9357
20.8862	4.25324	15.99	98-008-3849;98
24.0241	3.70434	0.53	98-003-1180
26.6659	3.34304	100.00	98-008-3849
27.4797	3.24587	1.17	98-003-1180;98
36.5630	2.45767	5.68	98-008-3849;98
39.4743	2.28287	4.50	98-008-3849;98
40.2916	2.23842	2.47	98-008-3849;98
42.4483	2.12956	3.07	98-008-3849;98
45.7848	1.98184	2.50	98-008-3849;98
50.1278	1.81984	9.37	98-008-3849;98
54.8579	1.67359	3.15	98-008-3849;98
55.3079	1.66104	0.90	98-008-3849;98
57.3828	1.60581	0.15	98-008-3849;98
59.9383	1.54331	5.91	98-008-3849;98
64.0106	1.45460	1.15	98-008-3849;98


Phase Quartz low:	Weight fraction/ %:	95
Phase Anorthoclase low:	Weight fraction/ %:	4
Phase Bentonite:	Weight fraction/ %:	1
Phase Vermiculite:	Weight fraction/ %:	0.01

Dataset Name: File name: Sample Identification: Exported by X'Pert SW Comment: Measurement Date / Time: Raw Data Origin: Scan Axis: Gonio Start Position [°2Th.]: 5.0200 End Position [°2Th.]: Step Size [°2Th.]: 64.9400 0.0400 Scan Step Time [s]: 4.5000 Scan Type: Continuous Offset [°2Th.]: 0.0000 Divergence Slit Type: Divergence Slit Size [°]: Fixed 0.5000 Specimen Length [mm]: 10.00 Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 0.00 Anode Material: Cu K-Alpha1 [Å]: K-Alpha2 [Å]: 1.54060 1.54443 K-Beta [Å]: 1.39225 K-A2 / K-A1 Ratio: 0.50000 Generator Settings: 30 mA, 40 kV Diffractometer Type: XPert MPD Diffractometer Number: 1 200.00 Goniometer Radius [mm]: Dist. Focus-Diverg. Slit [mm]: 91.00 Incident Beam Monochromator: No Spinning: No

gc7 C:\Users\Rick\Documents\RCIA_Win10\AnchorQEA\AnchorQEA-2021July26\GreeneCounty\gc7.rd GC7-GC3A-Unit2_40-45 Exported by X'Pert SW Generated by hugo in project AnchorQEA-2 8/10/2021 10:03:00 AM PHILIPS-binary (scan) (.RD) Gonio 5.0200 64.9400 0.0400 4.5000 Continuous 0.0000 Fixed 0.5000 10.00 0.1000 0.1000 0.00 Cu 1.54060 1.54443 1.39225 0.50000 30 mA, 40 kV XPert MPD 1 200.00 91.00

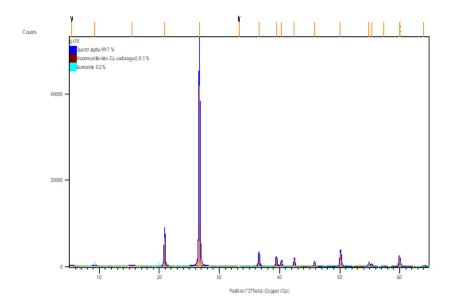
Ref.Code	Score	Compound Name	Chem. Formula
98-015-4289	81	Quartz	02 Si1
98-005-1636	25	Montmorillonite (C	H8.2 Al4 Ca1.2 O27
98-016-1225	10	Biotite 1M	H1.68 Al1.83 F0.07


Graphics

Peak List

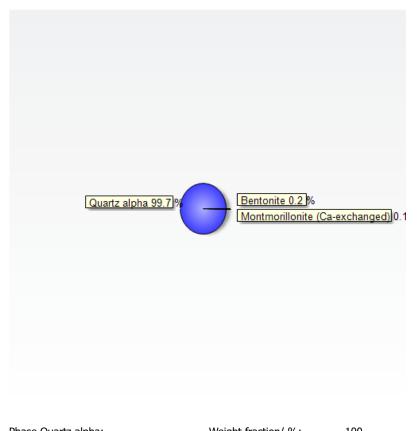
Pos.[°2Th.]	d-spacing [Å]	Rel. Int. [%]	Matched by
5.6195	15.72720	0.23	98-005-1636
8.8836	9.95449	0.44	98-016-1225
12.3605	7.16109	0.01	
15.3870	5.75869	0.17	
20.8638	4.25775	22.69	98-015-4289;98
24.0309	3.70330	0.24	98-005-1636;98
26.6613	3.34361	100.00	98-015-4289;98
35.1059	2.55627	0.19	98-005-1636
36.5566	2.45809	9.34	98-015-4289;98
37.8171	2.37900	0.25	98-005-1636;98
39.4759	2.28278	5.94	98-015-4289;98
40.3053	2.23770	2.66	98-015-4289;98
42.4568	2.12915	5.08	98-015-4289
43.3680	2.08650	0.17	98-005-1636;98

45.7826 50.1164 54.8495 55.3050 57.2515	1.98193 1.82023 1.67383 1.66112 1.60918	9.69 3.23 0.83 0.15	98-015-4289;98 98-015-4289;98 98-015-4289;98 98-015-4289;98 98-015-4289;98
57.2515	1.60918	5.43	98-015-4289;98
59.9270	1.54230		98-015-4289;98
64.0047	1.45352		98-015-4289;98



Phase Quartz:	Weight fraction/ %:	100
Phase Montmorillonite (Ca-exchanged):	Weight fraction/ %:	0.1
Phase Biotite 1M:	Weight fraction/ %:	0.1

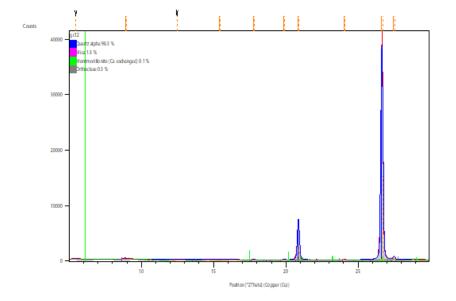
Dataset Name: gc9 File name: C:\Users\Rick\Documents\RCIA_Win10\AnchorQEA\AnchorQEA-2021July26\GreeneCounty\gc9.rd GC9-GC3B-Unit2_40-45 Sample Identification: Exported by X'Pert SW Comment: Generated by hugo in project AnchorQEA-2 Measurement Date / Time: 8/11/2021 1:10:00 PM PHILIPS-binary (scan) (.RD) Raw Data Origin: Scan Axis: Gonio Start Position [°2Th.]: 5.0200 End Position [°2Th.]: Step Size [°2Th.]: 64.9400 0.0400 Scan Step Time [s]: 4.5000 Scan Type: Continuous Offset [°2Th.]: 0.0000 Divergence Slit Type: Divergence Slit Size [°]: Fixed 0.5000 Specimen Length [mm]: 10.00 Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 0.00 Anode Material: Cu K-Alpha1 [Å]: K-Alpha2 [Å]: 1.54060 1.54443 K-Beta [Å]: 1.39225 K-A2 / K-A1 Ratio: 0.50000 Generator Settings: 30 mA, 40 kV Diffractometer Type: XPert MPD Diffractometer Number: 1 200.00 Goniometer Radius [mm]: Dist. Focus-Diverg. Slit [mm]: 91.00 Incident Beam Monochromator: No Spinning: No


Ref.Code	Score	Compound Name	Chem. Formula
98-017-3226	73	Quartz alpha	02 Si1
98-005-1636	0	Montmorillonite (C	H8.2 Al4 Ca1.2 O27
98-016-0437	7	Bentonite	H2 Al1.93 Ca0.06 F

Graphics

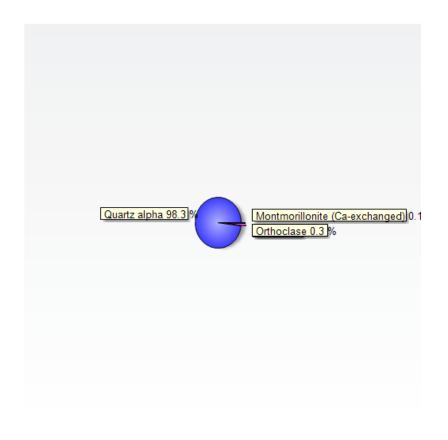
<u>Peak List</u>

Pos.[°2Th.]	d-spacing [Å]	Rel. Int. [%]	Matched by
5.43(6)	16.24777	0.30	
9.29(2)	9.51302	0.30	98-016-0437
15.4410	5.73866	0.15	98-005-1636
20.8706	4.25637	15.89	98-017-3226;98
26.6534	3.34458	100.00	98-017-3226;98
33.2587	2.69390	0.03	
36.5650	2.45754	6.42	98-017-3226;98
39.4637	2.28345	4.48	98-017-3226;98
40.3000	2.23798	2.87	98-017-3226;98
42.4331	2.13028	3.79	98-017-3226;98
45.7818	1.98196	2.47	98-017-3226;98
50.1194	1.82013	7.43	98-017-3226;98
54.8522	1.67375	2.08	98-017-3226;98
55.3050	1.66112	1.45	98-017-3226;98
57.3008	1.60791	0.13	98-017-3226;98
59.9227	1.54240	5.60	98-017-3226;98
64.0098	1.45342	0.99	98-017-3226;98



Phase Quartz alpha:	Weight fraction/ %:	100
Phase Montmorillonite (Ca-exchanged):	Weight fraction/ %:	0.1
Phase Bentonite:	Weight fraction/ %:	0.2

Dataset Name: gc10 File name: C:\Users\Rick\Documents\RCIA_Win10\AnchorQEA\AnchorQEA-2021July26\GreeneCounty\gc10.rd GC10-GC4A-Unit2_30-3 Sample Identification: Exported by X'Pert SW Comment: Generated by hugo in project AnchorQEA-2 Measurement Date / Time: 8/11/2021 11:12:00 AM PHILIPS-binary (scan) (.RD) Raw Data Origin: Scan Axis: Gonio Start Position [°2Th.]: 5.0200 End Position [°2Th.]: Step Size [°2Th.]: 64.9400 0.0400 Scan Step Time [s]: 4.5000 Scan Type: Continuous Offset [°2Th.]: 0.0000 Divergence Slit Type: Divergence Slit Size [°]: Fixed 0.5000 Specimen Length [mm]: 10.00 Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 0.00 Anode Material: Cu K-Alpha1 [Å]: K-Alpha2 [Å]: 1.54060 1.54443 K-Beta [Å]: 1.39225 K-A2 / K-A1 Ratio: 0.50000 Generator Settings: 30 mA, 40 kV Diffractometer Type: XPert MPD Diffractometer Number: 1 200.00 Goniometer Radius [mm]: Dist. Focus-Diverg. Slit [mm]: 91.00 Incident Beam Monochromator: No Spinning: No


Ref.Code	Score	Compound Name	Chem. Formula
98-017-3226	44	Quartz alpha	02 Si1
98-017-2273	17	Mica	H2 Fe4.07 O12 Rb0
98-005-1636	1	Montmorillonite (C	H8.2 Al4 Ca1.2 O27
98-003-4782	35	Orthoclase	All K0.94 Na0.06 O

Graphics

Peak List

Pos.[°2Th.]	d-spacing [Å]	Rel. Int. [%]	Matched by
5.47(3)	16.14686	0.37	
8.949(9)	9.87335	0.60	98-017-2273
12.47(6)	7.09239	0.12	
15.40(4)	5.74801	0.25	98-005-1636;98
17.78(1)	4.98520	0.22	98-017-2273;98
19.86(1)	4.46753	0.18	98-017-2273;98
20.8500(5)	4.25700	17.83	98-017-3226;98
24.016(8)	3.70252	0.31	98-017-2273;98
26.6282(2)	3.34492	100.00	98-017-3226;98
27.472(3)	3.24408	1.53	98-017-2273;98

Phase Quartz alpha:	Weight fraction/ %:	98
Phase Mica:	Weight fraction/ %:	1.5
Phase Montmorillonite (Ca-exchanged):	Weight fraction/ %:	0.1
Phase Orthoclase:	Weight fraction/ %:	0.3

Dataset Name: File name: Sample Identification: Exported by X'Pert SW Comment: Measurement Date / Time: 8/10/2021 12:01:00 PM Raw Data Origin: Scan Axis: Gonio Start Position [°2Th.]: 5.0200 End Position [°2Th.]: Step Size [°2Th.]: 29.9400 0.0400 Scan Step Time [s]: 4.5000 Scan Type: Continuous Offset [°2Th.]: 0.0000 Divergence Slit Type: Divergence Slit Size [°]: Fixed 0.5000 Specimen Length [mm]: 10.00 Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 0.00 Anode Material: Cu K-Alpha1 [Å]: K-Alpha2 [Å]: 1.54060 1.54443 K-Beta [Å]: 1.39225 K-A2 / K-A1 Ratio: 0.50000 Generator Settings: 30 mA, 40 kV Diffractometer Type: XPert MPD Diffractometer Number: 1 200.00 Goniometer Radius [mm]: Dist. Focus-Diverg. Slit [mm]: 91.00 Incident Beam Monochromator: No Spinning: No

gc12 C:\Users\Rick\Documents\RCIA_Win10\AnchorQEA\AnchorQEA-2021July26\GreeneCounty\gc12.rd GC12-GC4C-Unit2_15-3 Exported by X'Pert SW Generated by hugo in project AnchorQEA-2 8/10/2021 12:01:00 PM PHILIPS-binary (scan) (.RD) Gonio 5.0200 29.9400 0.0400 4.5000 Continuous 0.0000 Fixed 0.5000 10.00 0.1000 0.1000 0.1000 0.1000 0.00 Cu 1.54443 1.39225 0.50000 30 mA, 40 kV XPert MPD 1 200.00 91.00

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, August 4, 2021

Anthony Dalton-Atha Anchor QEA, LLC 6720 SW Macadam Ave. Suite 125 Portland, OR 97219

RE: A1G0829 - Alabama Power-Greene County - 201114-01.05

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A1G0829, which was received by the laboratory on 7/29/2021 at 9:55:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>dthomas@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Cooler #1

(See Cooler Receipt Form for details) 2.6 degC

The results provided in this report are PRELIMINARY and are subject to change based on subsequent analysis, QC validation or final data review. Please use these results with the understanding that they may have not been finalized by the laboratory.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project: <u>Alabama Power-Greene County</u> Project Number: 201114-01.05

Project Number: 201114-01.05 Project Manager: Anthony Dalton-Atha <u>Report ID:</u> A1G0829 - 08 04 21 1710

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION								
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
GC-AP-CEC-1-20210728	A1G0829-01	Water	07/28/21 15:25	07/29/21 09:55				
GC-AP-CEC-2-20210728	A1G0829-02	Water	07/28/21 15:30	07/29/21 09:55				
GC-AP-CEC-3-20210728	A1G0829-03	Water	07/28/21 15:35	07/29/21 09:55				
GC-AP-CEC-4-20210728	A1G0829-04	Water	07/28/21 15:40	07/29/21 09:55				
GC-AP-CEC-5-20210728	A1G0829-05	Water	07/28/21 15:45	07/29/21 09:55				
GC-AP-CEC-6-20210728	A1G0829-06	Water	07/28/21 15:50	07/29/21 09:55				
GC-AP-CEC-7-20210728	A1G0829-07	Water	07/28/21 15:55	07/29/21 09:55				
GC-AP-CEC-8-20210728	A1G0829-08	Water	07/28/21 16:00	07/29/21 09:55				
GC-AP-CEC-9-20210728	A1G0829-09	Water	07/28/21 16:05	07/29/21 09:55				
GC-AP-CEC-10-20210728	A1G0829-10	Water	07/28/21 16:10	07/29/21 09:55				
GC-AP-CEC-11-20210728	A1G0829-11	Water	07/28/21 16:15	07/29/21 09:55				
GC-AP-CEC-12-20210728	A1G0829-12	Water	07/28/21 16:20	07/29/21 09:55				
GC-AP-CEC-MB-20210728	A1G0829-13	Water	07/28/21 16:25	07/29/21 09:55				

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219

Project: Alabama Power-Greene County Project Number: 201114-01.05 Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1G0829 - 08 04 21 1710

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GC-AP-CEC-1-20210728 (A1G0829-01)				Matrix: W	ater			
Batch: 1071000								
Aluminum	ND	125	250	ug/L	5	08/02/21 20:54	EPA 6020B	R-04
Arsenic	38.3	2.50	5.00	ug/L	5	08/02/21 20:54	EPA 6020B	
Calcium	31300	1500	3000	ug/L	5	08/02/21 20:54	EPA 6020B	
Cobalt	36.1	2.50	5.00	ug/L	5	08/02/21 20:54	EPA 6020B	
Magnesium	9380	375	750	ug/L	5	08/02/21 20:54	EPA 6020B	
Potassium	20300	250	500	ug/L	5	08/02/21 20:54	EPA 6020B	
Sodium	2250	250	500	ug/L	5	08/02/21 20:54	EPA 6020B	
Lithium	21.6	12.5	25.0	ug/L	5	08/02/21 20:54	EPA 6020B	R-04, J
GC-AP-CEC-2-20210728 (A1G0829-02)				Matrix: W	ater			
Batch: 1071000								
Aluminum	ND	125	250	ug/L	5	08/02/21 20:59	EPA 6020B	R-04
Arsenic	11.9	2.50	5.00	ug/L	5	08/02/21 20:59	EPA 6020B	
Calcium	43100	1500	3000	ug/L	5	08/02/21 20:59	EPA 6020B	
Cobalt	2.72	2.50	5.00	ug/L	5	08/02/21 20:59	EPA 6020B	R-04, J
Magnesium	6830	375	750	ug/L	5	08/02/21 20:59	EPA 6020B	
Potassium	8120	250	500	ug/L	5	08/02/21 20:59	EPA 6020B	
Sodium	1670	250	500	ug/L	5	08/02/21 20:59	EPA 6020B	
Lithium	ND	12.5	25.0	ug/L	5	08/02/21 20:59	EPA 6020B	R-04
GC-AP-CEC-3-20210728 (A1G0829-03)				Matrix: W	ater			
Batch: 1071000								
Aluminum	ND	125	250	ug/L	5	08/02/21 21:05	EPA 6020B	R-04
Arsenic	3.50	2.50	5.00	ug/L	5	08/02/21 21:05	EPA 6020B	R-04, J
Calcium	50500	1500	3000	ug/L	5	08/02/21 21:05	EPA 6020B	
Cobalt	9.24	2.50	5.00	ug/L	5	08/02/21 21:05	EPA 6020B	
Magnesium	3090	375	750	ug/L	5	08/02/21 21:05	EPA 6020B	
Potassium	11700	250	500	ug/L	5	08/02/21 21:05	EPA 6020B	
Sodium	1520	250	500	ug/L	5	08/02/21 21:05	EPA 6020B	
Lithium	29.9	12.5	25.0	ug/L	5	08/02/21 21:05	EPA 6020B	
				Matrix: W	ater			

Batch: 1071000

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219

Project: <u>Alabama Power-Greene County</u> Project Number: 201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1G0829 - 08 04 21 1710

ANALYTICAL SAMPLE RESULTS

		Total Meta	lls by EPA 60	20B (ICPMS	6)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GC-AP-CEC-4-20210728 (A1G0829-04)				Matrix: W	ater			
Aluminum	ND	125	250	ug/L	5	08/02/21 21:10	EPA 6020B	R-04
Arsenic	8.34	2.50	5.00	ug/L	5	08/02/21 21:10	EPA 6020B	
Calcium	24000	1500	3000	ug/L	5	08/02/21 21:10	EPA 6020B	
Cobalt	ND	2.50	5.00	ug/L	5	08/02/21 21:10	EPA 6020B	R-04
Magnesium	5740	375	750	ug/L	5	08/02/21 21:10	EPA 6020B	
Potassium	9720	250	500	ug/L	5	08/02/21 21:10	EPA 6020B	
Sodium	2240	250	500	ug/L	5	08/02/21 21:10	EPA 6020B	
Lithium	ND	12.5	25.0	ug/L	5	08/02/21 21:10	EPA 6020B	R-04
GC-AP-CEC-5-20210728 (A1G0829-05)				Matrix: W	ater			
Batch: 1071000								
Aluminum	ND	125	250	ug/L	5	08/02/21 21:26	EPA 6020B	R-04
Arsenic	ND	2.50	5.00	ug/L	5	08/02/21 21:26	EPA 6020B	R-04
Cobalt	3.03	2.50	5.00	ug/L	5	08/02/21 21:26	EPA 6020B	R-04, J
Potassium	10900	250	500	ug/L	5	08/02/21 21:26	EPA 6020B	
Sodium	829	250	500	ug/L	5	08/02/21 21:26	EPA 6020B	
Lithium	ND	12.5	25.0	ug/L	5	08/02/21 21:26	EPA 6020B	R-04
GC-AP-CEC-5-20210728 (A1G0829-05RE1)			Matrix: W	ater			
Batch: 1071000								
Calcium	26500	1500	3000	ug/L	5	08/03/21 14:50	EPA 6020B	
Magnesium	2170	375	750	ug/L	5	08/03/21 14:50	EPA 6020B	
GC-AP-CEC-6-20210728 (A1G0829-06)				Matrix: W	ater			
Batch: 1071000								
Aluminum	ND	125	250	ug/L	5	08/02/21 21:31	EPA 6020B	R-04
Arsenic	ND	2.50	5.00	ug/L	5	08/02/21 21:31	EPA 6020B	R-04
Calcium	10000	1500	3000	ug/L	5	08/02/21 21:31	EPA 6020B	
Cobalt	3.05	2.50	5.00	ug/L	5	08/02/21 21:31	EPA 6020B	J, R-04
Potassium	3910	250	500	ug/L	5	08/02/21 21:31	EPA 6020B	
Sodium	861	250	500	ug/L	5	08/02/21 21:31	EPA 6020B	
Lithium	ND	12.5	25.0	ug/L	5	08/02/21 21:31	EPA 6020B	R-04
)			Matrix: W	ater			

Batch: 1071000

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project:Alabama Power-Greene CountyProject Number:201114-01.05Project Manager:Anthony Dalton-Atha

<u>Report ID:</u> A1G0829 - 08 04 21 1710

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
GC-AP-CEC-6-20210728 (A1G0829-06RE1	1)			Matrix: W	ater				
Magnesium	789	375	750	ug/L	5	08/03/21 14:55	EPA 6020B		
GC-AP-CEC-7-20210728 (A1G0829-07)				Matrix: W	ater				
Batch: 1071000									
Aluminum	ND	125	250	ug/L	5	08/02/21 21:36	EPA 6020B	R-04	
Arsenic	ND	2.50	5.00	ug/L	5	08/02/21 21:36	EPA 6020B	R-04	
Calcium	13300	1500	3000	ug/L	5	08/02/21 21:36	EPA 6020B		
Cobalt	3.75	2.50	5.00	ug/L	5	08/02/21 21:36	EPA 6020B	R-04, J	
Potassium	8860	250	500	ug/L	5	08/02/21 21:36	EPA 6020B		
Sodium	3140	250	500	ug/L	5	08/02/21 21:36	EPA 6020B		
Lithium	57.4	12.5	25.0	ug/L	5	08/02/21 21:36	EPA 6020B		
GC-AP-CEC-7-20210728 (A1G0829-07RE1	1)			Matrix: W	ater				
Batch: 1071000									
Magnesium	2310	375	750	ug/L	5	08/03/21 15:03	EPA 6020B		
GC-AP-CEC-8-20210728 (A1G0829-08)				Matrix: W	ater				
Batch: 1071000									
Aluminum	ND	125	250	ug/L	5	08/02/21 21:41	EPA 6020B	R-04	
Arsenic	ND	2.50	5.00	ug/L	5	08/02/21 21:41	EPA 6020B	R-04	
Calcium	11100	1500	3000	ug/L	5	08/02/21 21:41	EPA 6020B		
Cobalt	3.47	2.50	5.00	ug/L	5	08/02/21 21:41	EPA 6020B	R-04, .	
Potassium	7400	250	500	ug/L	5	08/02/21 21:41	EPA 6020B		
Sodium	2740	250	500	ug/L	5	08/02/21 21:41	EPA 6020B		
Lithium	51.4	12.5	25.0	ug/L	5	08/02/21 21:41	EPA 6020B		
	2)			Matrix: W	ater				
Batch: 1071000									
Magnesium	2100	375	750	ug/L	5	08/03/21 21:34	EPA 6020B		
GC-AP-CEC-9-20210728 (A1G0829-09)				Matrix: W	ater				
Batch: 1071000									
Aluminum	ND	125	250	ug/L	5	08/02/21 21:46	EPA 6020B	R-04	
Arsenic	3.43	2.50	5.00	ug/L	5	08/02/21 21:46	EPA 6020B	R-04, .	
Calcium	19400	1500	3000	ug/L	5	08/02/21 21:46	EPA 6020B		

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219

Project:Alabama Power-Greene CountyProject Number:201114-01.05Project Manager:Anthony Dalton-Atha

<u>Report ID:</u> A1G0829 - 08 04 21 1710

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
GC-AP-CEC-9-20210728 (A1G0829-09)				Matrix: W	ater					
Cobalt	3.37	2.50	5.00	ug/L	5	08/02/21 21:46	EPA 6020B	R-04, J		
Potassium	7870	250	500	ug/L	5	08/02/21 21:46	EPA 6020B			
Sodium	2330	250	500	ug/L	5	08/02/21 21:46	EPA 6020B			
Lithium	36.9	12.5	25.0	ug/L	5	08/02/21 21:46	EPA 6020B			
	2)			Matrix: W	ater					
Batch: 1071000										
Magnesium	4760	375	750	ug/L	5	08/03/21 21:49	EPA 6020B			
GC-AP-CEC-10-20210728 (A1G0829-10)				Matrix: W	ater					
Batch: 1071000										
Aluminum	ND	125	250	ug/L	5	08/02/21 21:52	EPA 6020B	R-04		
Arsenic	ND	2.50	5.00	ug/L	5	08/02/21 21:52	EPA 6020B	R-04		
Calcium	28500	1500	3000	ug/L	5	08/02/21 21:52	EPA 6020B			
Cobalt	5.20	2.50	5.00	ug/L	5	08/02/21 21:52	EPA 6020B			
Potassium	6990	250	500	ug/L	5	08/02/21 21:52	EPA 6020B			
Sodium	1820	250	500	ug/L	5	08/02/21 21:52	EPA 6020B			
Lithium	48.3	12.5	25.0	ug/L	5	08/02/21 21:52	EPA 6020B			
GC-AP-CEC-10-20210728 (A1G0829-10RE	51)			Matrix: W	ater					
Batch: 1071000										
Magnesium	6020	375	750	ug/L	5	08/03/21 21:59	EPA 6020B			
GC-AP-CEC-11-20210728 (A1G0829-11)				Matrix: W	ater					
Batch: 1071000										
Aluminum	ND	125	250	ug/L	5	08/02/21 21:57	EPA 6020B	R-04		
Arsenic	7.17	2.50	5.00	ug/L	5	08/02/21 21:57	EPA 6020B			
Calcium	14800	1500	3000	ug/L	5	08/02/21 21:57	EPA 6020B			
Cobalt	4.19	2.50	5.00	ug/L	5	08/02/21 21:57	EPA 6020B	R-04,		
Potassium	12700	250	500	ug/L	5	08/02/21 21:57	EPA 6020B			
Sodium	1680	250	500	ug/L	5	08/02/21 21:57	EPA 6020B			
Lithium	115	12.5	25.0	ug/L	5	08/02/21 21:57	EPA 6020B			
	:1)			Matrix: W	ator					

Batch: 1071000

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project:Alabama Power-Greene CountyProject Number:201114-01.05Project Manager:Anthony Dalton-Atha

<u>Report ID:</u> A1G0829 - 08 04 21 1710

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GC-AP-CEC-11-20210728 (A1G0829-11RE	1)			Matrix: W	ater			
Magnesium	4010	375	750	ug/L	5	08/03/21 22:04	EPA 6020B	
GC-AP-CEC-12-20210728 (A1G0829-12)				Matrix: W	ater			
Batch: 1071000								
Aluminum	ND	125	250	ug/L	5	08/02/21 22:02	EPA 6020B	R-04
Arsenic	ND	2.50	5.00	ug/L	5	08/02/21 22:02	EPA 6020B	R-04
Calcium	17700	1500	3000	ug/L	5	08/02/21 22:02	EPA 6020B	
Cobalt	7.50	2.50	5.00	ug/L	5	08/02/21 22:02	EPA 6020B	
Potassium	7910	250	500	ug/L	5	08/02/21 22:02	EPA 6020B	
Sodium	1460	250	500	ug/L	5	08/02/21 22:02	EPA 6020B	
Lithium	61.0	12.5	25.0	ug/L	5	08/02/21 22:02	EPA 6020B	
GC-AP-CEC-12-20210728 (A1G0829-12RE	1)			Matrix: W	ater			
Batch: 1071000								
Magnesium	5960	375	750	ug/L	5	08/03/21 22:08	EPA 6020B	
GC-AP-CEC-MB-20210728 (A1G0829-13)				Matrix: W	ater			
Batch: 1071000								
Aluminum	ND	125	250	ug/L	5	08/02/21 22:07	EPA 6020B	R-04
Arsenic	ND	2.50	5.00	ug/L	5	08/02/21 22:07	EPA 6020B	R-04
Calcium	ND	1500	3000	ug/L	5	08/02/21 22:07	EPA 6020B	R-04
Cobalt	ND	2.50	5.00	ug/L	5	08/02/21 22:07	EPA 6020B	R-04
Magnesium	ND	375	750	ug/L	5	08/02/21 22:07	EPA 6020B	R-04
Potassium	ND	250	500	ug/L	5	08/02/21 22:07	EPA 6020B	R-04
Sodium	ND	250	500	ug/L	5	08/02/21 22:07	EPA 6020B	R-04
Lithium	ND	12.5	25.0	ug/L	5	08/02/21 22:07	EPA 6020B	R-04

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125

Portland, OR 97219

Project:Alabama Power-Greene CountyProject Number:201114-01.05Project Manager:Anthony Dalton-Atha

<u>Report ID:</u> A1G0829 - 08 04 21 1710

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1071000 - EPA 3015A							Wat	er				
Blank (1071000-BLK1)			Prepared	: 07/30/21	14:15 Ana	yzed: 08/02/	/21 20:28					
EPA 6020B												
Aluminum	ND	25.0	50.0	ug/L	1							
Arsenic	ND	0.500	1.00	ug/L	1							
Calcium	ND	300	600	ug/L	1							
Cobalt	ND	0.500	1.00	ug/L	1							
Magnesium	ND	75.0	150	ug/L	1							
Potassium	ND	50.0	100	ug/L	1							
Sodium	ND	50.0	100	ug/L	1							
Lithium	ND	2.50	5.00	ug/L	1							
LCS (1071000-BS1)			Prepared	: 07/30/21	14:15 Ana	yzed: 08/02/	/21 20:44					
EPA 6020B						-						
Aluminum	2760	25.0	50.0	ug/L	1	2780		99	80-120%			
Arsenic	56.6	0.500	1.00	ug/L	1	55.6		102	80-120%			
Calcium	2840	300	600	ug/L	1	2780		102	80-120%			
Cobalt	58.0	0.500	1.00	ug/L	1	55.6		104	80-120%			
Magnesium	2840	75.0	150	ug/L	1	2780		102	80-120%			
Potassium	2820	50.0	100	ug/L	1	2780		102	80-120%			
Sodium	2970	50.0	100	ug/L	1	2780		107	80-120%			
LCS (1071000-BS2)			Prepared	: 07/30/21	14:15 Ana	yzed: 08/02/	/21 20:49					
EPA 6020B												
Lithium	44.4	2.50	5.00	ug/L	1	44.4		100	80-120%			
LCS Dup (1071000-BSD1)			Prepared	: 07/30/21	14:15 Ana	yzed: 08/02/	/21 20:33					
EPA 6020B												
Aluminum	2750	25.0	50.0	ug/L	1	2780		99	80-120%	0.1	20%	
Arsenic	56.5	0.500	1.00	ug/L	1	55.6		102	80-120%	0.2	20%	
Calcium	2830	300	600	ug/L	1	2780		102	80-120%	0.3	20%	
Cobalt	57.8	0.500	1.00	ug/L	1	55.6		104	80-120%	0.3	20%	
Magnesium	2850	75.0	150	ug/L	1	2780		103	80-120%	0.3	20%	
Potassium	2820	50.0	100	ug/L	1	2780		101	80-120%	0.3	20%	
Sodium	2990	50.0	100	ug/L	1	2780		108	80-120%	0.8	20%	

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219

Project: Alabama Power-Greene County Project Number: 201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1G0829 - 08 04 21 1710

QUALITY CONTROL (QC) SAMPLE RESULTS

	Total Metals by EPA 6020B (ICPMS)											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1071000 - EPA 3015A							Wat	er				
LCS Dup (1071000-BSD2)			Prepared	: 07/30/21	14:15 Ana	yzed: 08/02	/21 20:39					
EPA 6020B												
Lithium	46.0	2.50	5.00	ug/L	1	44.4		103	80-120%	3	20%	

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219
 Project:
 Alabama Power-Greene County

 Project Number:
 201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1G0829 - 08 04 21 1710

SAMPLE PREPARATION INFORMATION

		Tota	al Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1071000			*	*			
A1G0829-01	Water	EPA 6020B	07/28/21 15:25	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-02	Water	EPA 6020B	07/28/21 15:30	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-03	Water	EPA 6020B	07/28/21 15:35	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-04	Water	EPA 6020B	07/28/21 15:40	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-05	Water	EPA 6020B	07/28/21 15:45	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-05RE1	Water	EPA 6020B	07/28/21 15:45	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-06	Water	EPA 6020B	07/28/21 15:50	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-06RE1	Water	EPA 6020B	07/28/21 15:50	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-07	Water	EPA 6020B	07/28/21 15:55	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-07RE1	Water	EPA 6020B	07/28/21 15:55	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-08	Water	EPA 6020B	07/28/21 16:00	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-08RE2	Water	EPA 6020B	07/28/21 16:00	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-09	Water	EPA 6020B	07/28/21 16:05	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-09RE2	Water	EPA 6020B	07/28/21 16:05	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-10	Water	EPA 6020B	07/28/21 16:10	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-10RE1	Water	EPA 6020B	07/28/21 16:10	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-11	Water	EPA 6020B	07/28/21 16:15	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-11RE1	Water	EPA 6020B	07/28/21 16:15	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-12	Water	EPA 6020B	07/28/21 16:20	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-12RE1	Water	EPA 6020B	07/28/21 16:20	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00
A1G0829-13	Water	EPA 6020B	07/28/21 16:25	07/30/21 14:15	45mL/50mL	45mL/50mL	1.00

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project: <u>Alabama Power-Greene County</u>

Project Number: 201114-01.05 Project Manager: Anthony Dalton-Atha <u>Report ID:</u> A1G0829 - 08 04 21 1710

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- **R-04** Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219

Project: Alabama Power-Greene County

Project Number: 201114-01.05 Project Manager: Anthony Dalton-Atha <u>Report ID:</u> A1G0829 - 08 04 21 1710

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.
ND	Analyte NOT DETECTED at or above the detection or reporting limit.
NR	Result Not Reported
RPD	Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "____ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219

Project: Alabama Power-Greene County

Project Number: 201114-01.05 Project Manager: Anthony Dalton-Atha <u>Report ID:</u> A1G0829 - 08 04 21 1710

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project: <u>Alabama Power-Greene County</u> Project Number: 201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1G0829 - 08 04 21 1710

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Lab	oratories					
Matrix	Analysis	TNI_ID	Analyte		TNI_ID	Accreditation
		All reported analytes are included in Apex I	Laboratories' current	ORELAP scope.		

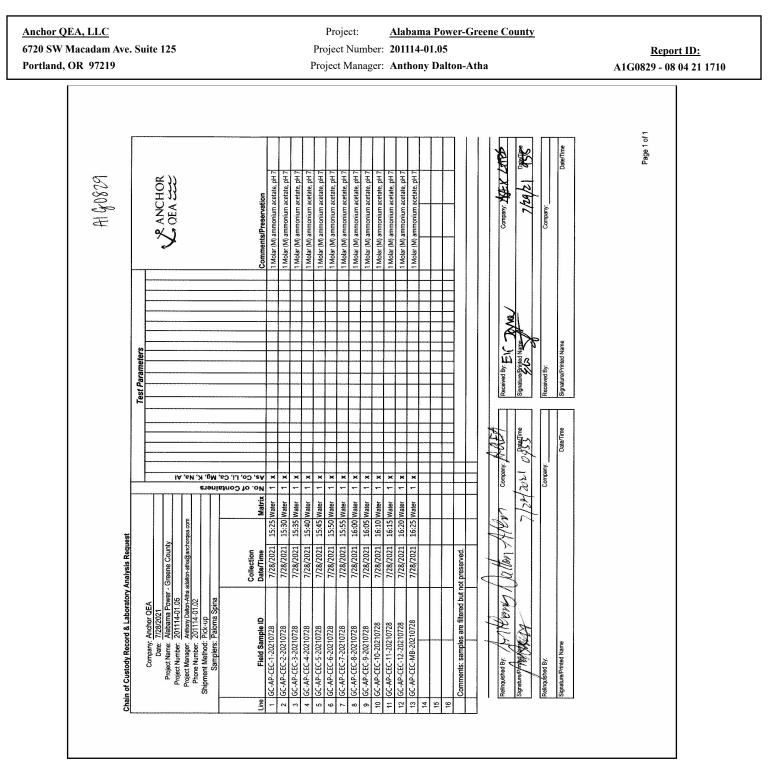
Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters


Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

DRAFT REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, August 10, 2021 Anthony Dalton-Atha Anchor QEA, LLC 6720 SW Macadam Ave. Suite 125 Portland, OR 97219

RE: A1H0073 - Alabama Power-Greene County - 201114-01.05

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A1H0073, which was received by the laboratory on 8/3/2021 at 12:35:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>dthomas@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Cooler #1

(See Cooler Receipt Form for details) 2.4 degC

The results provided in this report are PRELIMINARY and are subject to change based on subsequent analysis, QC validation or final data review. Please use these results with the understanding that they may have not been finalized by the laboratory.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project: <u>Alabama Power-Greene County</u> Project Number: 201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1H0073 - 08 10 21 1205

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION										
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received						
GC-AP-AAO-1-20210731	A1H0073-01	Water	07/31/21 14:25	08/03/21 12:35						
GC-AP-AAO-2-20210731	A1H0073-02	Water	07/31/21 14:30	08/03/21 12:35						
GC-AP-AAO-3-20210731	A1H0073-03	Water	07/31/21 14:35	08/03/21 12:35						
GC-AP-AAO-4-20210731	A1H0073-04	Water	07/31/21 14:40	08/03/21 12:35						
GC-AP-AAO-5-20210731	A1H0073-05	Water	07/31/21 14:45	08/03/21 12:35						
GC-AP-AAO-6-20210731	A1H0073-06	Water	07/31/21 14:50	08/03/21 12:35						
GC-AP-AAO-7-20210731	A1H0073-07	Water	07/31/21 14:55	08/03/21 12:35						
GC-AP-AAO-8-20210731	A1H0073-08	Water	07/31/21 15:00	08/03/21 12:35						
GC-AP-AAO-9-20210731	A1H0073-09	Water	07/31/21 15:05	08/03/21 12:35						
GC-AP-AAO-10-20210731	A1H0073-10	Water	07/31/21 15:10	08/03/21 12:35						
GC-AP-AAO-11-20210731	A1H0073-11	Water	07/31/21 15:15	08/03/21 12:35						
GC-AP-AAO-12-20210731	A1H0073-12	Water	07/31/21 15:20	08/03/21 12:35						
GC-AP-AAO-MB-20210731	A1H0073-13	Water	07/31/21 15:25	08/03/21 12:35						

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC
6720 SW Macadam Ave. Suite 125

Portland, OR 97219

 Project:
 Alabama Power-Greene County

 Project Number:
 201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1H0073 - 08 10 21 1205

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS	<u>5)</u>			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GC-AP-AAO-1-20210731 (A1H0073-01)				Matrix: W	ater			
Batch: 1080090								
Aluminum	15000	150	300	ug/L	5	08/07/21 04:01	EPA 6020B	
Arsenic	19.5	3.00	6.00	ug/L	5	08/07/21 04:01	EPA 6020B	
Cobalt	31.5	3.00	6.00	ug/L	5	08/07/21 04:01	EPA 6020B	
Iron	19400	150	300	ug/L	5	08/07/21 04:01	EPA 6020B	A-01, Q-41
Manganese	238	3.00	6.00	ug/L	5	08/07/21 04:01	EPA 6020B	В
Lithium	ND	15.0	30.0	ug/L	5	08/07/21 04:01	EPA 6020B	R-04
GC-AP-AAO-2-20210731 (A1H0073-02)				Matrix: W	ater			
Batch: 1080090								
Aluminum	7280	150	300	ug/L	5	08/07/21 04:05	EPA 6020B	
Arsenic	15.1	3.00	6.00	ug/L	5	08/07/21 04:05	EPA 6020B	
Cobalt	12.3	3.00	6.00	ug/L	5	08/07/21 04:05	EPA 6020B	
Iron	14500	150	300	ug/L	5	08/07/21 04:05	EPA 6020B	A-01, Q-41
Manganese	315	3.00	6.00	ug/L	5	08/07/21 04:05	EPA 6020B	В
Lithium	ND	15.0	30.0	ug/L	5	08/07/21 04:05	EPA 6020B	R-04
GC-AP-AAO-3-20210731 (A1H0073-03)				Matrix: W	ater			
Batch: 1080090								
Aluminum	7260	150	300	ug/L	5	08/07/21 04:10	EPA 6020B	
Arsenic	14.7	3.00	6.00	ug/L	5	08/07/21 04:10	EPA 6020B	
Cobalt	12.0	3.00	6.00	ug/L	5	08/07/21 04:10	EPA 6020B	
Iron	14500	150	300	ug/L	5	08/07/21 04:10	EPA 6020B	A-01, Q-41
Manganese	308	3.00	6.00	ug/L	5	08/07/21 04:10	EPA 6020B	В
Lithium	ND	15.0	30.0	ug/L	5	08/07/21 04:10	EPA 6020B	R-04
GC-AP-AAO-4-20210731 (A1H0073-04)				Matrix: W	ater			
Batch: 1080090								
Aluminum	15800	150	300	ug/L	5	08/07/21 04:15	EPA 6020B	
Arsenic	3.96	3.00	6.00	ug/L	5	08/07/21 04:15	EPA 6020B	R-04, J
Cobalt	9.28	3.00	6.00	ug/L	5	08/07/21 04:15	EPA 6020B	
Iron	6520	150	300	ug/L	5	08/07/21 04:15	EPA 6020B	A-01, Q-41
Manganese	74.7	3.00	6.00	ug/L	5	08/07/21 04:15	EPA 6020B	В
Lithium	ND	15.0	30.0	ug/L	5	08/07/21 04:15	EPA 6020B	R-04

DRAFT REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219		Project	ject: <u>Alaba</u> t Number: 20111 Manager: Antho		<u>Report ID:</u> A1H0073 - 08 10 21 1205			
		ANALYTI	CAL SAMPL	E RESULI	ſS			
		Total Meta	als by EPA 60	20B (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GC-AP-AAO-5-20210731 (A1H0073-05)				Matrix: W	ater			
Batch: 1080090								
Aluminum	7820	150	300	ug/L	5	08/07/21 04:20	EPA 6020B	
Arsenic	6.92	3.00	6.00	ug/L	5	08/07/21 04:20	EPA 6020B	
Cobalt	ND	3.00	6.00	ug/L	5	08/07/21 04:20	EPA 6020B	R-04
Iron	5180	150	300	ug/L	5	08/07/21 04:20	EPA 6020B	A-01, Q-41
Manganese	84.9	3.00	6.00	ug/L	5	08/07/21 04:20	EPA 6020B	В
Lithium	ND	15.0	30.0	ug/L	5	08/07/21 04:20	EPA 6020B	R-04
GC-AP-AAO-6-20210731 (A1H0073-06)				Matrix: W	ater			
Batch: 1080090								
Aluminum	10800	150	300	ug/L	5	08/07/21 04:25	EPA 6020B	
Arsenic	13.6	3.00	6.00	ug/L	5	08/07/21 04:25	EPA 6020B	
Cobalt	33.6	3.00	6.00	ug/L	5	08/07/21 04:25	EPA 6020B	
Iron	9100	150	300	ug/L	5	08/07/21 04:25	EPA 6020B	A-01, Q-4
Manganese	697	3.00	6.00	ug/L	5	08/07/21 04:25	EPA 6020B	В
Lithium	ND	15.0	30.0	ug/L	5	08/07/21 04:25	EPA 6020B	R-04
GC-AP-AAO-7-20210731 (A1H0073-07)				Matrix: W	ater			
Batch: 1080090								
Aluminum	4040	150	300	ug/L	5	08/07/21 04:40	EPA 6020B	
Arsenic	ND	3.00	6.00	ug/L	5	08/07/21 04:40	EPA 6020B	R-04
Cobalt	4.15	3.00	6.00	ug/L	5	08/07/21 04:40	EPA 6020B	R-04, J
Iron	1510	150	300	ug/L	5	08/07/21 04:40	EPA 6020B	A-01, Q-4
Manganese	48.7	3.00	6.00	ug/L	5	08/07/21 04:40	EPA 6020B	В
Lithium	ND	15.0	30.0	ug/L	5	08/07/21 04:40	EPA 6020B	R-04
GC-AP-AAO-8-20210731 (A1H0073-08)				Matrix: W	ater			
Batch: 1080090								
Aluminum	5130	150	300	ug/L	5	08/07/21 04:45	EPA 6020B	
Arsenic	ND	3.00	6.00	ug/L	5	08/07/21 04:45	EPA 6020B	R-04
Cobalt	4.03	3.00	6.00	ug/L	5	08/07/21 04:45	EPA 6020B	R-04, J
Iron	2900	150	300	ug/L	5	08/07/21 04:45	EPA 6020B	A-01, Q-4
Manganese	55.3	3.00	6.00	ug/L	5	08/07/21 04:45	EPA 6020B	В
DRAFT REPORT			<i>T</i> 1	to monided to d	a uon out DD	ELIMINARY and are	his star stress 1	1

Apex Laboratories, LLC

6700 S.W. Sandburg Street

LABORATORIES							Tigard, OR 97 503-718-232 ORELAP ID: OR	3
<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219		Proj Project Project	<u>Report ID:</u> A1H0073 - 08 10 21	-				
		ANALYTI	CAL SAMPL	E RESULT	ſS			
		Total Meta	lls by EPA 602	20B (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GC-AP-AAO-8-20210731 (A1H0073-08)				Matrix: W	ater			
Lithium	ND	15.0	30.0	ug/L	5	08/07/21 04:45	EPA 6020B	R-04
C-AP-AAO-9-20210731 (A1H0073-09)				Matrix: W	ater			
Batch: 1080090								
Aluminum	4840	150	300	ug/L	5	08/07/21 04:50	EPA 6020B	
Arsenic	4.29	3.00	6.00	ug/L	5	08/07/21 04:50	EPA 6020B	R-04, J
Cobalt	ND	3.00	6.00	ug/L	5	08/07/21 04:50	EPA 6020B	R-04
Iron	2670	150	300	ug/L	5	08/07/21 04:50	EPA 6020B	A-01, Q-4
Manganese	52.0	3.00	6.00	ug/L	5	08/07/21 04:50	EPA 6020B	В
Lithium	ND	15.0	30.0	ug/L	5	08/07/21 04:50	EPA 6020B	R-04
GC-AP-AAO-10-20210731 (A1H0073-10)				Matrix: W	ater			
Batch: 1080090								
Aluminum	4070	150	300	ug/L	5	08/07/21 04:55	EPA 6020B	
Arsenic	22.4	3.00	6.00	ug/L	5	08/07/21 04:55	EPA 6020B	
Cobalt	33.7	3.00	6.00	ug/L	5	08/07/21 04:55	EPA 6020B	
Iron	13100	150	300	ug/L	5	08/07/21 04:55	EPA 6020B	A-01, Q-4
Manganese	2440	3.00	6.00	ug/L	5	08/07/21 04:55	EPA 6020B	В
Lithium	ND	15.0	30.0	ug/L	5	08/07/21 04:55	EPA 6020B	R-04
GC-AP-AAO-11-20210731 (A1H0073-11)				Matrix: W	ater			
Batch: 1080090								
Aluminum	7250	150	300	ug/L	5	08/07/21 05:00	EPA 6020B	
Arsenic	38.0	3.00	6.00	ug/L	5	08/07/21 05:00	EPA 6020B	
Cobalt	13.9	3.00	6.00	ug/L	5	08/07/21 05:00	EPA 6020B	
Iron	6450	150	300	ug/L	5	08/07/21 05:00	EPA 6020B	A-01, Q-4
Manganese	478	3.00	6.00	ug/L	5	08/07/21 05:00	EPA 6020B	В
Lithium	19.5	15.0	30.0	ug/L	5	08/07/21 05:00	EPA 6020B	R-04, J
GC-AP-AAO-12-20210731 (A1H0073-12)				Matrix: W	ater			
Batch: 1080090								
Aluminum	5240	150	300	ug/L	5	08/07/21 05:05	EPA 6020B	
Arsenic	5.76	3.00	6.00	ug/L	5	08/07/21 05:05	EPA 6020B	R-04, J
	8.85	3.00	6.00	ug/L	5	08/07/21 05:05	EPA 6020B	

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

6720 SW Macadam Ave. Suite 125	Project Number: 201114-01.05	<u>Report ID:</u>						
Portland, OR 97219	Project Manager: Anthony Dalton-Atha	A1H0073 - 08 10 21 1205						
ANALYTICAL SAMPLE RESULTS								

Total Metals by EPA 6020B (ICPMS)										
Notes	Method Ref.	Date Analyzed	Dilution	Units	Reporting Limit	Detection Limit	Sample Result	Analyte		
			ater	Matrix: Wa				GC-AP-AAO-12-20210731 (A1H0073-12)		
A-01, Q-41	EPA 6020B	08/07/21 05:05	5	ug/L	300	150	5060	Iron		
В	EPA 6020B	08/07/21 05:05	5	ug/L	6.00	3.00	330	Manganese		
R-04	EPA 6020B	08/07/21 05:05	5	ug/L	30.0	15.0	ND	Lithium		
			ater	Matrix: Wa				GC-AP-AAO-MB-20210731 (A1H0073-13) Batch: 1080090		
R-04	EPA 6020B	08/07/21 05:09	5	ug/L	300	150	ND	Aluminum		
R-04	EPA 6020B	08/07/21 05:09	5	ug/L	6.00	3.00	ND	Arsenic		
R-04	EPA 6020B	08/07/21 05:09	5	ug/L	6.00	3.00	ND	Cobalt		
Q-41, R-04	EPA 6020B	08/07/21 05:09	5	ug/L	300	150	ND	Iron		
R-04, J, B	EPA 6020B	08/07/21 05:09	5	ug/L	6.00	3.00	3.40	Manganese		
R-04	EPA 6020B	08/07/21 05:09	5	ug/L	30.0	15.0	ND	Lithium		
				ug/L	6.00	3.00		Manganese		

Highlighted results have not undergone full secondary data review at the time of reporting. Results are subject to change upon final review and reporting.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125

Portland, OR 97219

Project:Alabama Power-Greene CountyProject Number:201114-01.05Project Manager:Anthony Dalton-Atha

<u>Report ID:</u> A1H0073 - 08 10 21 1205

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1080090 - EPA 3015A							Wat	er				
Blank (1080090-BLK1)			Prepared	: 08/04/21	08:58 Ana	lyzed: 08/07	/21 02:57					
EPA 6020B												
Aluminum	ND	25.0	50.0	ug/L	1							
Arsenic	ND	0.500	1.00	ug/L	1							
Cobalt	ND	0.500	1.00	ug/L	1							
Iron	ND	25.0	50.0	ug/L	1							
Manganese	2.31	0.500	1.00	ug/L	1							В
Lithium	ND	2.50	5.00	ug/L	1							
LCS (1080090-BS1)			Prepared	: 08/04/21	08:58 Ana	lyzed: 08/07	/21 03:11					
EPA 6020B												
Aluminum	3050	25.0	50.0	ug/L	1	2780		110	80-120%			
Arsenic	56.3	0.500	1.00	ug/L	1	55.6		101	80-120%			
Cobalt	57.7	0.500	1.00	ug/L	1	55.6		104	80-120%			
Iron	2950	25.0	50.0	ug/L	1	2780		106	80-120%			A-01, Q-41
Manganese	59.2	0.500	1.00	ug/L	1	55.6		106	80-120%			В
LCS (1080090-BS2)			Prepared	: 08/04/21	08:58 Ana	lyzed: 08/07	/21 03:16					
<u>EPA 6020B</u>												
Lithium	46.8	2.50	5.00	ug/L	1	44.4		105	80-120%			
LCS Dup (1080090-BSD1)			Prepared	: 08/04/21	08:58 Ana	lyzed: 08/07	/21 03:02					
EPA 6020B												
Aluminum	2860	25.0	50.0	ug/L	1	2780		103	80-120%	6	20%	
Arsenic	55.3	0.500	1.00	ug/L	1	55.6		100	80-120%	2	20%	
Cobalt	56.7	0.500	1.00	ug/L	1	55.6		102	80-120%	2	20%	
Iron	3210	25.0	50.0	ug/L	1	2780		116	80-120%	9	20%	A-01, Q-41
Manganese	58.7	0.500	1.00	ug/L	1	55.6		106	80-120%	0.8	20%	В
LCS Dup (1080090-BSD2)			Prepared	: 08/04/21	08:58 Ana	lyzed: 08/07	/21 03:06					
<u>EPA 6020B</u>	4.4. A	2.50	5.00	/*	1	44.4		100	90.1200/	F	2004	
Lithium	44.4	2.50	5.00	ug/L	1	44.4		100	80-120%	5	20%	

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219
 Project:
 Alabama Power-Greene County

 Project Number:
 201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1H0073 - 08 10 21 1205

SAMPLE PREPARATION INFORMATION

	Total Metals by EPA 6020B (ICPMS)												
<u> Prep: EPA 3015A</u>					Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Batch: 1080090													
A1H0073-01	Water	EPA 6020B	07/31/21 14:25	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						
A1H0073-02	Water	EPA 6020B	07/31/21 14:30	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						
A1H0073-03	Water	EPA 6020B	07/31/21 14:35	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						
A1H0073-04	Water	EPA 6020B	07/31/21 14:40	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						
A1H0073-05	Water	EPA 6020B	07/31/21 14:45	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						
A1H0073-06	Water	EPA 6020B	07/31/21 14:50	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						
A1H0073-07	Water	EPA 6020B	07/31/21 14:55	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						
A1H0073-08	Water	EPA 6020B	07/31/21 15:00	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						
A1H0073-09	Water	EPA 6020B	07/31/21 15:05	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						
A1H0073-10	Water	EPA 6020B	07/31/21 15:10	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						
A1H0073-11	Water	EPA 6020B	07/31/21 15:15	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						
A1H0073-12	Water	EPA 6020B	07/31/21 15:20	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						
A1H0073-13	Water	EPA 6020B	07/31/21 15:25	08/04/21 08:58	37.5mL/50mL	45mL/50mL	1.20						

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219

Project: Alabama Power-Greene County

Project Number: 201114-01.05 Project Manager: Anthony Dalton-Atha <u>Report ID:</u> A1H0073 - 08 10 21 1205

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- A-01 Results do not meet EPA 6020B and/or Apex SOP criteria. Results reported for research per client request.
- B Analyte detected in an associated blank at a level above the MRL. (See Notes and Conventions below.)
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- **R-04** Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219

Project: Alabama Power-Greene County

Project Number: 201114-01.05 Project Manager: Anthony Dalton-Atha <u>Report ID:</u> A1H0073 - 08 10 21 1205

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.
ND	Analyte NOT DETECTED at or above the detection or reporting limit.
NR	Result Not Reported
RPD	Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "____ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project: Alabama Power-Greene County

Project Number: 201114-01.05 Project Manager: Anthony Dalton-Atha <u>Report ID:</u> A1H0073 - 08 10 21 1205

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project: <u>Alabama Power-Greene County</u> Project Number: 201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1H0073 - 08 10 21 1205

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

<u>Apex Lab</u>	oratories_					
Matrix	Analysis	TNI_ID	Analyte		TNI_ID	Accreditation
		All reported analytes are included in A	pex Laboratories' currer	nt ORELAP scope.		

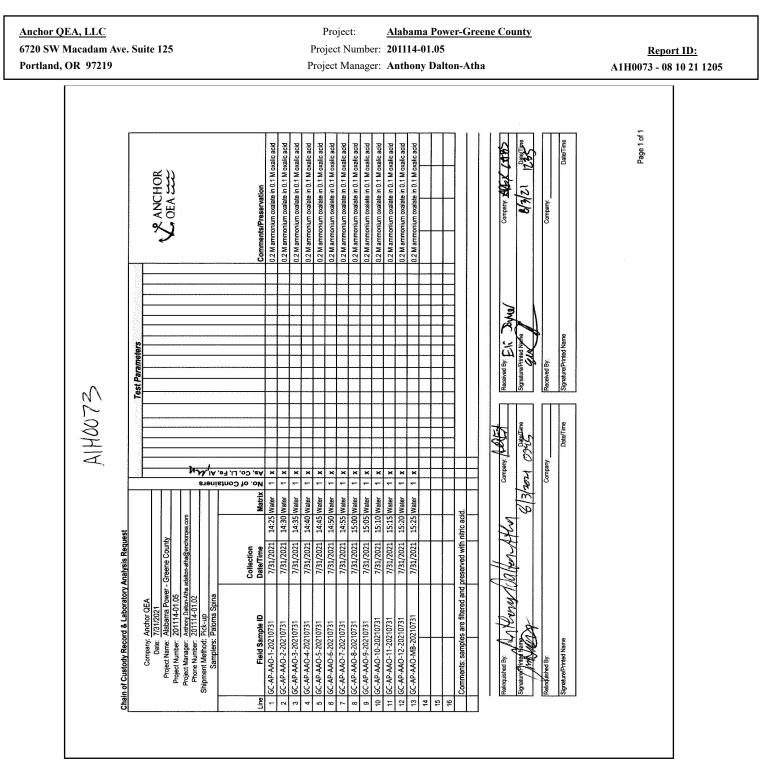
Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters


Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC	Project: <u>Alabama Power-Greene County</u>	
6720 SW Macadam Ave. Suite 125	Project Number: 201114-01.05	Report ID:
Portland, OR 97219	Project Manager: Anthony Dalton-Atha	A1H0073 - 08 10 21 1205
APIClient: $Anchor QEA$ Project/Project #: $A \mid a \mid b \mid a \mid w \mid a \mid p$ Delivery Info: $Date/time received: \theta \mid 3/2 \mid @$ Date/time received: $\theta \mid 3/2 \mid @$ Delivered by: ApexClientESSCooler InspectionDate/time inspecChain of Custody included?YesSigned/dated by client?YesSigned/dated by Apex?YesSigned/dated by Apex?YesTemperature (°C) $2 \cdot 4$ Received on ice? (Y/N) N Ice type: (Gel/Real/Other) $6 \cdot 6$ Cooler out of temp? (Y/N)Possible readCooler out of temp? (Y/N)Cooler out of temp? (Y/N)	EX LABS COOLER RECEIPT FORM Element WO#: A1 (100) OLI - 6/leve (anty 20114- 1235 By: ET S FedEx UPS Swift Senvoy SDS red: $9/3/21$ @ 1403 By: ET No Custody seals? Yes No No Custody seals? Yes No No Custody seals? Yes No No Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler # Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler # Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler # Son why: Cooler # Cooler # Cooler # Cooler # Cooler # Cooler # Cooler # Cooler # Cooler # Cooler # Coo	0-7.3 -01.02 Other Other Cooler #7
COC/container discrepancies form initial Containers/volumes received appropriat Do VOA vials have visible headspace? Comments	e for analysis? Yes X No Comments:	

DRAFT REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, July 16, 2021

Anthony Dalton-Atha Anchor QEA, LLC 6720 SW Macadam Ave. Suite 125 Portland, OR 97219

RE: A1G0350 - Alabama Power-Greene County - 201114-01.05

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A1G0350, which was received by the laboratory on 7/13/2021 at 2:08:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>dthomas@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Cooler #1

(See Cooler Receipt Form for details) 5.7 degC

The results provided in this report are PRELIMINARY and are subject to change based on subsequent analysis, QC validation or final data review. Please use these results with the understanding that they may have not been finalized by the laboratory.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project:Alabama Power-Greene CountyProject Number:201114-01.05Project Manager:Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION											
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received							
AP-SSE-F1-GC1	A1G0350-01	Water	07/07/21 10:40	07/13/21 14:08							
AP-SSE-F1-GC2	A1G0350-02	Water	07/07/21 10:45	07/13/21 14:08							
AP-SSE-F1-GC3	A1G0350-03	Water	07/07/21 10:50	07/13/21 14:08							
AP-SSE-F1-GC4	A1G0350-04	Water	07/07/21 10:55	07/13/21 14:08							
AP-SSE-F1-GC5	A1G0350-05	Water	07/07/21 11:00	07/13/21 14:08							
MB-SSE-F1-GC6	A1G0350-06	Water	07/07/21 11:05	07/13/21 14:08							
AP-SSE-F2-GC1	A1G0350-07	Water	07/08/21 10:40	07/13/21 14:08							
AP-SSE-F2-GC2	A1G0350-08	Water	07/08/21 10:45	07/13/21 14:08							
AP-SSE-F2-GC3	A1G0350-09	Water	07/08/21 10:50	07/13/21 14:08							
AP-SSE-F2-GC4	A1G0350-10	Water	07/08/21 10:55	07/13/21 14:08							
AP-SSE-F2-GC5	A1G0350-11	Water	07/08/21 11:00	07/13/21 14:08							
MB-SSE-F2-GC6	A1G0350-12	Water	07/08/21 11:05	07/13/21 14:08							
AP-SSE-F3-GC1	A1G0350-13	Water	07/09/21 10:40	07/13/21 14:08							
AP-SSE-F3-GC2	A1G0350-14	Water	07/09/21 10:45	07/13/21 14:08							
AP-SSE-F3-GC3	A1G0350-15	Water	07/09/21 10:50	07/13/21 14:08							
AP-SSE-F3-GC4	A1G0350-16	Water	07/09/21 10:55	07/13/21 14:08							
AP-SSE-F3-GC5	A1G0350-17	Water	07/09/21 11:00	07/13/21 14:08							
MB-SSE-F3-GC6	A1G0350-18	Water	07/09/21 11:05	07/13/21 14:08							
AP-SSE-F4-GC1	A1G0350-19	Water	07/12/21 10:40	07/13/21 14:08							
AP-SSE-F4-GC2	A1G0350-20	Water	07/12/21 10:45	07/13/21 14:08							
AP-SSE-F4-GC3	A1G0350-21	Water	07/12/21 10:50	07/13/21 14:08							
AP-SSE-F4-GC4	A1G0350-22	Water	07/12/21 10:55	07/13/21 14:08							
AP-SSE-F4-GC5	A1G0350-23	Water	07/12/21 11:00	07/13/21 14:08							
MB-SSE-F4-GC6	A1G0350-24	Water	07/12/21 11:05	07/13/21 14:08							
AP-SSE-F5-GC1	A1G0350-25	Solid	07/13/21 10:40	07/13/21 14:08							
AP-SSE-F5-GC2	A1G0350-26	Solid	07/13/21 10:45	07/13/21 14:08							
AP-SSE-F5-GC3	A1G0350-27	Solid	07/13/21 10:50	07/13/21 14:08							
AP-SSE-F5-GC4	A1G0350-28	Solid	07/13/21 10:55	07/13/21 14:08							
AP-SSE-F5-GC5	A1G0350-29	Solid	07/13/21 11:00	07/13/21 14:08							

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219
 Project:
 Alabama Power-Greene County

 Project Number:
 201114-01.05

 Project Manager:
 Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

ANALYTICAL SAMPLE RESULTS

		Total Meta	lls by EPA 60	20B (ICPMS	5)					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
AP-SSE-F1-GC1 (A1G0350-01)				Matrix: W	ater					
Batch: 1070415										
Arsenic	ND	25.0	50.0	ug/L	50	07/15/21 23:51	EPA 6020B	R-04		
Cobalt	ND	25.0	50.0	ug/L	50	07/15/21 23:51	EPA 6020B	R-04		
AP-SSE-F1-GC2 (A1G0350-02)				Matrix: W	ater					
Batch: 1070415										
Arsenic	ND	25.0	50.0	ug/L	50	07/15/21 23:56	EPA 6020B	R-04		
Cobalt	ND	25.0	50.0	ug/L	50	07/15/21 23:56	EPA 6020B	R-04		
AP-SSE-F1-GC3 (A1G0350-03)				Matrix: W	ater					
Batch: 1070415										
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 00:00	EPA 6020B	R-04		
Lithium	ND	125	250	ug/L	50	07/15/21 13:05	EPA 6020B	R-04		
AP-SSE-F1-GC4 (A1G0350-04)	Matrix: Water									
Batch: 1070415										
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 00:05	EPA 6020B	R-04		
Lithium	ND	125	250	ug/L	50	07/15/21 13:12	EPA 6020B	R-04		
AP-SSE-F1-GC5 (A1G0350-05)				Matrix: W	ater					
Batch: 1070415										
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 00:10	EPA 6020B	R-04		
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 00:10	EPA 6020B	R-04		
				Matrix: W	ater					
Batch: 1070415										
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 00:24	EPA 6020B	R-04		
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 00:24	EPA 6020B	R-04		
Lithium	ND	125	250	ug/L	50	07/15/21 13:17	EPA 6020B	R-04		
				Matrix: W	ater					
Batch: 1070415										
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 00:29	EPA 6020B	R-04		
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 00:29	EPA 6020B	R-04		
Iron	ND	1250	2500	ug/L	50	07/16/21 00:29	EPA 6020B	R-04		

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219

Project:Alabama Power-Greene CountyProject Number:201114-01.05Project Manager:Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
AP-SSE-F2-GC1 (A1G0350-07)				Matrix: W	ater			
Manganese	ND	25.0	50.0	ug/L	50	07/16/21 00:29	EPA 6020B	R-04
AP-SSE-F2-GC2 (A1G0350-08)				Matrix: W	ater			
Batch: 1070415								
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 00:34	EPA 6020B	R-04
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 00:34	EPA 6020B	R-04
Iron	ND	1250	2500	ug/L	50	07/16/21 00:34	EPA 6020B	R-04
Manganese	ND	25.0	50.0	ug/L	50	07/16/21 00:34	EPA 6020B	R-04
AP-SSE-F2-GC3 (A1G0350-09)				Matrix: W	ater			
Batch: 1070415								
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 00:39	EPA 6020B	R-04
Iron	ND	1250	2500	ug/L	50	07/16/21 00:39	EPA 6020B	R-04
Manganese	78.1	25.0	50.0	ug/L	50	07/16/21 00:39	EPA 6020B	
Lithium	ND	125	250	ug/L	50	07/15/21 13:23	EPA 6020B	R-04
AP-SSE-F2-GC4 (A1G0350-10)				Matrix: W	ater			
Batch: 1070415								
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 00:43	EPA 6020B	R-04
Iron	1490	1250	2500	ug/L	50	07/16/21 00:43	EPA 6020B	J, R-04
Manganese	190	25.0	50.0	ug/L	50	07/16/21 00:43	EPA 6020B	
Lithium	ND	125	250	ug/L	50	07/15/21 13:29	EPA 6020B	A-01, Q-06 R-04
				Matrix: W	ater			
Batch: 1070415								
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 00:48	EPA 6020B	R-04
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 00:48	EPA 6020B	R-04
Iron	ND	1250	2500	ug/L	50	07/16/21 00:48	EPA 6020B	R-04
Manganese	ND	25.0	50.0	ug/L	50	07/16/21 00:48	EPA 6020B	R-04
MB-SSE-F2-GC6 (A1G0350-12)				Matrix: W	ater			
Batch: 1070415								
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 00:53	EPA 6020B	R-04
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 00:53	EPA 6020B	R-04

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219
 Project:
 Alabama Power-Greene County

 Project Number:
 201114-01.05

 Project Manager:
 Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

ANALYTICAL SAMPLE RESULTS

	Sample								
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MB-SSE-F2-GC6 (A1G0350-12)				Matrix: W	ater				
Iron	ND	1250	2500	ug/L	50	07/16/21 00:53	EPA 6020B	R-04	
Manganese	ND	25.0	50.0	ug/L	50	07/16/21 00:53	EPA 6020B	R-04	
Lithium	ND	125	250	ug/L	50	07/15/21 13:51	EPA 6020B	R-04	
AP-SSE-F3-GC1 (A1G0350-13)				Matrix: W	ater				
Batch: 1070415									
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 00:58	EPA 6020B	R-04	
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 00:58	EPA 6020B	R-04	
Iron	1680	1250	2500	ug/L	50	07/16/21 00:58	EPA 6020B	J, R-04	
Manganese	63.9	25.0	50.0	ug/L	50	07/16/21 00:58	EPA 6020B		
AP-SSE-F3-GC2 (A1G0350-14)		Matrix: Water							
Batch: 1070415									
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 01:02	EPA 6020B	R-04	
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 01:02	EPA 6020B	R-04	
Iron	1490	1250	2500	ug/L	50	07/16/21 01:02	EPA 6020B	J, R-04	
Manganese	57.7	25.0	50.0	ug/L	50	07/16/21 01:02	EPA 6020B		
AP-SSE-F3-GC3 (A1G0350-15)				Matrix: W	ater				
Batch: 1070415									
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 01:07	EPA 6020B	R-04	
Iron	ND	1250	2500	ug/L	50	07/16/21 01:07	EPA 6020B	R-04	
Manganese	84.2	25.0	50.0	ug/L	50	07/16/21 01:07	EPA 6020B		
Lithium	ND	125	250	ug/L	50	07/15/21 13:56	EPA 6020B	R-04	
AP-SSE-F3-GC4 (A1G0350-16)				Matrix: W	ater				
Batch: 1070415									
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 01:22	EPA 6020B	R-04	
Iron	ND	1250	2500	ug/L	50	07/16/21 01:22	EPA 6020B	R-04	
Manganese	2100	25.0	50.0	ug/L	50	07/16/21 01:22	EPA 6020B		
Lithium	ND	125	250	ug/L	50	07/15/21 14:02	EPA 6020B	R-04	
AP-SSE-F3-GC5 (A1G0350-17)				Matrix: W	ater				
Batch: 1070415									
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 01:26	EPA 6020B	R-04	

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project:Alabama Power-Greene CountyProject Number:201114-01.05Project Manager:Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS	3)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
AP-SSE-F3-GC5 (A1G0350-17)				Matrix: W	ater			
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 01:26	EPA 6020B	R-04
Iron	1890	1250	2500	ug/L	50	07/16/21 01:26	EPA 6020B	J, R-0
Manganese	59.7	25.0	50.0	ug/L	50	07/16/21 01:26	EPA 6020B	
MB-SSE-F3-GC6 (A1G0350-18)				Matrix: W	ater			
Batch: 1070420								
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 01:50	EPA 6020B	R-04
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 01:50	EPA 6020B	R-04
Iron	ND	1250	2500	ug/L	50	07/16/21 01:50	EPA 6020B	R-04
Manganese	59.7	25.0	50.0	ug/L	50	07/16/21 01:50	EPA 6020B	
Lithium	ND	125	250	ug/L	50	07/15/21 14:31	EPA 6020B	R-04
AP-SSE-F4-GC1 (A1G0350-19)	Matrix: Water							
Batch: 1070420								
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 01:55	EPA 6020B	R-04
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 01:55	EPA 6020B	R-04
Iron	28300	1250	2500	ug/L	50	07/16/21 01:55	EPA 6020B	
Manganese	ND	25.0	50.0	ug/L	50	07/16/21 01:55	EPA 6020B	R-04
AP-SSE-F4-GC2 (A1G0350-20)				Matrix: W	ater			
Batch: 1070420								
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 02:00	EPA 6020B	R-04
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 02:00	EPA 6020B	R-04
Iron	27700	1250	2500	ug/L	50	07/16/21 02:00	EPA 6020B	
Manganese	ND	25.0	50.0	ug/L	50	07/16/21 02:00	EPA 6020B	R-04
AP-SSE-F4-GC3 (A1G0350-21)				Matrix: W	ater			
Batch: 1070420								
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 02:05	EPA 6020B	R-04
Iron	ND	1250	2500	ug/L	50	07/16/21 02:05	EPA 6020B	R-04
Manganese	ND	25.0	50.0	ug/L	50	07/16/21 02:05	EPA 6020B	R-04
Lithium	ND	125	250	ug/L	50	07/15/21 14:36	EPA 6020B	R-0 4
AP-SSE-F4-GC4 (A1G0350-22)				Matrix: W	ater			
Batch: 1070420								

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project Number: 201114-01.05 Project Manager: Anthony Dalton-Atha

Alabama Power-Greene County

Project:

<u>Report ID:</u> A1G0350 - 07 16 21 1537

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)								
	Sample	Detection	Reporting	TT	Dilli	Date		NX .					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes					
AP-SSE-F4-GC4 (A1G0350-22)	Matrix: Water												
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 02:19	EPA 6020B	R-04					
Iron	15900	1250	2500	ug/L	50	07/16/21 02:19	EPA 6020B						
Manganese	79.4	25.0	50.0	ug/L	50	07/16/21 02:19	EPA 6020B						
Lithium	ND	125	250	ug/L	50	07/15/21 14:53	EPA 6020B	R-04					
AP-SSE-F4-GC5 (A1G0350-23)				Matrix: Wa	ater								
Batch: 1070420													
Arsenic	30.6	25.0	50.0	ug/L	50	07/16/21 02:24	EPA 6020B	J, R-04					
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 02:24	EPA 6020B	R-04					
Iron	32300	1250	2500	ug/L	50	07/16/21 02:24	EPA 6020B						
Manganese	ND	25.0	50.0	ug/L	50	07/16/21 02:24	EPA 6020B	R-04					
MB-SSE-F4-GC6 (A1G0350-24)	Matrix: Water												
Batch: 1070420													
Arsenic	ND	25.0	50.0	ug/L	50	07/16/21 02:28	EPA 6020B	R-04					
Cobalt	ND	25.0	50.0	ug/L	50	07/16/21 02:28	EPA 6020B	R-04					
Iron	ND	1250	2500	ug/L	50	07/16/21 02:28	EPA 6020B	R-04					
Manganese	ND	25.0	50.0	ug/L	50	07/16/21 02:28	EPA 6020B	R-04					
Lithium	ND	125	250	ug/L	50	07/15/21 14:59	EPA 6020B	R-04					
AP-SSE-F5-GC1 (A1G0350-25)				Matrix: So	olid								
Batch: 1070436													
Arsenic	ND	2.65	5.31	mg/kg	50	07/16/21 04:23	EPA 6020B	R-04					
Cobalt	ND	2.65	5.31	mg/kg	50	07/16/21 04:23	EPA 6020B	R-04					
Iron	1070	133	265	mg/kg	50	07/16/21 04:23	EPA 6020B						
Manganese	ND	2.65	5.31	mg/kg	50	07/16/21 04:23	EPA 6020B	R-04					
AP-SSE-F5-GC2 (A1G0350-26)				Matrix: So	olid								
Batch: 1070436													
Arsenic	ND	2.65	5.30	mg/kg	50	07/16/21 04:28	EPA 6020B	R-04					
Cobalt	ND	2.65	5.30	mg/kg	50	07/16/21 04:28	EPA 6020B	R-04					
Iron	1810	132	265	mg/kg	50	07/16/21 04:28	EPA 6020B						
Manganese	4.27	2.65	5.30	mg/kg	50	07/16/21 04:28	EPA 6020B	J					

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor (QEA,	LLC	

6720 SW Macadam Ave. Suite 125 Portland, OR 97219
 Project:
 Alabama Power-Greene County

 Project Number:
 201114-01.05

 Project Manager:
 Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

ANALYTICAL SAMPLE RESULTS

	Total Metals by EPA 6020B (ICPMS)												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
AP-SSE-F5-GC3 (A1G0350-27)	Matrix: Solid												
Batch: 1070436													
Arsenic	ND	2.66	5.32	mg/kg	50	07/16/21 04:32	EPA 6020B	R-04					
Iron	471	133	266	mg/kg	50	07/16/21 04:32	EPA 6020B						
Manganese	ND	2.66	5.32	mg/kg	50	07/16/21 04:32	EPA 6020B	R-04					
Lithium	ND	13.3	26.6	mg/kg	50	07/15/21 16:52	EPA 6020B	R-04					
AP-SSE-F5-GC4 (A1G0350-28)				Matrix: So	lid								
Batch: 1070436													
Arsenic	ND	2.65	5.30	mg/kg	50	07/16/21 04:37	EPA 6020B	R-04					
Iron	4100	132	265	mg/kg	50	07/16/21 04:37	EPA 6020B						
Manganese	13.4	2.65	5.30	mg/kg	50	07/16/21 04:37	EPA 6020B						
Lithium	ND	13.2	26.5	mg/kg	50	07/15/21 17:09	EPA 6020B	R-04					
AP-SSE-F5-GC5 (A1G0350-29)				Matrix: So	lid								
Batch: 1070436													
Arsenic	ND	2.60	5.21	mg/kg	50	07/16/21 04:42	EPA 6020B	R-04					
Cobalt	ND	2.60	5.21	mg/kg	50	07/16/21 04:42	EPA 6020B	R-0 4					
Iron	1290	130	260	mg/kg	50	07/16/21 04:42	EPA 6020B						
Manganese	3.73	2.60	5.21	mg/kg	50	07/16/21 04:42	EPA 6020B	J					

Highlighted results have not undergone full secondary data review at the time of reporting. Results are subject to change upon final review and reporting.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125

Portland, OR 97219

Project:Alabama Power-Greene CountyProject Number:201114-01.05Project Manager:Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

QUALITY CONTROL (QC) SAMPLE RESULTS

LCS (1070415-BS1) EPA 6020B Arsenic 54.2 Cobalt 54.3	0.500	Reporting Limit Prepared	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Blank (1070415-BLK1) EPA 6020B Arsenic ND Cobalt ND Iron ND Manganese ND Blank (1070415-BLK2) EPA 6020B Lithium ND LCS (1070415-BS1) EPA 6020B Arsenic 54.2 Cobalt 54.3		Prepared									
EPA 6020B Arsenic ND Cobalt ND Iron ND Manganese ND Blank (1070415-BLK2) EPA 6020B Lithium ND LCS (1070415-BS1) EPA 6020B Arsenic 54.2 Cobalt 54.3		Prepared				Wate	er				
Arsenic ND Cobalt ND Iron ND Manganese ND Blank (1070415-BLK2) EPA 6020B Lithium ND LCS (1070415-BS1) EPA 6020B Arsenic 54.3			: 07/14/21	09:08 Anal	yzed: 07/15/	/21 23:27					
CobaltNDIronNDManganeseNDBlank (1070415-BLK2)EPA 6020BLithiumNDLCS (1070415-BS1)EPA 6020BArsenic54.2Cobalt54.3											
Iron ND Manganese ND Blank (1070415-BLK2) EPA 6020B Lithium ND LCS (1070415-BS1) EPA 6020B Arsenic 54.3 Cobalt 54.3	0.500	1.00	ug/L	1							
Manganese ND Blank (1070415-BLK2) EPA 6020B Lithium ND LCS (1070415-BS1) EPA 6020B Arsenic 54.2 Cobalt 54.3	0.500	1.00	ug/L	1							
Blank (1070415-BLK2) EPA 6020B Lithium ND LCS (1070415-BS1) EPA 6020B Arsenic 54.3 Cobalt 54.3	25.0	50.0	ug/L	1							
EPA 6020B Lithium ND LCS (1070415-BS1) Image: Comparison of the second secon	0.500	1.00	ug/L	1							
Lithium ND LCS (1070415-BS1) EPA 6020B Arsenic 54.2 Cobalt 54.3		Prepared	l: 07/14/21	09:08 Anal	yzed: 07/15/	/21 12:36					
LCS (1070415-BS1) EPA 6020B Arsenic 54.2 Cobalt 54.3											
EPA 6020B Arsenic 54.2 Cobalt 54.8	2.50	5.00	ug/L	1							
Arsenic 54.2 Cobalt 54.8		Prepared	l: 07/14/21	09:08 Anal	yzed: 07/15/	/21 23:32					
Cobalt 54.8											
	0.500	1.00	ug/L	1	55.6		98	80-120%			
[ron 280	0.500	1.00	ug/L	1	55.6		99	80-120%			
200) 25.0	50.0	ug/L	1	2780		101	80-120%			
Manganese 55.3	0.500	1.00	ug/L	1	55.6		100	80-120%			
LCS (1070415-BS2)		Prepared	l: 07/14/21	09:08 Anal	yzed: 07/15/	/21 12:42					
EPA 6020B											
Lithium 42.9	2.50	5.00	ug/L	1	44.4		97	80-120%			
Duplicate (1070415-DUP1)		Prepared	l: 07/14/21	09:08 Anal	yzed: 07/15/	/21 23:41					
QC Source Sample: Non-SDG (A1G0339-01)										
Arsenic 6.32	5.00	10.0	ug/L	10		6.74			6	20%	
Cobalt 9.42	5.00	10.0	ug/L	10		9.22			2	20%	
Iron 591	250	500	ug/L	10		5980			1	20%	
Manganese 277	5.00	10.0	ug/L	10		274			1	20%	
Duplicate (1070415-DUP2)		Prepared	l: 07/14/21	09:08 Anal	yzed: 07/15/	/21 12:53					
QC Source Sample: Non-SDG (A1G0339-01)										
Lithium ND	_	50.0	17	10						2007	R-0
Matrix Spike (1070415-MS1)	23.0	50.0	ug/L	10		ND				20%	K-(

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125

Portland, OR 97219

 Project:
 Alabama Power-Greene County

 Project Number:
 201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits		RPD Limit	Notes
Batch 1070415 - EPA 3015A							Wat	er				
Matrix Spike (1070415-MS1)			Prepared	: 07/14/21 (09:08 Anal	yzed: 07/15	/21 23:46					
QC Source Sample: Non-SDG (A1	<u>G0339-01)</u>											
<u>EPA 6020B</u>												
Arsenic	63.6	5.00	10.0	ug/L	10	55.6	6.74	102	75-125%			
Cobalt	65.3	5.00	10.0	ug/L	10	55.6	9.22	101	75-125%			
Iron	8710	250	500	ug/L	10	2780	5980	98	75-125%			
Manganese	342	5.00	10.0	ug/L	10	55.6	274	121	75-125%			
Matrix Spike (1070415-MS2)			Prepared	: 07/14/21 (09:08 Anal	yzed: 07/15	/21 12:59					
QC Source Sample: Non-SDG (A10	<u>G0339-01)</u>											
EPA 6020B												
Lithium	57.4	25.0	50.0	ug/L	10	44.4	ND	129	75-125%			Q-11, R-(

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125

Portland, OR 97219

Project:Alabama Power-Greene CountyProject Number:201114-01.05Project Manager:Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1070420 - EPA 3015A							Wat	er				
Blank (1070420-BLK1)			Prepared	: 07/14/21	10:48 Ana	yzed: 07/16	/21 01:36					
EPA 6020B												
Arsenic	ND	0.500	1.00	ug/L	1							
Cobalt	ND	0.500	1.00	ug/L	1							
Iron	ND	25.0	50.0	ug/L	1							
Manganese	ND	0.500	1.00	ug/L	1							
Blank (1070420-BLK2)			Prepared	: 07/14/21	10:48 Ana	yzed: 07/15	/21 14:14					
EPA 6020B												
Lithium	ND	2.50	5.00	ug/L	1							
LCS (1070420-BS1)			Prepared	: 07/14/21	10:48 Ana	yzed: 07/16	/21 01:45					
EPA 6020B												
Arsenic	54.4	0.500	1.00	ug/L	1	55.6		98	80-120%			
Cobalt	54.2	0.500	1.00	ug/L	1	55.6		97	80-120%			
Iron	2750	25.0	50.0	ug/L	1	2780		99	80-120%			
Manganese	54.8	0.500	1.00	ug/L	1	55.6		99	80-120%			
LCS (1070420-BS2)			Prepared	: 07/14/21	10:48 Ana	yzed: 07/15	/21 14:25					
EPA 6020B												
Lithium	42.6	2.50	5.00	ug/L	1	44.4		96	80-120%			
LCS Dup (1070420-BSD1)			Prepared	: 07/14/21	10:48 Ana	yzed: 07/16	/21 01:41					
EPA 6020B												
Arsenic	55.0	0.500	1.00	ug/L	1	55.6		99	80-120%	0.9	20%	
Cobalt	54.4	0.500	1.00	ug/L	1	55.6		98	80-120%	0.4	20%	
Iron	2780	25.0	50.0	ug/L	1	2780		100	80-120%	1	20%	
Manganese	56.0	0.500	1.00	ug/L	1	55.6		101	80-120%	2	20%	
LCS Dup (1070420-BSD2)			Prepared	: 07/14/21	10:48 Ana	yzed: 07/15	/21 14:19					
EPA 6020B												
Lithium	42.7	2.50	5.00	ug/L	1	44.4		96	80-120%	0.1	20%	

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125

Portland, OR 97219

Project:Alabama Power-Greene CountyProject Number:201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1070436 - EPA 3051A							Solie	d				
Blank (1070436-BLK1)			Prepared	: 07/14/21	13:30 Anal	yzed: 07/16	/21 03:40					
EPA 6020B												
Arsenic	ND	0.500	1.00	mg/kg	10							
Cobalt	ND	0.500	1.00	mg/kg	10							
Iron	ND	25.0	50.0	mg/kg	10							
Manganese	ND	0.500	1.00	mg/kg	10							
Blank (1070436-BLK2)			Prepared	: 07/14/21	13:30 Anal	yzed: 07/15	/21 16:23					
<u>EPA 6020B</u>												
Lithium	ND	2.50	5.00	mg/kg	10							
LCS (1070436-BS1)			Prepared	: 07/14/21	13:30 Anal	yzed: 07/16	/21 03:45					
EPA 6020B												
Arsenic	50.5	0.500	1.00	mg/kg	10	50.0		101	80-120%			
Cobalt	49.8	0.500	1.00	mg/kg	10	50.0		100	80-120%			
Iron	2560	25.0	50.0	mg/kg	10	2500		102	80-120%			
Manganese	50.0	0.500	1.00	mg/kg	10	50.0		100	80-120%			
LCS (1070436-BS2)			Prepared	: 07/14/21	13:30 Anal	yzed: 07/15	/21 16:29					
EPA 6020B												
Lithium	41.7	2.50	5.00	mg/kg	10	40.0		104	80-120%			
Duplicate (1070436-DUP1)			Prepared	: 07/14/21	13:30 Anal	yzed: 07/16	/21 03:54					
QC Source Sample: Non-SDG (A1	G0245-01)											
Arsenic	ND	25.3	50.5	mg/kg	100		ND				20%	
Cobalt	ND	25.3	50.5	mg/kg	100		ND				20%	
Iron	116000	1260	2530	mg/kg			113000			2	20%	
Manganese	1260	25.3	50.5	mg/kg	100		1250			0.5	20%	
Duplicate (1070436-DUP2)			Prepared	: 07/14/21	13:30 Anal	yzed: 07/15	/21 16:41					
QC Source Sample: Non-SDG (A1	G0245-01)											
Lithium	ND	126	253	mg/kg	100		ND				20%	R·
Matrix Spike (1070436-MS1)			Prepared	: 07/14/21	13·30 Anal	wzed: 07/16	/21.02:50					

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125

Portland, OR 97219

 Project:
 Alabama Power-Greene County

 Project Number:
 201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1070436 - EPA 3051A							Soli	d				
Matrix Spike (1070436-MS1)			Prepared	: 07/14/21	13:30 Ana	lyzed: 07/16	5/21 03:59					
QC Source Sample: Non-SDG (A1	<u>G0245-01)</u>											
EPA 6020B												
Arsenic	267	25.5	51.0	mg/kg	100	255	ND	105	75-125%			
Cobalt	272	25.5	51.0	mg/kg	100	255	ND	107	75-125%			
Iron	139000	1280	2550	mg/kg	100	12800	113000	201	75-125%			Q-03
Manganese	1680	25.5	51.0	mg/kg	100	255	1250	167	75-125%			Q-03
Matrix Spike (1070436-MS2)			Prepared	: 07/14/21	13:30 Ana	lyzed: 07/15	5/21 16:46					
QC Source Sample: Non-SDG (A1	<u>G0245-01)</u>											
EPA 6020B												
Lithium	207	124	248	mg/kg	100	198	ND	105	75-125%			R-04, .

DRAFT REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219
 Project:
 Alabama Power-Greene County

 Project Number:
 201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

SAMPLE PREPARATION INFORMATION

Total Metals by EPA 6020B (ICPMS)							
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1070415			*	*			
A1G0350-01	Water	EPA 6020B	07/07/21 10:40	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-02	Water	EPA 6020B	07/07/21 10:45	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-03	Water	EPA 6020B	07/07/21 10:50	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-04	Water	EPA 6020B	07/07/21 10:55	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-05	Water	EPA 6020B	07/07/21 11:00	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-06	Water	EPA 6020B	07/07/21 11:05	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-07	Water	EPA 6020B	07/08/21 10:40	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-08	Water	EPA 6020B	07/08/21 10:45	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-09	Water	EPA 6020B	07/08/21 10:50	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-10	Water	EPA 6020B	07/08/21 10:55	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-11	Water	EPA 6020B	07/08/21 11:00	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-12	Water	EPA 6020B	07/08/21 11:05	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-13	Water	EPA 6020B	07/09/21 10:40	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-14	Water	EPA 6020B	07/09/21 10:45	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-15	Water	EPA 6020B	07/09/21 10:50	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-16	Water	EPA 6020B	07/09/21 10:55	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
A1G0350-17	Water	EPA 6020B	07/09/21 11:00	07/14/21 09:08	45mL/50mL	45mL/50mL	1.00
Batch: 1070420							
A1G0350-18	Water	EPA 6020B	07/09/21 11:05	07/14/21 10:48	45mL/50mL	45mL/50mL	1.00
A1G0350-19	Water	EPA 6020B	07/12/21 10:40	07/14/21 10:48	45mL/50mL	45mL/50mL	1.00
A1G0350-20	Water	EPA 6020B	07/12/21 10:45	07/14/21 10:48	45mL/50mL	45mL/50mL	1.00
A1G0350-21	Water	EPA 6020B	07/12/21 10:50	07/14/21 10:48	45mL/50mL	45mL/50mL	1.00
A1G0350-22	Water	EPA 6020B	07/12/21 10:55	07/14/21 10:48	45mL/50mL	45mL/50mL	1.00
A1G0350-23	Water	EPA 6020B	07/12/21 11:00	07/14/21 10:48	45mL/50mL	45mL/50mL	1.00
A1G0350-24	Water	EPA 6020B	07/12/21 11:05	07/14/21 10:48	45mL/50mL	45mL/50mL	1.00
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1070436			1	1			
A1G0350-25	Solid	EPA 6020B	07/13/21 10:40	07/14/21 13:30	0.471g/50mL	0.5g/50mL	1.06
A1G0350-26	Solid	EPA 6020B	07/13/21 10:45	07/14/21 13:30	0.472g/50mL	0.5g/50mL	1.06
A1G0350-27	Solid	EPA 6020B	07/13/21 10:50	07/14/21 13:30	0.47g/50mL	0.5g/50mL	1.06
A1G0350-28	Solid	EPA 6020B	07/13/21 10:55	07/14/21 13:30	0.472g/50mL	0.5g/50mL	1.06
A1G0350-29	Solid	EPA 6020B	07/13/21 11:00	07/14/21 13:30	0.48g/50mL	0.5g/50mL	1.00

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219

Project: Alabama Power-Greene County

Project Number: 201114-01.05 Project Manager: Anthony Dalton-Atha <u>Report ID:</u> A1G0350 - 07 16 21 1537

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- A-01 Results do not meet EPA 6020B criteria. Results reportes for research and development and client information.
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
- Q-06 Internal Standard area outside of method specified limits. Data is Not Reported. See previous or subsequent runs for reportable sample data.
- Q-11 Spike recovery cannot be accurately quantified due to sample dilution required for high analyte concentration and/or matrix interference.
- **R-04** Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219

Project: Alabama Power-Greene County

Project Number: 201114-01.05 Project Manager: Anthony Dalton-Atha <u>Report ID:</u> A1G0350 - 07 16 21 1537

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.
ND	Analyte NOT DETECTED at or above the detection or reporting limit.
NR	Result Not Reported
RPD	Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "____ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC

6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project: Alabama Power-Greene County

Project Number: 201114-01.05 Project Manager: Anthony Dalton-Atha <u>Report ID:</u> A1G0350 - 07 16 21 1537

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Anchor QEA, LLC</u> 6720 SW Macadam Ave. Suite 125 Portland, OR 97219 Project: <u>Alabama Power-Greene County</u> Project Number: 201114-01.05

Project Manager: Anthony Dalton-Atha

<u>Report ID:</u> A1G0350 - 07 16 21 1537

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Lab	oratories				
Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation
		All reported analytes are included in	Apex Laboratories' current Ol	RELAP scope.	

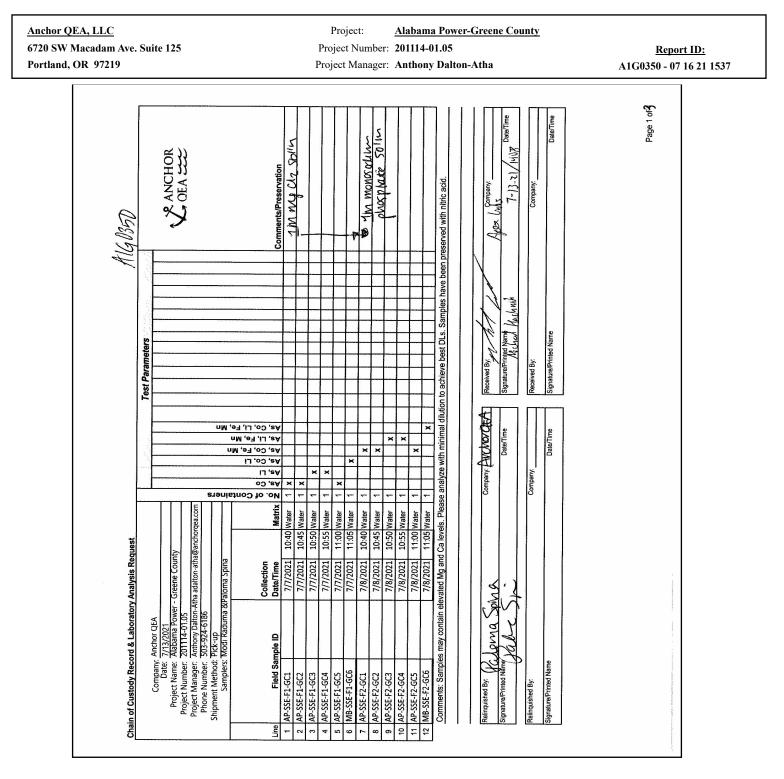
Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

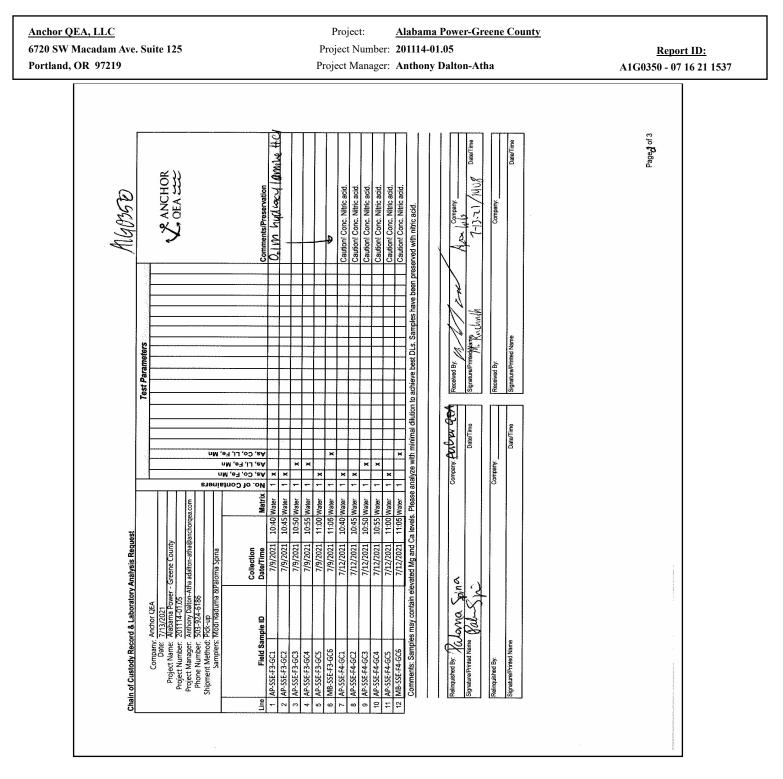
Field Testing Parameters


Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

DRAFT REPORT

Apex Laboratories, LLC

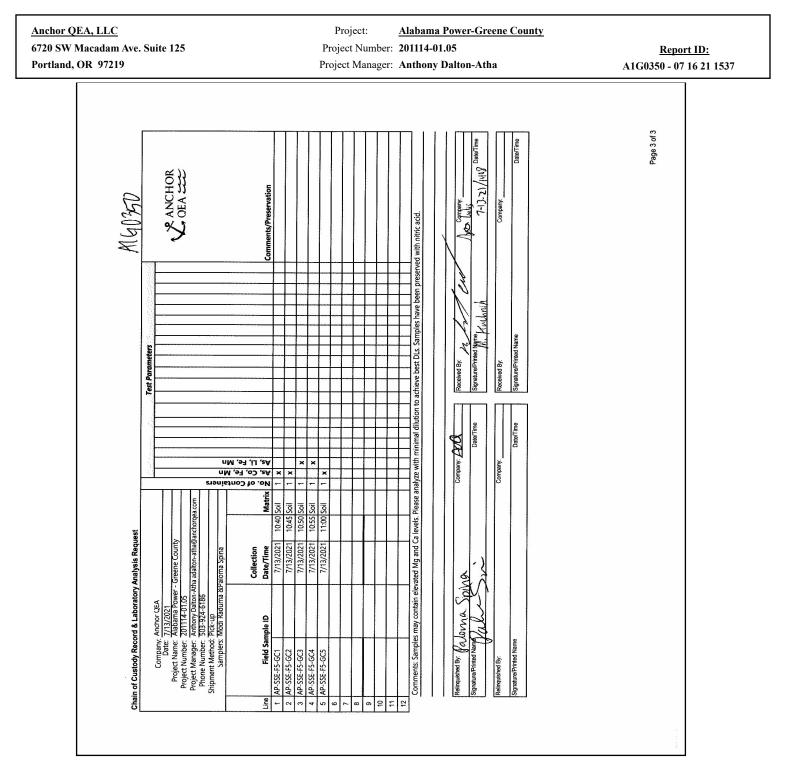
6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062



DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062



DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

DRAFT REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Anchor QEA, LLC	Project:	<u>Alabama Power-Greene County</u>	
6720 SW Macadam Ave. Suite 125	Project Number:	201114-01.05	<u>Report ID:</u>
Portland, OR 97219	Project Manager:	Anthony Dalton-Atha	A1G0350 - 07 16 21 1537
Client: $A_{MC_{40}}$ $A \in A$ Project/Project #: A_{1ab} A_{1ab} A_{1ab} Delivery Info: Date/time received: $7-13-71$ Delivered by: Apex \times Client Cooler Inspection Date/time Chain of Custody included? Signed/dated by client? Signed/dated by Apex? Cooler Temperature (°C) S Received on ice? NN S Received on ice? NN S Received on ice? NN S Received on ice? NN S Cooler out of temp? $(Y \in N)$ Possis Green dots applied to out of temp Out of temperature samples form Sample Inspection: Date/time	APEX LABS COOLE APEX LABS COOLE (a) 1408 By:	R RECEIPT FORM Element WO#: A1[1036] Z01114 - 01.05	D
Bottle labels/COCs agree? Yes	No Comments: m initiated? Yes No propriate for analysis? Yes space? Yes No	X No Comments: NA	

DRAFT REPORT

Service Request No:K2104839

Masa Kanematsu Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: CCR-GC

Dear Masa,

Enclosed are the results of the sample(s) submitted to our laboratory May 04, 2021 For your reference, these analyses have been assigned our service request number **K2104839**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

Mark Harris Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client: Anchor QEA, LLC Project: CCR-GC Sample Matrix: Water Service Request: K2104839 Date Received: 05/04/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Two water samples were received for analysis at ALS Environmental on 05/04/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

<u>Metals:</u>

No significant anomalies were noted with this analysis.

noe D. Dan

Approved by

Date

05/07/2021

SAMPLE DETECTION SUMMARY

CLIENT ID: GC-MW-1-20210503	Lab ID: K2104839-001										
Analyte	Results	Flag	MDL	MRL	Units	Method					
Cobalt, Dissolved	290		0.7	2.1	ug/L	6010C					
CLIENT ID: GC-MW-17-20210503		Lab	D: K2104	839-002							
Analyte	Results	Flag	MDL	MRL	Units	Method					
Arsenic, Dissolved	348		5	21	ug/L	6010C					
Lithium, Dissolved	677		6	21	ug/L	6010C					

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 5 of 21

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
K2104839-001	GC-MW-1-20210503	5/3/2021	1230
K2104839-002	GC-MW-17-20210503	5/3/2021	1300

12104839

Chain of Custody Record & Laboratory Analysis Request

Labo	ratory Number:	503-972-5019							1. 1. ¹ . 1.			Parameters							SP ANICHOR			
	Date:		5/3/2021			1			F					Ι		Ι	I	Γ				V ANCHOR QEA
	Project Name:		CCR-GC			1	ļ	IAI								[Jessica Goin
	Project Number:	20	01114-01.05 Tas	k 02		1	d TA	td TAT 3d TA1		2												6720 SW Macadam Ave
	Project Manager:		Masa Kanematsu] ะ	55.) 3	liss.)		Σ				Б								Suite 125	
	Phone Number:	503-972	2-5001 (Masa Ka	inematsu))	ai l	lt (đi	D)ur	tals	AI, F		hate		Cart	-							Portland OR 97219
Sh	ipment Method:		Fedex Overnigh	ıt		of Containers	Coba	Lithiu	це Ц	als (ospt		anic	as N							
Line	Field S	ample iD	Collect	ion	Matrix	5	Arsenic, Cobalt (diss.) 3d TAT	Arsenic, Lithium(diss.)	Dissolved metals	Total Metals (Al, Fe, Mn)	'ns	Ortho-Phosphate	Alkalinity	Total Organic Carbon	Ammonia as							
Line	rieid 5		Date	Time	Watrix	Š	Arse	Arse	Disse	Tota	Anions	Oth	Alkal	Totai	Amn		Í.					Comments/Preservation
1	GC-MW-1-20210	503	5/3/3021	12:30	Water	6	Х		Х	Х	Х	Х	X	X	Х	İ				T		HNO ₃ preserved, filtered
2	GC-MW-17-20210)503	5/3/3021	13:00	Water	6		Х	Х	Х	Х	х	Х	Х	Х							HNO3 preserved, filtered
3																						
4																						anna ann an Anna ann an Anna ann ann ann
5																					l	
6																						
7																						
8	·····																					
9																						
10																						
11																						
12																						
13																				 		
14																				 		
15 Notes:	Please analyze all ar	alytes with Standard	d TAT on this non		o poted Fr						[
	Dissolved metals: Al	, Sb, As, Ba, Be, B, C	d, Ca, Cr, Co, Fe, I	°b, Li, Mg,	Mn, Mo, N	i, K, Se	, Si, A	g, Na,	nietais 11, Zn),	, preas Anic	e analy ins (Cl,	F, nitra	n s day ste, nit	rite, Su	r possi ilfate)	bie.				 		
	ished by:			Company			·			1	*	Receiv								 	Compa	auv.
	Masa	a Kanematsu				nchor	QEA				ľ	7	Z		~	- ali	nf	}		 	22	\$ 5/4/21 0950
Signatu	re/Print Name:			Date/Tim	e:						ŀ	Signat	ure/Pr	rint Na		200	و مسک ا			 	Date/T	
		22	7		5/3	/2020) 16:40)			ľ										2010/1	inte.
Relinqu	ished by:			Company	с.						F	Receiv	ed by:			·····	·			 C	Compa	iny:
Signatu	re/Print Name:			Date/Tim	e:							Signature/Print Name: Date/Time:								ime		
								ľ									 					

Distribution: A copy will be made for the laboratory and client. The Project file will retain the original.

Page<u>1_</u>of<u>1_</u>

	0		Cooler Recei	nt and	Dreean	vation	Eorm				PM_/	ΛH
ent	Hnch	m AFA		pranu				K01 ~ (-4839	}		
ceived:	5/4/21	Opened: _	5/4/21	By:			Unloaded:		21	Bur	\mathcal{T}	
_	· · · · · · · · · · · · · · · · · · ·		\sim	(- /	01	- ^{0y.} G		
-	were received vi		Fed Ex	UPS	Dh	IL.	PDX	Couri	ier Ha	ind Deli		
-	were received in		ooler Box		Envelope		Other				NA	
	stody seals on coo		NA Y (N)		how many			~			-	
-	t, were custody se		$\mathbf{Y} = \mathbf{N}$	-			ed and dated			Y	Ν	
	· •	resent in cooler?							column belo	W:		
			e sample bottle cont cified temperature r		nin the coc	der; not	ate in the col	umn "San				
		-	as collected? If not	•	ha agalar #	holow	and natify the	- DM	NA	رب بر	' N	
	, tissue samples w		Frozen Partially		ne cooler # Thawea		and notify the	e PM.	NA	Ŷ	N	
	, ussue sumples n			1 nuweu	1 nuwel							
		and the second s		282 -			PN					
emp Blat	uk Sample Ten	ıp IR Gun	Cooler #/COC ID		Out of		Notifi	M.				
БЦ		1RD	SCORE ACCOUNT			MIN A	If out of		Tracking	auro	n a 7.1	File
)17			· · · · · · · · · · · · · · · · · · ·			.	s	<i>(</i>	1361	130	DAT	2
			l			·····						
Packing	; material: Inser	ts Baggies Bu	bble Wrap Gel Pi	icks (W	et Ice Di	y Ice	Sleeves					
Were cu	istody papers proj	perly filled out (inl	k, signed, etc.)?						NA	\bigcirc	N	
Were sa	mples received in	good condition (u	inbroken)						NA	Q	N	
	-	• • •	is, preservation, etc.)?					NA	R	Ν	
	-	tags agree with cu							NA	Ø	N	
-			umes received for the						NA	X	N	
			EN SOP) received a	• •		? Indic	ate in the tab	le below		Y	N	
		I without headspac	ce? Indicate in the t	able belo	W.				(NA)	Y	N	
Was CI	2/Res negative?								(NA)	Y	N	
	Sample ID on	Bottle	S.m.	ple ID or	- COC	e e construir de la construir d La construir de la construir de			Identified	hir		
	Campions on					<u>na secona con</u>			Tuchtaneu			21
							1					
			Bottle Coun	Head		andra an		Volume	Reagent	1.01		:
	Sample	D	Bottle Type			pH	Reagent	added	Numbe		Initials	Time
		A Contraction of the Contraction			╁┈┾			<u> </u>		·		
otoc Di	company n	a a a luti				<u>I</u>					I_	
otes, DI	screpancies, R	esolutions:		THE CONTRACT OF THE PARTY OF TH							·	
-												

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 9 of 21

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 10 of 21

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client:	Anchor QEA, LLC
Project:	CCR-GC/201114-01.05 Task 02

GC-MW-1-20210503

K2104839-001

Water

Service Request: K2104839

Date Collected: 05/3/21 **Date Received:** 05/4/21

Analysis Method 6010C		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GC-MW-17-20210503 K2104839-002 Water		Date Collected: 05/3/21 Date Received: 05/4/21
A			Applyzed By

Analysis Method 6010C

Sample Name:

Sample Matrix:

Lab Code:

Extracted/Digested By ABOYER Analyzed By RMOORE

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 14 of 21

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 15 of 21

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2104839
Project:	CCR-GC/201114-01.05 Task 02	Date Collected:	05/03/21 12:30
Sample Matrix:	Water	Date Received:	05/04/21 09:50
Sample Name: Lab Code:	GC-MW-1-20210503 K2104839-001	Basis:	NA

Dissolved Metals

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	6010C	ND U	ug/L	21	5	1	05/06/21 14:28	05/05/21	
Cobalt	6010C	290	ug/L	2.1	0.7	1	05/06/21 14:28	05/05/21	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2104839
Project:	CCR-GC/201114-01.05 Task 02	Date Collected:	05/03/21 13:00
Sample Matrix:	Water	Date Received:	05/04/21 09:50
Sample Name: Lab Code:	GC-MW-17-20210503 K2104839-002	Basis:	NA

Dissolved Metals

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	6010C	348	ug/L	21	5	1	05/06/21 14:30	05/05/21	
Lithium	6010C	677	ug/L	21	6	1	05/06/21 14:30	05/05/21	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 18 of 21

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 19 of 21

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2104839
Project:	CCR-GC/201114-01.05 Task 02	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank KQ2107366-02	Basis:	NA

Dissolved Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6010C	ND U	ug/L	21	5	1	05/06/21 13:47	05/05/21	
Cobalt	6010C	ND U	ug/L	2.1	0.7	1	05/06/21 13:47	05/05/21	
Lithium	6010C	ND U	ug/L	21	6	1	05/06/21 13:47	05/05/21	

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2104839 **Date Analyzed:** 05/06/21

Lab Control Sample Summary Dissolved Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2107366-01

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6010C	2390	2500	96	80-120
Cobalt	6010C	1220	1250	98	80-120
Lithium	6010C	9310	10000	93	80-120

Service Request No:K2104840

Masa Kanematsu Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: CCR-GC

Dear Masa,

Enclosed are the results of the sample(s) submitted to our laboratory May 04, 2021 For your reference, these analyses have been assigned our service request number **K2104840**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

Mark Harris Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 2 of 41

Client: Anchor QEA, LLC Project: CCR-GC Sample Matrix: Water Service Request: K2104840 Date Received: 05/04/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Two water samples were received for analysis at ALS Environmental on 05/04/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

No significant anomalies were noted with this analysis.

General Chemistry:

Method 300.0, 05/05/2021: The duplicate matrix spike recovery of Sulfate for sample GC-MW-17-20210503 was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. The matrix spike outlier suggested a potential low bias in this matrix. No further corrective action was appropriate.

noe D. Dan

Approved by

Date

Page 3 of 41

06/11/2021

SAMPLE DETECTION SUMMARY

LIENT ID: GC-MW-1-20210503						
Analyte	Results	Flag	MDL	MRL	Units	Method
Alkalinity as CaCO3, Total	7	J	3	15	mg/L	SM 2320 B
Ammonia as Nitrogen	1.90		0.020	0.050	mg/L	350.1
Carbon, Total Organic	2.40		0.07	0.50	mg/L	SM 5310 C
Chloride	24.3		0.04	0.50	mg/L	300.0
Sulfate	1240		0.1	1.0	mg/L	300.0
Aluminum, Dissolved	1.9	J	0.5	4.0	ug/L	200.8
Arsenic, Dissolved	4.19		0.09	0.50	ug/L	200.8
Barium, Dissolved	22.4		0.020	0.050	ug/L	200.8
Boron, Dissolved	156		5	20	ug/L	200.8
Cadmium, Dissolved	0.035		0.008	0.020	ug/L	200.8
Calcium, Dissolved	112000		3	21	ug/L	6010C
Chromium, Dissolved	0.13	J	0.03	0.20	ug/L	200.8
Cobalt, Dissolved	284		0.009	0.020	ug/L	200.8
Iron, Dissolved	214000		3	20	ug/L	200.8
Lithium, Dissolved	2.6		1.0	1.0	ug/L	200.8
Magnesium, Dissolved	43600		0.4	5.3	ug/L	6010C
Manganese, Dissolved	14100		0.4	2.0	ug/L	200.8
Molybdenum, Dissolved	0.04	J	0.03	0.10	ug/L	200.8
Nickel, Dissolved	58.9		0.04	0.20	ug/L	200.8
Potassium, Dissolved	3570		60	420	ug/L	6010C
Silicon, Dissolved	6350		30	210	ug/L	6010C
Sodium, Dissolved	64000		30	210	ug/L	6010C
Thallium, Dissolved	0.127		0.009	0.020	ug/L	200.8
Zinc, Dissolved	58.1		0.5	2.0	ug/L	200.8
Aluminum	7.6		0.5	4.0	ug/L	200.8
Iron	213000		3	20	ug/L	200.8
Manganese	14400		0.4	2.0	ug/L	200.8

CLIENT ID: GC-MW-17-20210503						
Analyte	Results	Flag	MDL	MRL	Units	Method
Alkalinity as CaCO3, Total	446		3	15	mg/L	SM 2320 B
Ammonia as Nitrogen	0.388		0.020	0.050	mg/L	350.1
Carbon, Total Organic	1.60		0.07	0.50	mg/L	SM 5310 C
Fluoride	0.94		0.01	0.20	mg/L	300.0
Nitrate as Nitrogen	0.04	J	0.02	0.10	mg/L	300.0
Sulfate	83.7		0.4	4.0	mg/L	300.0
Aluminum, Dissolved	1.3	J	0.5	4.0	ug/L	200.8
Arsenic, Dissolved	343		0.09	0.50	ug/L	200.8
Barium, Dissolved	299		0.020	0.050	ug/L	200.8
Boron, Dissolved	2350		10	40	ug/L	200.8
Calcium, Dissolved	117000		3	21	ug/L	6010C
Chromium, Dissolved	0.06	J	0.03	0.20	ug/L	200.8

SAMPLE DETECTION SUMMARY

CLIENT ID: GC-MW-17-20210503						
Analyte	Results	Flag	MDL	MRL	Units	Method
Cobalt, Dissolved	12.6		0.009	0.020	ug/L	200.8
Iron, Dissolved	19300		6	40	ug/L	200.8
Lithium, Dissolved	685		2.0	2.0	ug/L	200.8
Magnesium, Dissolved	30900		0.4	5.3	ug/L	6010C
Manganese, Dissolved	2280		0.8	4.0	ug/L	200.8
Molybdenum, Dissolved	65.1		0.03	0.10	ug/L	200.8
Nickel, Dissolved	7.46		0.04	0.20	ug/L	200.8
Potassium, Dissolved	13800		60	420	ug/L	6010C
Silicon, Dissolved	9240		30	210	ug/L	6010C
Sodium, Dissolved	58100		30	210	ug/L	6010C
Zinc, Dissolved	2.7		0.5	2.0	ug/L	200.8
Aluminum	1.2	J	0.5	4.0	ug/L	200.8
Iron	25100		6	40	ug/L	200.8
Manganese	2350		0.8	4.0	ug/L	200.8

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 41

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
K2104840-001	GC-MW-1-20210503	5/3/2021	1230
K2104840-002	GC-MW-17-20210503	5/3/2021	1300

K2104840

Chain of Custody Record & Laboratory Analysis Request

Labo	ratory Number:	503-972-5019												Parar	nete	rs				·			ANCHOR
	Date:		5/3/2021			1		Τ			Τ	T	Τ	Τ		Τ	Ī	Ι	Τ	T	1	T	QEA ====
	Project Name:		CCR-GC			1		3d TAT												l			Jessica Goin
	Project Number:	20	1114-01.05 Tas	k 02		1	d TA																6720 SW Macadam Ave
1	Project Manager:		Masa Kanemat	su		S S	ss.) 3	iss.)		ž				Ę						1			Suite 125
	Phone Number:	503-972	-5001 (Masa Ka	nematsu)		ft (di	D u	als	₩		ate		ar Car									Portland OR 97219
Sh	ipment Method:		Fedex Overnigl	nt		of Containers	oba	Ethiu .	met	als (dso		anic	as N								
Line	Pald C	ample ID	Collect	ion	<u></u>		Arsenic, Cobalt (diss.) 3d TAT	Arsenic, Lithium(diss.)	pived	Met	۲ ۲	4-0	inity	ő	onia								
Line	rieid S	ample ID	Date	Time	Matrix	Ś	Arse	Arse	Dissolved metals	Total Metals (Al, Fe, Mn)	Anions	Ortho-Phosphate	Alkalinity	Total Organic Carbon	Ammonia as N							1	Comments/Preservation
1	GC-MW-1-202105	503	5/3/3021	12:30	Water	6	х		Х	X	Х	х	Х	х	х								HNO ₃ preserved, filtered
2	GC-MW-17-20210)503	5/3/3021	13:00	Water	6		X	Х	X	Х	Х	Х	Х	х	1					[1	HNO₃ preserved, filtered
3																					1	1	
4																							
5																							
6																							
7																							
8																							
9																							
10																							
11																							
12																							
13																							
14																							
15	Diezes anothers all an	alytes with Standard	Tat on this man								<u> </u>												
INOLES.	Dissolved metals: Al	, Sb, As, Ba, Be, B, Cd	, Ca, Cr, Co, Fe, I	e omerwis °b, Lì, Mg,	Mrs, Mo, N	r speci I, K, Se	Si A	solved g. Na, '	metals II, Zn),	, pleas Anio	e analy ns (Cl,	/ze wit F, nitr	h 3 day ate, nit	rite, Su	i possi ilfate)	ble.		··					
	ished by:			Company								Receiv										Comp	2016
	in the second	Kanematsu				nchor	OFA				ŀ		\sum				nf	,				an	S 5/4/21 0950
Sionatu	re/Print Name:			Date/Tim								tin at		int Na		~~~	24					7 Date/	
		2-2-				/2020	16:40	۱		+	ľ	Jugnat	ule/Fi	INC INC	me.							Date/	ame.
		12	*			~ 2021	10,40	,			L												
Relinqui	shed by:			Company	:						F	Receiv	ed by:									Comp	any:
Signatu	re/Print Name:			Date/Time	e:							Signat	ure/Pr	int Na	me:							Date/	lime:

Distribution: A copy will be made for the laboratory and client. The Project file will retain the original.

Page__1__of__1__

Cooler Receipt and Preservation Form	PM_MH
ent <u>Anchor OEA</u> Service Request K21 048 40	
ceived: <u>5/4/21</u> Opened: <u>5/4/21</u> By:Unloaded: <u>5/4/21</u>	<u> </u>
	By:
	and Delivered
Samples were received in: (circle) Cooler Box Envelope Other	NA
Were <u>custody seals</u> on coolers? NA Y (N) If yes, how many and where?	
If present, were custody seals intact? Y N If present, were they signed and dated?	Y N
Vas a Temperature Blank present in cooler? NA (y) N If yes, notate the temperature in the appropriate column below	
If no, take the temperature of a representative sample bottle contained within the cooler; notate in the column "Sample Temp":	_
Were samples received within the method specified temperature ranges? NA	🖌 N
If no, were they received on ice and same day as collected? If not, notate the cooler # below and notify the PM.	Y N
pplicable, tissue samples were received: Frozen Partially Thawed Thawed	
emp Blank Sample Temp IR Gun Cooler #COC ID (NA) Undicate with % If out of temp Trackin	g Number NA File
5.4 - IROI 77361	9430275
Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves	
Were custody papers properly filled out (ink, signed, etc.)? NA	(y) N
Were samples received in good condition (unbroken) NA	Q N
Were all sample labels complete (ie, analysis, preservation, etc.)? NA	N N
Did all sample labels and tags agree with custody papers? NA	⊗ N
Were appropriate bottles/containers and volumes received for the tests indicated? NA Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA	N N
	13% B
Were VOA vials received without headspace? Indicate in the table below.	Y N
was C12/Res negative?	Y N
Sample ID on Bottle Sample ID on COC Identified	bv:
	······································
	·····
Bottle Count Head-	
Sample ID Bottle Type space Broke pH Resgent added Numb	er initials Time
All 1-250mL P K 1/250y 0.5ml 19-GEN.	07-19-1 CG 13-6
otes, Discrepancies, Resolutions	
	······································

Page 9 of 41

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 10 of 41

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 11 of 41

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client:	Anchor QEA, LLC
Project:	CCR-GC/201114-01.05 Task 02

Service Request: K2104840

Sample Name:	GC-MW-1-20210503	Date Collected: 05/3/21
Lab Code:	K2104840-001	Date Received: 05/4/21
Sample Matrix:	Water	

Analysis Method		Extracted/Digested By	Analyzed By
200.8		ABOYER	RMOORE
300.0			KABROWN
350.1		ESCHLOSS	ESCHLOSS
6010C		ABOYER	RMOORE
SM 2320 B			GOLSON
SM 4500-P E			BNETLING
SM 5310 C			MSPECHT
Sample Name:	GC-MW-1-20210503	J	Date Collected: 05/3/21
Lab Code:	K2104840-001.R01		Date Received: 05/4/21
Sample Matrix:	Water		
Analysis Method		Extracted/Digested By	Analyzed By
300.0			KABROWN
Sample Name:	GC-MW-17-20210503]	Date Collected: 05/3/21
Lab Code:	K2104840-002		Date Received: 05/4/21
Sample Matrix:	Water		
Analysis Method		Extracted/Digested By	Analyzed By
200.8		ABOYER	RMOORE
300.0			KABROWN
350.1		ESCHLOSS	ESCHLOSS
6010C		ABOYER	RMOORE
SM 2320 B			GOLSON
SM 4500-P E			BNETLING
SM 5310 C			MSPECHT

Analyst Summary report

Client:	Anchor QEA, LLC
Project:	CCR-GC/201114-01.05 Task 02

Service Request: K2104840

 Sample Name:
 GC-MW-17-20210503

 Lab Code:
 K2104840-002.R01

 Sample Matrix:
 Water

Date Collected: 05/3/21 **Date Received:** 05/4/21

Analysis Method 300.0

Extracted/Digested By

Analyzed By KABROWN

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 16 of 41

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 17 of 41

Analytical Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2104840 Date Collected: 05/03/21 12:30 Date Received: 05/04/21 09:50

Basis: NA

 Sample Name:
 GC-MW-1-20210503

 Lab Code:
 K2104840-001

Dissolved Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Aluminum	200.8	1.9 J	ug/L	4.0	0.5	1	06/10/21 14:48	05/28/21	
Antimony	200.8	ND U	ug/L	0.050	0.020	1	06/10/21 14:48	05/28/21	
Arsenic	200.8	4.19	ug/L	0.50	0.09	1	06/10/21 14:48	05/28/21	
Barium	200.8	22.4	ug/L	0.050	0.020	1	06/10/21 14:48	05/28/21	
Beryllium	200.8	ND U	ug/L	0.20	0.05	10	06/10/21 12:44	05/28/21	
Boron	200.8	156	ug/L	20	5	10	06/10/21 12:44	05/28/21	
Cadmium	200.8	0.035	ug/L	0.020	0.008	1	06/10/21 14:48	05/28/21	
Calcium	6010C	112000	ug/L	21	3	1	05/25/21 18:26	05/07/21	
Chromium	200.8	0.13 J	ug/L	0.20	0.03	1	06/10/21 14:48	05/28/21	
Cobalt	200.8	284	ug/L	0.020	0.009	1	06/10/21 14:48	05/28/21	
Iron	200.8	214000	ug/L	20	3	10	06/10/21 12:44	05/28/21	
Lead	200.8	ND U	ug/L	0.020	0.006	1	06/10/21 14:48	05/28/21	
Lithium	200.8	2.6	ug/L	1.0	1.0	10	06/10/21 12:44	05/28/21	
Magnesium	6010C	43600	ug/L	5.3	0.4	1	05/25/21 18:26	05/07/21	
Manganese	200.8	14100	ug/L	2.0	0.4	10	06/10/21 12:44	05/28/21	
Molybdenum	200.8	0.04 J	ug/L	0.10	0.03	1	06/10/21 14:48	05/28/21	
Nickel	200.8	58.9	ug/L	0.20	0.04	1	06/10/21 14:48	05/28/21	
Potassium	6010C	3570	ug/L	420	60	1	05/25/21 18:26	05/07/21	
Selenium	200.8	ND U	ug/L	1.0	0.2	1	06/10/21 14:48	05/28/21	
Silicon	6010C	6350	ug/L	210	30	1	05/25/21 18:26	05/07/21	
Silver	200.8	ND U	ug/L	0.020	0.009	1	06/10/21 14:48	05/28/21	
Sodium	6010C	64000	ug/L	210	30	1	05/25/21 18:26	05/07/21	
Thallium	200.8	0.127	ug/L	0.020	0.009	1	06/10/21 14:48	05/28/21	
Zinc	200.8	58.1	ug/L	2.0	0.5	1	06/10/21 14:48	05/28/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2104840
Project:	CCR-GC/201114-01.05 Task 02	Date Collected: 05/03/21 12:30
Sample Matrix:	Water	Date Received: 05/04/21 09:50
Sample Name: Lab Code:	GC-MW-1-20210503 K2104840-001	Basis: NA

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Aluminum	200.8	7.6	ug/L	4.0	0.5	1	06/10/21 14:36	05/28/21	
Iron	200.8	213000	ug/L	20	3	10	06/10/21 12:34	05/28/21	
Manganese	200.8	14400	ug/L	2.0	0.4	10	06/10/21 12:34	05/28/21	

Analytical Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2104840 Date Collected: 05/03/21 13:00 Date Received: 05/04/21 09:50

Basis: NA

 Sample Name:
 GC-MW-17-20210503

 Lab Code:
 K2104840-002

Dissolved Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Aluminum	200.8	1.3 J	ug/L	4.0	0.5	1	06/10/21 14:50	05/28/21	
Antimony	200.8	ND U	ug/L	0.050	0.020	1	06/10/21 14:50	05/28/21	
Arsenic	200.8	343	ug/L	0.50	0.09	1	06/10/21 14:50	05/28/21	
Barium	200.8	299	ug/L	0.050	0.020	1	06/10/21 14:50	05/28/21	
Beryllium	200.8	ND U	ug/L	0.40	0.10	20	06/10/21 12:46	05/28/21	
Boron	200.8	2350	ug/L	40	10	20	06/10/21 12:46	05/28/21	
Cadmium	200.8	ND U	ug/L	0.020	0.008	1	06/10/21 14:50	05/28/21	
Calcium	6010C	117000	ug/L	21	3	1	05/25/21 18:29	05/07/21	
Chromium	200.8	0.06 J	ug/L	0.20	0.03	1	06/10/21 14:50	05/28/21	
Cobalt	200.8	12.6	ug/L	0.020	0.009	1	06/10/21 14:50	05/28/21	
Iron	200.8	19300	ug/L	40	6	20	06/10/21 12:46	05/28/21	
Lead	200.8	ND U	ug/L	0.020	0.006	1	06/10/21 14:50	05/28/21	
Lithium	200.8	685	ug/L	2.0	2.0	20	06/10/21 12:46	05/28/21	
Magnesium	6010C	30900	ug/L	5.3	0.4	1	05/25/21 18:29	05/07/21	
Manganese	200.8	2280	ug/L	4.0	0.8	20	06/10/21 12:46	05/28/21	
Molybdenum	200.8	65.1	ug/L	0.10	0.03	1	06/10/21 14:50	05/28/21	
Nickel	200.8	7.46	ug/L	0.20	0.04	1	06/10/21 14:50	05/28/21	
Potassium	6010C	13800	ug/L	420	60	1	05/25/21 18:29	05/07/21	
Selenium	200.8	ND U	ug/L	1.0	0.2	1	06/10/21 14:50	05/28/21	
Silicon	6010C	9240	ug/L	210	30	1	05/25/21 18:29	05/07/21	
Silver	200.8	ND U	ug/L	0.020	0.009	1	06/10/21 14:50	05/28/21	
Sodium	6010C	58100	ug/L	210	30	1	05/25/21 18:29	05/07/21	
Thallium	200.8	ND U	ug/L	0.020	0.009	1	06/10/21 14:50	05/28/21	
Zinc	200.8	2.7	ug/L	2.0	0.5	1	06/10/21 14:50	05/28/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2104840
Project:	CCR-GC/201114-01.05 Task 02	Date Collected:	05/03/21 13:00
Sample Matrix:	Water	Date Received:	05/04/21 09:50
Sample Name: Lab Code:	GC-MW-17-20210503 K2104840-002	Basis:	NA

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Aluminum	200.8	1.2 J	ug/L	4.0	0.5	1	06/10/21 14:45	05/28/21	
Iron	200.8	25100	ug/L	40	6	20	06/10/21 12:41	05/28/21	
Manganese	200.8	2350	ug/L	4.0	0.8	20	06/10/21 12:41	05/28/21	

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 22 of 41

Analytical Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2104840 Date Collected: 05/03/21 12:30 Date Received: 05/04/21 09:50

Basis: NA

 Sample Name:
 GC-MW-1-20210503

 Lab Code:
 K2104840-001

General Chemistry Parameters

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Alkalinity as CaCO3, Total	SM 2320 B	7 J	mg/L	15	3	1	05/05/21 18:30	NA	
Ammonia as Nitrogen	350.1	1.90	mg/L	0.050	0.020	1	05/06/21 11:48	05/06/21	
Carbon, Total Organic	SM 5310 C	2.40	mg/L	0.50	0.07	1	05/17/21 14:51	NA	
Chloride	300.0	24.3	mg/L	0.50	0.04	5	05/05/21 19:50	NA	
Fluoride	300.0	ND U	mg/L	0.20	0.01	2	05/04/21 20:31	NA	
Nitrate as Nitrogen	300.0	ND U	mg/L	0.10	0.02	2	05/04/21 20:31	NA	
Nitrite as Nitrogen	300.0	ND U	mg/L	0.10	0.006	2	05/04/21 20:31	NA	
Orthophosphate as Phosphorus	SM 4500-P E	ND U	mg/L	0.050	0.020	1	05/04/21 15:20	NA	
Sulfate	300.0	1240	mg/L	1.0	0.1	5	05/05/21 19:50	NA	

Analytical Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2104840 Date Collected: 05/03/21 13:00 Date Received: 05/04/21 09:50

Basis: NA

 Sample Name:
 GC-MW-17-20210503

 Lab Code:
 K2104840-002

General Chemistry Parameters

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Alkalinity as CaCO3, Total	SM 2320 B	446	mg/L	15	3	1	05/05/21 18:30	NA	
Ammonia as Nitrogen	350.1	0.388	mg/L	0.050	0.020	1	05/06/21 11:48	05/06/21	
Carbon, Total Organic	SM 5310 C	1.60	mg/L	0.50	0.07	1	05/17/21 14:51	NA	
Fluoride	300.0	0.94	mg/L	0.20	0.01	2	05/04/21 21:17	NA	
Nitrate as Nitrogen	300.0	0.04 J	mg/L	0.10	0.02	2	05/04/21 21:17	NA	
Nitrite as Nitrogen	300.0	ND U	mg/L	0.10	0.006	2	05/04/21 21:17	NA	
Orthophosphate as Phosphorus	SM 4500-P E	ND U	mg/L	0.050	0.020	1	05/04/21 15:20	NA	
Sulfate	300.0	83.7	mg/L	4.0	0.4	20	05/05/21 19:59	NA	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 25 of 41

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 26 of 41

Analytical Report

Client:Anchor QEA, LLCService Request:K2104840Project:CCR-GC/201114-01.05 Task 02Date Collected:NASample Matrix:WaterDate Received:NASample Name:Method BlankBasis:NALab Code:KQ2107495-02KQ2107495-02KQ2107495-02

Dissolved Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Calcium	6010C	ND U	ug/L	21	3	1	05/25/21 16:48	05/07/21	
Magnesium	6010C	ND U	ug/L	5.3	0.4	1	05/25/21 16:48	05/07/21	
Potassium	6010C	ND U	ug/L	420	60	1	05/25/21 16:48	05/07/21	
Silicon	6010C	40 J	ug/L	210	30	1	05/25/21 16:48	05/07/21	
Sodium	6010C	ND U	ug/L	210	30	1	05/25/21 16:48	05/07/21	

Analytical Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:WaterSample Name:Method BlankLab Code:KQ2108788-01

Service Request: K2104840 Date Collected: NA Date Received: NA

Basis: NA

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Aluminum	200.8	1.1 J	ug/L	4.0	0.5	1	06/10/21 12:29	05/28/21	
Antimony	200.8	ND U	ug/L	0.050	0.020	1	06/10/21 12:29	05/28/21	
Arsenic	200.8	ND U	ug/L	0.50	0.09	1	06/10/21 12:29	05/28/21	
Barium	200.8	ND U	ug/L	0.050	0.020	1	06/10/21 12:29	05/28/21	
Beryllium	200.8	ND U	ug/L	0.020	0.005	1	06/10/21 12:29	05/28/21	
Boron	200.8	ND U	ug/L	2.0	0.5	1	06/10/21 12:29	05/28/21	
Cadmium	200.8	ND U	ug/L	0.020	0.008	1	06/10/21 12:29	05/28/21	
Chromium	200.8	ND U	ug/L	0.20	0.03	1	06/10/21 12:29	05/28/21	
Cobalt	200.8	ND U	ug/L	0.020	0.009	1	06/10/21 12:29	05/28/21	
Iron	200.8	ND U	ug/L	2.0	0.3	1	06/10/21 12:29	05/28/21	
Lead	200.8	ND U	ug/L	0.020	0.006	1	06/10/21 12:29	05/28/21	
Lithium	200.8	ND U	ug/L	0.10	0.10	1	06/10/21 12:29	05/28/21	
Manganese	200.8	ND U	ug/L	0.20	0.04	1	06/10/21 12:29	05/28/21	
Molybdenum	200.8	ND U	ug/L	0.10	0.03	1	06/10/21 12:29	05/28/21	
Nickel	200.8	ND U	ug/L	0.20	0.04	1	06/10/21 12:29	05/28/21	
Selenium	200.8	ND U	ug/L	1.0	0.2	1	06/10/21 12:29	05/28/21	
Silver	200.8	ND U	ug/L	0.020	0.009	1	06/10/21 12:29	05/28/21	
Thallium	200.8	ND U	ug/L	0.020	0.009	1	06/10/21 12:29	05/28/21	
Zinc	200.8	ND U	ug/L	2.0	0.5	1	06/10/21 12:29	05/28/21	

QA/QC Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2104840 **Date Analyzed:** 05/25/21

Lab Control Sample Summary Dissolved Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2107495-01

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Calcium	6010C	12600	12500	101	80-120
Magnesium	6010C	12700	12500	102	80-120
Potassium	6010C	12600	12500	101	80-120
Sodium	6010C	12600	12500	101	80-120

QA/QC Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2104840 **Date Analyzed:** 05/25/21

Lab Control Sample Summary Dissolved Metals

Units:ug/L Basis:NA

Lab Control Sample KQ2107495-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Silicon	6010C	10100	10000	101	80-120

QA/QC Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2104840 **Date Analyzed:** 06/10/21

Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2108788-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	200.8	109	100	109	85-115
Iron	200.8	51.7	50.0	103	85-115
Manganese	200.8	25.6	25.0	103	85-115

QA/QC Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2104840 **Date Analyzed:** 06/10/21

Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

Lab Control Sample KQ2108788-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Antimony	200.8	10.1	10.0	101	85-115
Arsenic	200.8	52.0	50.0	104	85-115
Barium	200.8	102	100	102	85-115
Beryllium	200.8	2.59	2.50	104	85-115
Boron	200.8	24.8	25.0	99	85-115
Cadmium	200.8	25.9	25.0	104	85-115
Chromium	200.8	10.4	10.0	104	85-115
Cobalt	200.8	25.6	25.0	102	85-115
Lead	200.8	50.6	50.0	101	85-115
Lithium	200.8	51.9	50.0	104	85-115
Molybdenum	200.8	26.5	25.0	106	85-115
Nickel	200.8	25.9	25.0	104	85-115
Selenium	200.8	53.6	50.0	107	85-115
Silver	200.8	12.6	12.5	101	85-115
Thallium	200.8	52.3	50.0	105	85-115
Zinc	200.8	26.4	25.0	106	85-115

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 33 of 41

Analytical Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2104840 Date Collected: NA Date Received: NA

Basis: NA

Sample Name:Method BlankLab Code:K2104840-MB1

General Chemistry Parameters

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Alkalinity as CaCO3, Total	SM 2320 B	5 J	mg/L	15	3	1	05/05/21 18:30	NA	
Ammonia as Nitrogen	350.1	ND U	mg/L	0.050	0.020	1	05/06/21 11:48	05/06/21	
Carbon, Total Organic	SM 5310 C	ND U	mg/L	0.50	0.07	1	05/17/21 14:51	NA	
Chloride	300.0	ND U	mg/L	0.10	0.007	1	05/05/21 15:45	NA	
Fluoride	300.0	ND U	mg/L	0.10	0.005	1	05/04/21 10:32	NA	
Nitrate as Nitrogen	300.0	ND U	mg/L	0.050	0.007	1	05/04/21 10:32	NA	
Nitrite as Nitrogen	300.0	ND U	mg/L	0.050	0.003	1	05/04/21 10:32	NA	
Orthophosphate as Phosphorus	SM 4500-P E	ND U	mg/L	0.050	0.020	1	05/04/21 15:20	NA	
Sulfate	300.0	0.05 J	mg/L	0.20	0.02	1	05/05/21 15:45	NA	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2104840
Project:	CCR-GC/201114-01.05 Task 02	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	Method Blank K2104840-MB2	Basis: NA

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Fluoride	300.0	ND U	mg/L	0.10	0.005	1	05/04/21 19:09	
Nitrate as Nitrogen	300.0	ND U	mg/L	0.050	0.007	1	05/04/21 19:09	
Nitrite as Nitrogen	300.0	ND U	mg/L	0.050	0.003	1	05/04/21 19:09	

QA/QC Report

Client:	Anchor Q	EA, LLC					Se	rvice Req	uest:K210	4840	
Project:	CCR-GC	/201114-01.0	5 Task 02				Ι	Date Colle	cted:05/03	/21	
Sample Matrix: Water]	Date Rece	ived:05/04	/21			
_							Ι	Date Analy	yzed:5/4/2	1	
				plicate Matr eneral Chen	-	•					
Sample Name:	GC-MW-	1-20210503						τ	J nits: mg/L		
Lab Code:	K210484	0-001						E	Basis:NA		
					rix Spike 840-001M		Duplicate K210484	Matrix Sf 10-001DM			
		Sample		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Fluoride	300.0	ND U	8.08	8.00	101	8.23	8.00	103	90-110	2	20
Nitrate as Nitrogen	300.0	ND U	7.70	8.00	96	7.76	8.00	97	90-110	<1	20
											• •

8.00

96

7.77

8.00

97

90-110

<1

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Nitrite as Nitrogen

300.0

ND U

7.71

QA/QC Report

Client:	Anchor QEA	, LLC				Ser	vice Reque	st: K2	2104840	
Project:	CCR-GC/201	114-01.05 Ta	ask 02			Dat	e Collected	l: 05	/03/21	
Sample Matrix:	Water					Dat	e Received	: 05	/04/21	
						Dat	e Analyzec	l: 05	/5/21	
						Dat	e Extracte	d: NA	4	
			Duplicat	e Matrix S	pike Sumr	nary				
			•	Sulfat	-	J				
Sample Name:	GC-MW-17-	20210503					Unit	s: mg	g/L	
Lab Code:	K2104840-00	02					Basi	s: NA	4	
Analysis Method:	300.0									
Prep Method:	None									
				x Spike 0-002MS		Duplicate M K2104840	-	e		
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Sulfate	83.7	161	80.0	97	154	80.0	88 *	90-110	5	20

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client:	Anchor QEA, LI	LC				Service Reque	st: K2104	840
Project	CCR-GC/201114	4-01.05 Tasl	x 02			Date Collecte	d: 05/03/2	21
Sample Matrix:	Water					Date Receive	d: 05/04/2	21
						Date Analyze	d: 05/04/2	21
			Replicate	Sample Sum	mary			
			General Ch	nemistry Para	meters			
Sample Name:	GC-MW-1-2021	0503				Uni	ts: mg/L	
Lab Code:	K2104840-001					Bas	is: NA	
					Duplicate			
					Sample K2104840-			
	Analysis			Sample	001DUP			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Fluoride	300.0	0.20	0.01	ND U	ND U	NC	NC	20
Nitrate as Nitrogen	300.0	0.10	0.02	ND U	ND U	NC	NC	20
Nitrite as Nitrogen	300.0	0.10	0.006	ND U	ND U	NC	NC	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Anchor QEA, LLC					Service Request:	K21048	40
Project	CCR-GC/201114-01.05 T	ask 02				Date Collected:	05/03/2	1
Sample Matrix:	Water					Date Received:	05/04/2	1
						Date Analyzed:	05/05/2	1
		Rep	olicate Samj	ple Summary	,			
		Gene	ral Chemist	try Paramete	rs			
Sample Name:	GC-MW-17-20210503					Units:	mg/L	
Lab Code:	K2104840-002					Basis:	NA	
					Duplicate Sample			
	Analysis			Sample	K2104840- 002DUP			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Sulfate	300.0	4.0	0.4	83.7	78.5	81.1	6	20
Alkalinity as CaCO3, Tota	I SM 2320 B	15	3	446	451	449	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2104840 Date Analyzed: 05/04/21 - 05/17/21

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample K2104840-LCS1

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Alkalinity as CaCO3, Total	SM 2320 B	182	180	101	90-110
Ammonia as Nitrogen	350.1	5.50	5.36	103	86-114
Carbon, Total Organic	SM 5310 C	26.3	25.0	105	83-117
Chloride	300.0	4.68	5.00	94	90-110
Fluoride	300.0	4.76	5.00	95	90-110
Nitrate as Nitrogen	300.0	2.38	2.50	95	90-110
Nitrite as Nitrogen	300.0	2.37	2.50	95	90-110
Orthophosphate as Phosphorus	SM 4500-P E	1.54	1.57	98	85-115
Sulfate	300.0	4.86	5.00	97	90-110

QA/QC Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2104840 Date Analyzed: 05/04/21 - 05/05/21

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample K2104840-LCS2

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Alkalinity as CaCO3, Total	SM 2320 B	195	180	108	90-110
Fluoride	300.0	5.04	5.00	101	90-110
Nitrate as Nitrogen	300.0	2.43	2.50	97	90-110
Nitrite as Nitrogen	300.0	2.41	2.50	97	90-110

Service Request No:K2105586

Masa Kanematsu Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: CCR-GC

Dear Masa,

Enclosed are the results of the sample(s) submitted to our laboratory May 04, 2021 For your reference, these analyses have been assigned our service request number **K2105586**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

Mark Harris Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client: Anchor QEA, LLC Project: CCR-GC Sample Matrix: Water Service Request: K2105586 Date Received: 05/04/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Two water samples were received for analysis at ALS Environmental on 05/04/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

Method 200.8, 06/08/2021: The laboratory does not maintain a Method Detection Limit (MDL) study for Lithium by ICPMS. Lithium is a non-standard target analyte for this methodology at the Kelso lab. Results are reported to the Method Reporting Limit (MRL) for this analyte.

noe D. Dan

Approved by

Date ____

06/09/2021

SAMPLE DETECTION SUMMARY

CLIENT ID: GC-MW-1-20210503	Lab ID: K2105586-001									
Analyte	Results	Flag	MDL	MRL	Units	Method				
Arsenic, Dissolved	4.1		0.2	1.3	ug/L	200.8				
Cobalt, Dissolved	283		0.023	0.050	ug/L	200.8				

CLIENT ID: GC-MW-17-20210503	Lab ID: K2105586-002										
Analyte	Results	Flag	MDL	MRL	Units	Method					
Arsenic, Dissolved	358		1.1	6.3	ug/L	200.8					
Lithium, Dissolved	657		1.3	1.3	ug/L	200.8					

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 5 of 21

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
K2105586-001	GC-MW-1-20210503	5/3/2021	1230
K2105586-002	GC-MW-17-20210503	5/3/2021	1300

H12105586 - K2104839 stig

Chain of Custody Record & Laboratory Analysis Request

	,	972-5019						1.11			17.15			Parar	nete	rs	114.05		• • • • •	1.12			S ANCHOR
	Date:		5/3/2021]		Ţ	Ι	ſ	Γ	1	Ι	Ι	Γ	Τ	Τ	Τ	T	Τ		1	QEA SEE
	Project Name:		CCR-GC]		3d TA1				1		Į									Jessica Goin
1	Project Number:	20	01114-01.05 Tas	k 02		1	3d IA]	3d			1												6720 SW Macadam Ave
Р	Project Manager:		Masa Kanemat	ទប		l s	5 \$.) 3	iss ((UW)				Ę									Suite 125
	Phone Number:	503-972	2-5001 (Masa Ka	inematsu)	Ē	it (di	Ē	ste	AI, F		late		Cart]_								Portland OR 97219
Shi	ipment Method:		Fedex Overnigh	nt		Containers	Cobalt (diss.)	Arsenic, Lithium(diss.)	metals) ste		deso		anic	as								i ordana ok srers
Line	Field Samp	. 10	Collect	ion	<u></u>	5	je U	'n,	- A	Nel	ŝ	4-0	ţ	org	ionia								
Line	rieiu sampi		Date	Time	Matrix	Ŝ	Arsenic,	Arse	Dissolved	Total Metals (Al, Fe,	Anions	Ortha-Phosphate	Alkalinity	Total Organic Carbon	Ammonia as N		[Comments/Preservation
1	GC-MW-1-20210503		5/3/3021	12:30	Water	6	X		X	x	X	X	X	X	X	1	1	1	1				HNO3 preserved, filtered
2	GC-MW-17-20210503		5/3/3021	13:00	Water	6		Х	Х	X	X	X	Х	X	Х	T		1	t	1		1	HNO ₃ preserved, filtered
3																							
4																Ι							
5																	Ι	Ι.					
6																							
7																							
8							ļ																
9																ļ	<u> </u>	ļ					
10																ļ		ļ					
11		****														ļ	ļ	ļ	ļ				
12 13	······································															ļ	ļ	<u> </u>					
14	·····															<u> </u>	ļ	 					
15																	ļ	<u> </u>					
E	Please analyze all analyte	with Standard	I TAT on this pag	e otherwis	e noted. Fo	r sper	ifir dis	solved	metals		e anai				fnace	ibia	L	l	_				
D	Dissolved metals: Al, Sb, J	s, Ba, Be, B, Co	d. Ca, Cr. Co. Fe, I	Pb, Li, Mg,	Mn, Mo, N	i, K. So	, Si, A	g, Na. '	11, Zn),	Anic	xns (Cl,	, F, aitr	ate, nil	brite, Sc	ulfate)								
elinqui	ished by:			Company	r.							Receiv	red by	:								Comp	pany:
	Masa Kan	ematsu			A	nchor	QEA					4	R	/	-5	-1	ozí	^				******	\$ 5/4/21 0950
ignatur	re/Print Name:			Date/Tim	e:							Signat	ture/Pi	rint Na								<u>۴</u>	<u> </u>
		2	2		5/3	/2020) 16:4)				-											
elinquis	shed by:		·····	Company	ç							Receiv	red by	:								Comp	pany:
ignatur	e/Print Name:			Date/Tim	e:							Signat	ure/P	rint Na	me:							Date/	Time:

Distribution: A copy will be made for the laboratory and client. The Project file will retain the original.

Page 1_of 1_

	Anch	AEL	Cooler R	leceipt an	d Preservat		1/210	155 79	6	рм <u> М</u>	<u>+</u>
ent	MICION	VEA	Flita			ervice Request	K21 0 4 7	37		1/2	
ceived: $5/$	7/21	_ Opened: _	5/4/2	<u>-/</u> B	IV:	Unloaded:	<u>5/4/2</u>	/	_By:	//	
Samples wer	re received via?	USPS	Fed Ex	UPS		PDX	Courier	Ha	nd Deliv	ered	
Samples wer	re received in: (cir	cie) C	ooler	Box	Envelope	Other				NA	
Were custody	y seals on coolers?		NA Y	N) If ye	s, how many and	l where?					
If present, we	ere custody seals in	ntact?	Ŷ	N If pr	esent, were they	signed and dated	?		Y	N	
Was a Temper	rature Blank prese	nt in cooler?	NA (Y)	N If ye	s, notate the tem	perature in the ap	propriate colu	mn belo	w:		
If no, take the	e temperature of a	representativo	e sample bott	le contained w	vithin the cooler;	notate in the colu	imn "Sample"	Femp":			
Were samples	received within th	e method spe	cified temper	ature ranges?			-	NA	$\langle \rangle$	N	
If no, were th	ey received on ice	and same day	as collected	? If not, notate	the cooler # bel	ow and notify the	PM. (NAD	Ŷ	N	
applicable, tiss	sue samples were r	received:	Frozen Pa	rtially Thawe	d Thawed	-	```				
·		an a	and the second		I	NACE THE REPORT OF	NAME OF COMPANY				·
					学者的分析	PN					
emp Blahk	Sample Temp	IR Gun	Cooler #/C		Constant Vers		Zek 2 million Santaria Santaria	Fraction	Number	NA	File
5.4	••••••	TRD	Pitandan dan dan San di San			in an the administration of a second	- 74-	21. 19	12/2/	1275	1.110
-}` +-		11 00 1					<u> </u>	<u> 10 11</u>	750	0.0	
											+
					· ·						4
								· · · .			<u> </u>
Packing mat	terial: Inserts (1	Baggies Bu	bble Wrap	Gel Packs (Wet Ice Dry Ic	e Sleeves		··			
Were custod	dy papers properly	filled out (inl	c, signed, etc.)?				NA	G	N	
Were sampl	les received in goo	d condition (u	inbroken)					NA	Q	N	
	mple labels comple	-	· •					NA	¥.	N	
•	ple labels and tags	-						NA	FORE	N	
	priate bottles/conti							NA	Ŷ.	N	
. Were the pl	H-preserved bottles	i (see SMO G	EN SOP) rece	ved at the ap	propriate pH? h	ndicate in the tab	le below	NA	(\mathbf{Y})	N	
	vials received with	hout headspace	e? Indicate i	n the table be	low.			(NA)	Y	N	
. Was C12/R	es negative?							(NA)	Y	N	
Sa	mple ID on Bott	16		Sample ID	on COC		ide	ntified	by:		-
	·										

Sample ID	Bottle Bottle	Count. Type	Head-	Broke	24.4 pH -	Respent	Volume added	Reagent Lot Number	Initials	Time
										·····
			<u> </u>							
20000000000000000000000000000000000000										
Notes, Discrepancies, Resolutions									L I	
Notes, Discrepancies, Resolutions				Altered						
		Ŵŋ			ġ.	·····		· · · · · · · · · · · · · · · · · · ·		<u> </u>

Page 8 of 21

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 9 of 21

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 10 of 21

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client:	Anchor QEA, LLC
Project:	CCR-GC/201114-01.05 Task 02

Service Request: K2105586

Sample Name:GC-MW-1-20210503Lab Code:K2105586-001Sample Matrix:Water

Date Collected: 05/3/21 **Date Received:** 05/4/21

Analysis Method		Extracted/Digested By	Analyzed By
200.8		ABOYER	RMOORE
Sample Name:	GC-MW-17-20210503		Date Collected: 05/3/21
Lab Code:	K2105586-002		Date Received: 05/4/21
Sample Matrix:	Water		

Analysis Method 200.8 Extracted/Digested By ABOYER Analyzed By RMOORE

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 14 of 21

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 15 of 21

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2105586
Project:	CCR-GC/201114-01.05 Task 02	Date Collected:	05/03/21 12:30
Sample Matrix:	Water	Date Received:	05/04/21 09:50
Sample Name: Lab Code:	GC-MW-1-20210503 K2105586-001	Basis:	NA

Dissolved Metals

	Analysis	D K	T T •4	MDI	MDI	D.1		Date	0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	4.1	ug/L	1.3	0.2	1	06/08/21 16:45	05/26/21	
Cobalt	200.8	283	ug/L	0.050	0.023	1	06/08/21 16:45	05/26/21	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2105586
Project:	CCR-GC/201114-01.05 Task 02	Date Collected: 05/03/21 13:00
Sample Matrix:	Water	Date Received: 05/04/21 09:50
Sample Name: Lab Code:	GC-MW-17-20210503 K2105586-002	Basis: NA

Dissolved Metals

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	358	ug/L	6.3	1.1	5	06/08/21 16:47	05/26/21	
Lithium	200.8	657	ug/L	1.3	1.3	5	06/08/21 16:47	05/26/21	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 18 of 21

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 19 of 21

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:Anchor QEA, LLCService Request:K2105586Project:CCR-GC/201114-01.05 Task 02Date Collected:NASample Matrix:WaterDate Received:NASample Name:Method BlankBasis:NALab Code:KQ2108793-01Collected:NA

Dissolved Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	ND U	ug/L	0.50	0.09	1	06/08/21 16:01	05/26/21	
Cobalt	200.8	ND U	ug/L	0.020	0.009	1	06/08/21 16:01	05/26/21	
Lithium	200.8	ND U	ug/L	0.10	0.10	1	06/08/21 16:01	05/26/21	

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client:Anchor QEA, LLCProject:CCR-GC/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2105586 **Date Analyzed:** 06/08/21

Lab Control Sample Summary Dissolved Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2108793-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	200.8	49.8	50.0	100	85-115
Cobalt	200.8	24.8	25.0	99	85-115
Lithium	200.8	48.3	50.0	97	85-115

Service Request No:K2107111

Masa Kanematsu Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: Green Country

Dear Masa,

Enclosed are the results of the sample(s) submitted to our laboratory June 18, 2021 For your reference, these analyses have been assigned our service request number **K2107111**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

Mark Harris Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 2 of 39

Client:Anchor QEA, LLCProject:Green CountrySample Matrix:Water

Service Request: K2107111 Date Received: 06/18/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Thirteen water samples were received for analysis at ALS Environmental on 06/18/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

<u>Metals:</u>

No significant anomalies were noted with this analysis.

noe D. Dan

Approved by

Date

07/21/2021

SAMPLE DETECTION SUMMARY

CLIENT ID: GRC-COL-2-6		Lab	ID: K2107	/111-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	2.1	J	0.5	2.5	ug/L	200.8
Cobalt, Dissolved	182		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-INF-MW-1-7		Lab	ID: K2107	/111-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	122		0.5	2.5	ug/L	200.8
Cobalt, Dissolved	185		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-1-7		Lab	ID: K2107	/111-003		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	2.9		0.5	2.5	ug/L	200.8
Cobalt, Dissolved	186		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-2-7		Lab	ID: K2107	/111-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	1.4	J	0.5	2.5	ug/L	200.8
Cobalt, Dissolved	183		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-INF-MW-1-8		Lab	ID: K2107	/111-005		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	119		0.5	2.5	ug/L	200.8
Cobalt, Dissolved	180		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-1-8		Lab	ID: K2107	/111-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	2.2	J	0.5	2.5	ug/L	200.8
Cobalt, Dissolved	175		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-2-8		Lab	ID: K2107	/111-007		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	1.4	J	0.5	2.5	ug/L	200.8
Cobalt, Dissolved	180		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-INF-MW-1-9		Lab	ID: K2107	/111-008		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	31.4		0.5	2.5	ug/L	200.8
Cobalt, Dissolved	178		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-1-9		Lab	ID: K2107	/111-009		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	2.2	J	0.5	2.5	ug/L	200.8
Cobalt, Dissolved	181		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-2-9		Lab	ID: K2107	/111-010		
Analyte	Results	Flag	MDL	MRL	Units	Method
7 (1) (1) (1)		- 5				

ug/L

200.8

SAMPLE DETECTION SUMMARY

CLIENT ID: GRC-COL-2-9		Lab	ID: K2107	/111-010		
Analyte	Results	Flag	MDL	MRL	Units	Method
Cobalt, Dissolved	180		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-INF-MW-1-10		Lab	ID: K2107	/111-011		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	5.2		0.5	2.5	ug/L	200.8
Cobalt, Dissolved	182		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-1-10		Lab	ID: K2107	/111-012		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	2.3	J	0.5	2.5	ug/L	200.8
Cobalt, Dissolved	181		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-2-10		Lab	ID: K2107	/111-013		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	1.2	J	0.5	2.5	ug/L	200.8

0.05

0.10

183

Cobalt, Dissolved

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 39

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	<u>TIME</u>
K2107111-001	GRC-COL-2-6	6/10/2021	1 1315
K2107111-002	GRC-COL-INF-MW-1-7	6/11/2021	1 1400
K2107111-003	GRC-COL-1-7	6/11/2021	1 1400
K2107111-004	GRC-COL-2-7	6/11/2021	1 1400
K2107111-005	GRC-COL-INF-MW-1-8	6/13/2021	1 1350
K2107111-006	GRC-COL-1-8	6/13/2021	1 1350
K2107111-007	GRC-COL-2-8	6/13/2021	1 1350
K2107111-008	GRC-COL-INF-MW-1-9	6/8/2021	1600
K2107111-009	GRC-COL-1-9	6/8/2021	1600
K2107111-010	GRC-COL-2-9	6/8/2021	1600
K2107111-011	GRC-COL-INF-MW-1-10	6/9/2021	1500
K2107111-012	GRC-COL-1-10	6/9/2021	1500
K2107111-013	GRC-COL-2-10	6/9/2021	1500

Chain of Custody Record & Laboratory Analysis Request

Cł	ain of Custod	ly Record &	ያ Laborato	ry Ana	alysis R	equ	est										-		ا ہے	19107111		
Labo	ratory Number: 50	3-972-5019									 51.52 	Parar	neter	s						- ANCHOR		
	Date:		6/18/2021				po													V- QEA SEE		
	Project Name:		Green County				Meth													Jessica Goin		
	Project Number:	201114-01.05 Task 02			,ed											l		6720 SW Macadam Ave				
	Project Manager:	ager: Masa Kanematsu		l S	ssoh						l		ľ					Suite 125				
	Phone Number: 503-972-5001 (Masa Kanematsu)		Phone Number: 503-972-5001 (Masa Kanematsu)		isa Kanematsu)		i001 (Masa Kanematsu)					[Portland OR 97219
Sł	nipment Method:		ALS Carrier			Containers	Cobalt (dissolved, Method															
			Collect	ion	Γ	5	U U U U U															
Line	Field Sar	nple ID	Date	Time	Matrix	Ś	Arsenic, 1 200.8)													Comments/Preservation		
1	GRC-COL-2-6	·····	6/10/2021	13:15	Water	1	X	1	1					İ						HNO ₃ preserved, filtered		
2	GRC-COL-INF-MW-	1-7	6/11/2021	14:00	Water	1	X				 			 		 1				HNO ₃ preserved, filtered		
3	GRC-COL-1-7		6/11/2021	14:00	Water	1	X	Ì		1				1	1					HNO3 preserved, filtered		
4	GRC-COL-2-7		6/11/2021	14:00	Water	1	X						T		T	 1				HNO ₃ preserved, filtered		
5	GRC-COL-INF-MW-	1-8	6/13/2021	13:50	Water	1	Х							1	1	1		1		HNO ₃ preserved, filtered		
6	GRC-COL-1-8		6/13/2021	13:50	Water	1	X		T	1				[1		1	Ι	HNO ₃ preserved, filtered		
7	GRC-COL-2-8		6/13/2021	13:50	Water	1	X						Ι							HNO ₃ preserved, filtered		
8	GRC-COL-INF-MW-	1-9	6/8/2021	16:00	Water	1	X													HNO ₃ preserved, filtered		
9	GRC-COL-1-9		6/8/2021	16:00	Water	1	Х													HNO ₃ preserved, filtered		
10	GRC-COL-2-9		6/8/2021	16:00	Water	1	X													HNO3 preserved, filtered		
11	GRC-COL-INF-MW-	1-10	6/9/2021	15:00	Water	1	X													HNO ₃ preserved, filtered		
12	GRC-COL-1-10		6/9/2021	15:00	Water	1	X													HNO₃ preserved, filtered		
13	GRC-COL-2-10		6/9/2021	15:00	Water	1	X													HNO ₃ preserved, filtered		
14																						
15									L			 	L									
Notes:	Please analyze all ana Desired reporting lim										 	 				 						

Relinquished by:	Company:	Received by:	Company:
Masa Kanematsu	Anchor QEA	Penna J	022 ALS 6/18/21 1220
Signature/Print Name:	Date/Time:	Signature/Print Name:	Date/Time:
$\Lambda \gg$	6/18/2021 9:00		
Relinquished by:	Company:	Received by:	Company:
Signature/Print Name:	Date/Time:	Signature/Print Name:	Date/Time:
· · · · · · · · · · · · · · · · · · ·			

Distribution: A copy will be made for the laboratory and client. The Project file will retain the original.

		PM MAH
n Cooler Receipt and Preservation Form		
Client	K21	0711
Received: <u>6/18/21</u> Opened: <u>6/18/2</u> By: <u>P</u> Unloaded: _	6/10/21	By:
1. Samples were received via? USPS Fed Ex UPS DHL PDX	Courier H	and Delivered
2. Samples were received in: (circle) Cooler Box Envelope Other		NA)
3. Were <u>custody seals</u> on coolers?NA Y N If yes, how many and where?		
If present, were custody seals intact? Y N If present, were they signed and dated	1?	Y N
4. Was a Temperature Blank present in cooler? NA Y N If yes, notate the temperature in the ap	ppropriate column bel	ow:
If no, take the temperature of a representative sample bottle contained within the cooler; notate in the col	umn "Sample Temp":	
5. Were samples received within the method specified temperature ranges?	NA	N N
If no, were they received on ice and same day as collected? If not, notate the cooler # below and notify the	e PM. NA	Y (N)
If applicable, tissue samples were received: Frozen Partially Thawed Thawed		
	NATION MANAGEMENT	
PM Out of temp Notifit		
Temp Blank Sample Temp IR Gun Cooler #/COC ID/ NA indicate with "X" If out of	temp Trackin	g Number NA Filed
5.1 1202		
6. Packing material: Inserts Baggies Bubble Wrap Gel Packs (Wet Ice) Dry Ice Sleeves		
7. Were custody papers properly filled out (ink, signed, etc.)?	NA	N N
8. Were samples received in good condition (unbroken)	NA	Q N
9. Were all sample labels complete (ie, analysis, preservation, etc.)?	NA	N N
10. Did all sample labels and tags agree with custody papers?	NA	(V) N
11. Were appropriate bottles/containers and volumes received for the tests indicated?	NA	Y N
12. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the tab	le below NA	Ø N
13. Were VOA vials received without headspace? Indicate in the table below.	NA	Y N
14. Was C12/Res negative?		Y N
Sample ID on Bottle Sample ID on COC	Identified	bv:
		<u></u>

Sample ID	Bottle Count Bottle Type	Head- space	Broke	pH	Reagent	Volume added	Initials	Time

Notes, Discrepancies, Resolutions:_____

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 10 of 39

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 11 of 39

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client:Anchor QEA, LLCProject:Green Country/201114-01.05 Task 02

GRC-COL-2-6

K2107111-001

Water

Sample Name:

Sample Matrix:

Lab Code:

Service Request: K2107111

Date Collected: 06/10/21 **Date Received:** 06/18/21

Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-INF-MW-1-7 K2107111-002 Water		Date Collected: 06/11/21 Date Received: 06/18/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-1-7 K2107111-003 Water		Date Collected: 06/11/21 Date Received: 06/18/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-2-7 K2107111-004 Water		Date Collected: 06/11/21 Date Received: 06/18/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-INF-MW-1-8 K2107111-005 Water		Date Collected: 06/13/21 Date Received: 06/18/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client:Anchor QEA, LLCProject:Green Country/201114-01.05 Task 02

Service Request: K2107111

 Sample Name:
 GRC-COL-1-8
 Date Collected: 06/13/21

 Lab Code:
 K2107111-006
 Date Received: 06/18/21

 Sample Matrix:
 Water
 Date Received: 06/18/21

Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-2-8 K2107111-007 Water		Date Collected: 06/13/21 Date Received: 06/18/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-INF-MW-1-9 K2107111-008 Water		Date Collected: 06/8/21 Date Received: 06/18/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-1-9 K2107111-009 Water		Date Collected: 06/8/21 Date Received: 06/18/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-2-9 K2107111-010 Water		Date Collected: 06/8/21 Date Received: 06/18/21
Analysis Method		Extracted/Digested By	Analyzed By

Analysis Method 200.8

Superset Reference:21-0000597266 rev 00

RMOORE

ABOYER

Analyst Summary report

Client:Anchor QEA, LLCProject:Green Country/201114-01.05 Task 02

Service Request: K2107111

 Sample Name:
 GRC-COL-INF-MW-1-10
 Date Collected: 06/9/21

 Lab Code:
 K2107111-011
 Date Received: 06/18/21

 Sample Matrix:
 Water
 Date Received: 06/18/21

Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-1-10 K2107111-012 Water		Date Collected: 06/9/21 Date Received: 06/18/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-2-10 K2107111-013 Water		Date Collected: 06/9/21 Date Received: 06/18/21
Analysis Method		Extracted/Digested By	Analyzed By

200.8

RMOORE

ABOYER

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 17 of 39

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 18 of 39

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected:	06/10/21 13:15
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-2-6 K2107111-001	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	0
					0.5	<u> </u>			<u>v</u>
Arsenic	200.8	2.1 J	ug/L	2.5	0.5	5	07/19/21 13:00	06/24/21	
Cobalt	200.8	182	ug/L	0.10	0.05	5	07/19/21 13:00	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected: 06/11/21 14:00
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-1-7 K2107111-002	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	122	ug/L	2.5	0.5	5	07/19/21 13:05	06/24/21	
Cobalt	200.8	185	ug/L	0.10	0.05	5	07/19/21 13:05	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K	K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected: 0	6/11/21 14:00
Sample Matrix:	Water	Date Received: 0	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-1-7 K2107111-003	Basis: N	NA

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	2.9	ug/L	2.5	0.5	5	07/19/21 13:09	06/24/21	
Cobalt	200.8	186	ug/L	0.10	0.05	5	07/19/21 13:09	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected: 06/11/21 14:00
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-2-7 K2107111-004	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	1.4 J	ug/L	2.5	0.5	5	07/19/21 13:11	06/24/21	
Cobalt	200.8	183	ug/L	0.10	0.05	5	07/19/21 13:11	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected:	06/13/21 13:50
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name:	GRC-COL-INF-MW-1-8	Basis:	NA
Lab Code:	K2107111-005		

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	0
Arsenic	200.8	119	ug/L	2.5	0.5	5	07/19/21 13:16	06/24/21	<u> </u>
Cobalt	200.8	180	ug/L	0.10	0.05	5	07/19/21 13:16	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected:	06/13/21 13:50
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-1-8 K2107111-006	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	0
Arsenic	200.8	2.2 J	ug/L	2.5	0.5	5	07/19/21 13:17	06/24/21	<u> </u>
Cobalt	200.8	175	ug/L	0.10	0.05	5	07/19/21 13:17	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected:	06/13/21 13:50
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-2-8 K2107111-007	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	1.4 J	ug/L	2.5	0.5	5	07/19/21 13:19	06/24/21	
Cobalt	200.8	180	ug/L	0.10	0.05	5	07/19/21 13:19	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected: 06/08/21 16:00
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-1-9 K2107111-008	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	31.4	ug/L	2.5	0.5	5	07/19/21 13:29	06/24/21	
Cobalt	200.8	178	ug/L	0.10	0.05	5	07/19/21 13:29	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected:	06/08/21 16:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-1-9 K2107111-009	Basis:	NA

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	2.2 J	ug/L	2.5	0.5	5	07/19/21 13:31	06/24/21	
Cobalt	200.8	181	ug/L	0.10	0.05	5	07/19/21 13:31	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected:	06/08/21 16:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-2-9 K2107111-010	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	1.3 J	ug/L	2.5	0.5	5	07/19/21 13:33	06/24/21	
Cobalt	200.8	180	ug/L	0.10	0.05	5	07/19/21 13:33	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected:	06/09/21 15:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-1-10 K2107111-011	Basis:	NA

	Analysis	-						Date	0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	5.2	ug/L	2.5	0.5	5	07/19/21 13:37	06/24/21	
Cobalt	200.8	182	ug/L	0.10	0.05	5	07/19/21 13:37	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected: 06/09/21 15:00
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name:	GRC-COL-1-10	Basis: NA
Lab Code:	K2107111-012	

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	2.3 J	ug/L	2.5	0.5	5	07/19/21 13:39	06/24/21	
Cobalt	200.8	181	ug/L	0.10	0.05	5	07/19/21 13:39	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107111
Project:	Green Country/201114-01.05 Task 02	Date Collected:	06/09/21 15:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-2-10 K2107111-013	Basis:	NA

	Analysis							Date	-
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	1.2 J	ug/L	2.5	0.5	5	07/19/21 13:41	06/24/21	
Cobalt	200.8	183	ug/L	0.10	0.05	5	07/19/21 13:41	06/24/21	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 32 of 39

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 33 of 39

 Analytical Report

 Client:
 Anchor QEA, LLC
 Service Request:
 K2107111

 Project:
 Green Country/201114-01.05 Task 02
 Date Collected:
 NA

 Sample Matrix:
 Water
 Date Received:
 NA

 Sample Name:
 Method Blank
 Basis:
 NA

 Lab Code:
 KQ2111386-01
 Collected:
 Main

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	ug/L	0.50	0.09	1	07/19/21 12:57	06/24/21	
Cobalt	200.8	ND U	ug/L	0.020	0.009	1	07/19/21 12:57	06/24/21	

QA/QC Report

Client:	Anchor QEA, LLC		Service I	Request:	K2107111
Project:	Green Country/201114-01.05	Fask 02	Date Col	lected:	06/10/21
Sample Matrix:	Water		Date Rec	ceived:	06/18/21
			Date Ana	alyzed:	07/19/21
			Date Ext	racted:	06/24/21
		Matrix Spike Summ	ary		
		Dissolved Metals	•		
Sample Name:	GRC-COL-2-6			Units:	ug/L
Lab Code:	K2107111-001			Basis:	NA
Analysis Method:	200.8				
Prep Method:	EPA CLP ILM04.0				
		Matrix Spike			
		KQ2111386-04			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits

53.0

211

50.0

25.0

102

116 #

70-130

70-130

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

2.1 J

182

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Arsenic

Cobalt

QA/QC Report

Client:	Anchor QEA, LLC		Service	e Request:	K2107111
Project:	Green Country/201114-01.05 Tas	k 02	Date C	ollected:	06/11/21
Sample Matrix:	Water		Date R	eceived:	06/18/21
			Date A	nalyzed:	07/19/21
			Date E	xtracted:	06/24/21
		Matrix Spike Sum	mary		
		Dissolved Meta	ls		
Sample Name:	GRC-COL-INF-MW-1-7			Units:	ug/L
Lab Code:	K2107111-002			Basis:	NA
Analysis Method:	200.8				
Prep Method:	EPA CLP ILM04.0				
	И	Aatrix Spike			
	K	Q2111386-06			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Lin

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	122	171	50.0	99	70-130
Cobalt	185	206	25.0	83 #	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Project	Anchor QEA, LL Green Country/20		5 Task 02			Service Request		
Sample Matrix:	Water					Date Received		
						Date Analyzed	07/19/2	21
			Replicate	Sample Sun	nmary			
			Diss	solved Metals	5			
Sample Name:	GRC-COL-2-6					Units	ug/L	
Lab Code:	K2107111-001					Basis	: NA	
	Analysis			Sample	Duplicate Sample KQ2111386-03			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Arsenic	200.8	2.5	0.5	2.1 J	1.9 J	2.0	10	20
Cobalt	200.8	0.10	0.05	182	185	184	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Anchor QEA, Ll	LC				Service Reques	t: K2107	7111
Project	Green Country/2	01114-01.05	5 Task 02			Date Collected	l: 06/11/	21
Sample Matrix:	Water					Date Received	l: 06/18/	21
						Date Analyzee	l: 07/19/	21
			Replicate	Sample Sun	nmary			
			Diss	solved Metals	5			
Sample Name:	GRC-COL-INF	-MW-1-7				Uni	s: ug/L	
Lab Code:	K2107111-002					Bas	is: NA	
	Analysis			Sample	Duplicate Sample KQ2111386-05			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Arsenic	200.8	2.5	0.5	122	120	121	2	20
Cobalt	200.8	0.10	0.05	185	186	186	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:Anchor QEA, LLCProject:Green Country/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2107111 **Date Analyzed:** 07/19/21

Lab Control Sample Summary Dissolved Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2111386-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	200.8	50.0	50.0	100	85-115
Cobalt	200.8	24.6	25.0	98	85-115

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**:+1 360 577 7222 **F**:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K2107113

July 21, 2021

Masa Kanematsu Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

RE: Green County / 201114-01.05 Task 02

Dear Masa,

Enclosed are the results of the sample(s) submitted to our laboratory June 18, 2021 For your reference, these analyses have been assigned our service request number **K2107113**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

Mark Harris Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**: +1 360 577 7222 **F**: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms Qualifiers State Certifications, Accreditations, And Licenses Case Narrative Chain of Custody Metals

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 4 of 32

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 32

Client:Anchor QEA, LLCProject:Green CountySample Matrix:Water

Service Request: K2107113 Date Received: 06/18/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level II requested by the client.

Sample Receipt:

Fifteen water samples were received for analysis at ALS Environmental on 06/18/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

<u>Metals:</u>

No significant anomalies were noted with this analysis.

noe D. Oan

Approved by

Date

07/21/2021

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 32

Chain of Custody Record & Laboratory Analysis Re Laboratory Number: 503-972-5019											1.1.1.1.1		Param					·			1210-113
Date: 6/18/2021						-		г—	<u></u>	1			al all	ietei		1	1	1	<u> </u>		- ANCHOR
Project Name: Green County						etho															Jessica Goin
Project Number: 201114-01.05 Task 02						Ψ̈́															
				5	olve															6720 SW Macadam Ave	
Project Manager: Masa Kanematsu				iner	(diss															Suite 125	
Phone Number: 503-972-5001 (Masa Kanematsu)				f Containers	balt															Portland OR 97219	
Shipment Method: ALS Carrier Collection			Arsenic, Cobalt (dissolved, Method 200.8)												l						
Line Field Sample ID			r	Matrix	No. of	senic															
RC-COL-INF-MV		Date	Time			÷					┟──┨										Comments/Preservation
RC-COL-INF-MIN	¥-1-1	6/7/2021	16:00	Water	1	X					╉╼╍┥				ļ						HNO ₃ preserved, filtered
RC-COL-1-1	• • •	6/7/2021	16:00 16:00	Water	1	X				<u> </u>	┥┥										HNO ₃ preserved, filtered
RC-COL-2-1		6/7/2021	20:00	Water	1	X															HNO ₃ preserved, filtered
RC-COL-1-2		6/7/2021 6/7/2021	20:00	Water	1	X					╉╍╍┥					 					HNO ₃ preserved, filtered
RC-COL-2-2	v 1 3		 	Water		X					<u> </u>				 	 					HNO ₃ preserved, filtered
RC-COL-INF-IN	V-1-5	6/8/2021	10:30	Water	1	X									<u> </u>	<u> </u>					HNO ₃ preserved, filtered
RC-COL-1-3		6/8/2021	10:30	Water	1	X				L	┞──┤				<u> </u>						HNO ₃ preserved, filtered
8 GRC-COL-2-3 9 GRC-COL-1-4		6/8/2021	10:30	Water	1	X				ļ	┝──┥				<u> </u>	 					HNO ₃ preserved, filtered
		6/8/2021	16:00	Water	1	X					$\left \right $										HNO ₃ preserved, filtered
10 GRC-COL-2-4		6/8/2021	16:00	Water	1	X									<u> </u>	 					HNO ₃ preserved, filtered
11 GRC-COL-INF-MW-1-5 12 GRC-COL-1-5		6/9/2021	12:45	Water	1	X									ļ	ļ					HNO ₃ preserved, filtered
RC-COL-1-5		6/9/2021	12:45	Water	1	X					┞───┤										HNO ₃ preserved, filtered
RC-COL-INF-MW	116	6/9/2021	12:45	Water	1	X					∔				 	 					HNO ₃ preserved, filtered
RC-COL-INF-IMM	7~1-0	6/10/2021	13:15	Water	1	X															HNO ₃ preserved, filtered
	alytes with standard	6/10/2021	13:15 e. Please a	Water	1 Meth	X	8 (ICP	-MS\ 6	or het	er det	bection fi								L		HNO ₃ preserved, filtered
	mits : As (<2 ug/L), C												leport	requir	rement	: Туре	II (PD	F & csv	files)		······································
hed by:			Company	<i>/</i> :						Received by: Compan								ompany:			
Mas	a Kanematsu			A	Anchor QEA						r i i i						101	21 1230 ALS			
/Print Name:			Date/Tim	ie:						Signature/Print/Name: Date/Time:											
6/18/2021 9:00																					
Relinquished by: Company:									Received by: Company:												
/Print Name:			Date/Tim	e:					Signature/Print Name: Date/Time:									te/Time:			
Relinquished by: Company: Signature/Print Name: Date/Time:																					

Distribution: A copy will be made for the laboratory and client. The Project file will retain the original.

Page______of___2___

											PM_	41-
A	1. chan		Cooler Receip	it and I	Preser				Ń	71	12	
Client	2/18/21	<u> </u>	6/18/21		PI	_Serv	vice Request		\bigcup	_/ \		
Received:	11810	_ Opened: _	6/18/20	By: _	<u> </u>		_ Unloaded: _	_6/	18/21	_ By: _	<u> </u>	
-	ere received via?	USPS	Fed Ex	UPS	DH	IL	PDX	Cour	ier) Ha	nd Del	ivered	
-	ere received in: (cir	· · · · · · · · · · · · · · · · · · ·	ooler Box		nvelope		Other				NA	
	ly seals on coolers?		NAYN	·	iow many						-	
	ere custody seals i		Y N	-			gned and dated			Y	N	
-	rature Blank prese		August 199	•		•			column belo	w:		
			e sample bottle contai		in the coo	oler; no	otate in the col	umn "San				
-		•	cified temperature ran	•	. .			-	NA	0	N	`
	-		as collected? If not,				and notify th	e PM.	NA	Y	<u>(N</u>)
If applicable, tis	ssue samples were	received:	Frozen Partially T	hawed	Thawed	ł						
<u>yn ar de sere</u>		9.0000			会愛的第		PM		教育委会会		G 30 M (S)	
					Out of		Notifi	be				
Temp Blank	Sample Temp		Cooler #/COC ID / I	<u>NA </u>	indicate	with "X	" If out of	temp	Tracking	Numb	er NA	Filed
	4.1	TROZ										
6. Packing ma	terial: Inserts	Baggies) Bu	bble Wrap Gel Pac	ks (Wet	I Ice) Di	y Ice	Sleeves					
7. Were custo	dy papers properly	filled out (ink	c, signed, etc.)?						NA	${}^{}$	N	
-	les received in goo								NA	\mathfrak{O}	N	
	mple labels comple ple labels and tags	· •	s, preservation, etc.)?)					NA NA	\odot	N N	
		e	umes received for the	tests ind	icated?				NA	8	N	
	-		EN SOP) received at 1			9 Indi	cate in the tab	le helow	NA	60	N	
-	-		e? Indicate in the tal	••	• •	. 176646	cure in the fue	it Deiton	NA)	Y	N	
14. Was C12/R		nout noutsput	o. maleate in the rac	ne ocion.	•				(NA)	Ŷ	N	
							Shift Series as					
Sa	mple ID on Bott	le	Sampl	le ID on	COC				Identified I	oy:		
		······			1 ····· ·	-		·				
	Sample ID		Bottle Count Bottle Type	Head-	Broke		Boogramt	Volume	Reagent L Numbe		Initials	Time
<u>an a berefend (</u>	Saubia IN		outie i ype	space	DIUKO	pH	Reagent	added	edition (Second	- 494,494 	muais	11106
				-	┟──┼							
				_	┝──┝			<u> </u>				

Notes, Discrepancies, Resolutions:_____

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 11 of 32

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/07/21 16:00
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-1-1 K2107113-001	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	290	ug/L	2.5	0.5	5	07/19/21 12:17	06/24/21	
Cobalt	200.8	190	ug/L	0.10	0.05	5	07/19/21 12:17	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/07/21 16:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-1-1 K2107113-002	Basis:	NA

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	14.5	ug/L	2.5	0.5	5	07/19/21 12:21	06/24/21	
Cobalt	200.8	455	ug/L	0.10	0.05	5	07/19/21 12:21	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/07/21 16:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-2-1 K2107113-003	Basis:	NA

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	4.6	ug/L	2.5	0.5	5	07/19/21 12:26	06/24/21	
Cobalt	200.8	153	ug/L	0.10	0.05	5	07/19/21 12:26	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/07/21 20:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-1-2 K2107113-004	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	12.6	ug/L	2.5	0.5	5	07/19/21 12:28	06/24/21	
Cobalt	200.8	272	ug/L	0.10	0.05	5	07/19/21 12:28	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/07/21 20:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-2-2 K2107113-005	Basis:	NA

	Analysis							Date	0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	4.2	ug/L	2.5	0.5	5	07/19/21 12:33	06/24/21	
Cobalt	200.8	178	ug/L	0.10	0.05	5	07/19/21 12:33	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107113	
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/08/21 10:30	
Sample Matrix:	Water	Date Received: 06/18/21 12:30	
Sample Name: Lab Code:	GRC-COL-INF-MW-1-3 K2107113-006	Basis: NA	

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	52.7	ug/L	2.5	0.5	5	07/19/21 12:34	06/24/21	
Cobalt	200.8	184	ug/L	0.10	0.05	5	07/19/21 12:34	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/08/21 10:30
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-1-3 K2107113-007	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	0
Arsenic	200.8	6.7	ug/L	2.5	0.5	5	07/19/21 12:36	06/24/21	<u> </u>
Cobalt	200.8	189	ug/L	0.10	0.05	5	07/19/21 12:36	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/08/21 10:30
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-2-3 K2107113-008	Basis:	NA

	Analysis		T T 1 /	MDI	MDI	D 11		Date	0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	3.0	ug/L	2.5	0.5	5	07/19/21 12:37	06/24/21	
Cobalt	200.8	183	ug/L	0.10	0.05	5	07/19/21 12:37	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/08/21 16:00
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-1-4 K2107113-009	Basis: NA

	Analysis							Date	_
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	6.0	ug/L	2.5	0.5	5	07/19/21 12:39	06/24/21	
Cobalt	200.8	189	ug/L	0.10	0.05	5	07/19/21 12:39	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/08/21 16:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-2-4 K2107113-010	Basis:	NA

	Analysis							Date	_
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	2.9	ug/L	2.5	0.5	5	07/19/21 12:41	06/24/21	
Cobalt	200.8	188	ug/L	0.10	0.05	5	07/19/21 12:41	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/09/21 12:45
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-1-5 K2107113-011	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	55.5	ug/L	2.5	0.5	5	07/19/21 12:42	06/24/21	
Cobalt	200.8	186	ug/L	0.10	0.05	5	07/19/21 12:42	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/09/21 12:45
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name:	GRC-COL-1-5	Basis: NA
Lab Code:	K2107113-012	

	Analysis	-						Date	0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	4.5	ug/L	2.5	0.5	5	07/19/21 12:44	06/24/21	
Cobalt	200.8	190	ug/L	0.10	0.05	5	07/19/21 12:44	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/09/21 12:45
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-2-5 K2107113-013	Basis: NA

	Analysis	D						Date	0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	2.0 J	ug/L	2.5	0.5	5	07/19/21 12:45	06/24/21	
Cobalt	200.8	190	ug/L	0.10	0.05	5	07/19/21 12:45	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/10/21 13:15
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-1-6 K2107113-014	Basis: NA

	Analysis							Date	0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	88.9	ug/L	2.5	0.5	5	07/19/21 12:47	06/24/21	
Cobalt	200.8	189	ug/L	0.10	0.05	5	07/19/21 12:47	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107113
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/10/21 13:15
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-1-6 K2107113-015	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	4.0	ug/L	2.5	0.5	5	07/19/21 12:52	06/24/21	
Cobalt	200.8	189	ug/L	0.10	0.05	5	07/19/21 12:52	06/24/21	

Analytical ReportClient:Anchor QEA, LLCService Request:K2107113Project:Green County/201114-01.05 Task 02Date Collected:NASample Matrix:WaterDate Received:NASample Name:Method BlankBasis:NALab Code:KQ2111454-01Collected:NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	ug/L	0.50	0.09	1	07/19/21 12:13	06/24/21	
Cobalt	200.8	ND U	ug/L	0.020	0.009	1	07/19/21 12:13	06/24/21	

QA/QC Report

Client:	Anchor QEA, LI	LC				Service Request	t: K2107	'113
Project	Green County/20	01114-01.05	Task 02			Date Collected	l: 06/07/	21
Sample Matrix:	Water					Date Received	l: 06/18/	21
						Date Analyzed	l: 07/19/	21
			Replicate	Sample Sun	nmary			
			Diss	solved Metals	5			
Sample Name:	GRC-COL-INF	-MW-1-1				Unit	s: ug/L	
Lab Code:	K2107113-001					Basi	s: NA	
	Analysis			Sample	Duplicate Sample KQ2111454-03			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Arsenic	200.8	2.5	0.5	290	290	290	<1	20
Cobalt	200.8	0.10	0.05	190	191	191	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Anchor QEA, LL	С				Service Request:	K2107	113
Project	Green County/20	1114-01.05	Task 02			Date Collected:	06/07/2	21
Sample Matrix:	Water					Date Received:	06/18/2	21
						Date Analyzed:	07/19/2	21
			Replicate	Sample Sun	nmary			
			Diss	solved Metals	5			
Sample Name:	GRC-COL-1-1					Units	ug/L	
Lab Code:	K2107113-002					Basis	: NA	
					Duplicate			
	Analysis			Sample	Sample KQ2111454-05			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Arsenic	200.8	2.5	0.5	14.5	14.2	14.4	2	20
Cobalt	200.8	0.10	0.05	455	451	453	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Anchor QEA, LLC		Service	Request:	K2107113
Project:	Green County/201114-01.05 Ta	ask 02	Date Co	ollected:	06/07/21
Sample Matrix:	Water		Date R	eceived:	06/18/21
			Date A	nalyzed:	07/19/21
			Date Ex	stracted:	06/24/21
		Matrix Spike Su	nmary		
		Dissolved Me	•		
Sample Name:	GRC-COL-INF-MW-1-1			Units:	ug/L
Lab Code:	K2107113-001			Basis:	NA
Analysis Method:	200.8				
Prep Method:	EPA CLP ILM04.0				
		Matrix Spike			
		KQ2111454-04			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits

330

211

50.0

25.0

81 #

87 #

70-130

70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

290

190

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Arsenic

Cobalt

QA/QC Report

Client:	Anchor QEA, LLC		Service	Request:	K2107113
Project:	Green County/201114-01.05 T	ask 02	Date Co	llected:	06/07/21
Sample Matrix:	Water		Date Re	ceived:	06/18/21
			Date An	alyzed:	07/19/21
			Date Ex	tracted:	06/24/21
		Matrix Spike Summ	ary		
		Dissolved Metals	·		
Sample Name:	GRC-COL-1-1			Units:	ug/L
Lab Code:	K2107113-002			Basis:	NA
Analysis Method:	200.8				
Prep Method:	EPA CLP ILM04.0				
		Matrix Spike			
		KQ2111454-06			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits

63.1

475

50.0

25.0

97

82 #

70-130

70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

14.5

455

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Arsenic

Cobalt

QA/QC Report

Client:Anchor QEA, LLCProject:Green County/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2107113 **Date Analyzed:** 07/19/21

Lab Control Sample Summary Dissolved Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2111454-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	200.8	51.6	50.0	103	85-115
Cobalt	200.8	25.7	25.0	103	85-115

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**:+1 360 577 7222 **F**:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K2107116

July 21, 2021

Masa Kanematsu Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

RE: Green County / 201114-01.05 Task 02

Dear Masa,

Enclosed are the results of the sample(s) submitted to our laboratory June 18, 2021 For your reference, these analyses have been assigned our service request number **K2107116**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

Mark Harris Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**: +1 360 577 7222 **F**: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms Qualifiers State Certifications, Accreditations, And Licenses Case Narrative Chain of Custody Metals

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 4 of 32

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 32

Client:Anchor QEA, LLCProject:Green CountySample Matrix:Water

Service Request: K2107116 Date Received: 06/18/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level II requested by the client.

Sample Receipt:

Fifteen water samples were received for analysis at ALS Environmental on 06/18/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

No significant anomalies were noted with this analysis.

noe D. Oan

Approved by

Date

07/21/2021

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 32

Chain of Custody Record & Laboratory Analysis R	leguest
---	---------

Laboratory Number: 503-972-5019 Parameters L ANCHOR DEA Arsenic, Lithium (dissolved, Method 200.8) Date: 6/18/2021 Project Name Green County Jessica Goin 201114-01.05 Task 02 Project Number 6720 SW Macadam Ave No. of Containers Masa Kanematsu Project Manager Suite 125 Phone Number 503-972-5001 (Masa Kanematsu) Portland OR 97219 Shipment Method: ALS Carrier Collection Line **Field Sample ID** Matrix Date Time **Comments/Preservation** GRC-COL-INF-MW-17-1 6/7/2021 х 1 16:00 Water 1 HNO₃ preserved, filtered 2 GRC-COL-3-1 6/7/2021 16:00 Х Water HNO₃ preserved, filtered 1 3 GRC-COL-4-1 6/7/2021 16:00 Water 1 Х HNO3 preserved, filtered GRC-COL-3-2 4 6/7/2021 20:00 Water Х HNO₃ preserved, filtered 1 5 GRC-COL-4-2 6/7/2021 20:00 Water Х HNO3 preserved, filtered 1 GRC-COL-INF-MW-17-3 10:30 Х 6 6/8/2021 Water 1 HNO3 preserved, filtered 7 GRC-COL-3-3 6/8/2021 10:30 Water Х HNO₃ preserved, filtered 1 8 GRC-COL-4-3 Х 6/8/2021 10:30 Water HNO₃ preserved, filtered GRC-COL-3-4 9 6/8/2021 16:00 Water Х HNO3 preserved, filtered 1 10 GRC-COL-4-4 6/8/2021 16:00 Water 1 Х HNO₃ preserved, filtered GRC-COL-INF-MW-17-5 11 х 6/9/2021 12:45 Water 1 HNO₃ preserved, filtered 12 GRC-COL-3-5 6/9/2021 12:45 Water 1 Х HNO₃ preserved, filtered GRC-COL-4-5 13 х 6/9/2021 12:45 Water 1 HNO₃ preserved, filtered 14 GRC-COL-INF-MW-17-6 6/10/2021 13:15 Water Х HNO3 preserved, filtered 1 15 GRC-COL-3-6 6/10/2021 13:15 х Water 1 HNO₃ preserved, filtered Notes: Please analyze all analytes with standard TAT on this page. Please analyze with Method 200.8 (ICP-MS) for better detection limit. Desired reporting limits : As (<2 ug/L). For Lithium, please use Method 200.8 for better detection limit if possible. Report requirement: Type II (PDF & csv files) Relinguished by: Received by: Company: Company: Masa Kanematsu Anchor QEA Signature/Print Name: Date/Time: Signature/Print Name: Date/Time: 6/18/2021 9:00 Relinguished by: Company: Received by: Company:

Signature/Print Name: Verry Jone

	6/18/21 1230	
Distribution:	A copy will be made for the laboratory and clier	nt. The Project file will retain the original

Date/Time:

Page______of_____

Date/Time:

Signature/Print Name:

											РМ 1	Alt
	Λ		Cooler Rec	eipt and	Preser	/ation	Form			67	алта <u></u> с б г	
Client	Huchor	7				_Servic	e Request	K21		$() \uparrow$		2
Received: 6	18/21	Opened: _	6[18]	<u>21</u> By	: <u>P</u>]	(Jnloaded:	6/1	8/21	_ By:	PJ	
1. Samples we	ere received via?	USPS	Fed Ex	UPS	DH	L	PDX	Cour	rier) Ha	nd Deli	vered	
Samples we	ere received in: (cir	rcle) (Ca	poler Be	x	Envelope		Other				NA	
	ly seals on coolers? /ere custody seals i	~	NA) Y N Y N	•	how many					Y	Ъī	
	rature Blank prese			- 7			ed and dated		e column belo	-	N	
-	ne temperature of a									w.		
	s received within th				am me coo	ivi, nota		unin Sa	NA	$\langle n \rangle$	N	
	ney received on ice	-	-	-	he cooler #	below a	nd notify the	e PM.	NA	Y	N	}
	sue samples were			ly Thawed	Thawed		ne nonry un			•	Ś	/
••	•											<u> </u>
		19.002004.01 20.002004.01				2010 () 2010 ()	PM					
Temp Blank	Sample Temp	IR Gun	Cooler #/COC	D/NA)	Out of indicate v		Notifie If out of		Tracking	Numbe	r NA	Filed
	5.7	1207				AND ADD TO BE A						
					- . .							
					<u></u>							
	<u> </u>				STATUS AND AND AND AND AND AND AND AND AND AND							
	terial: Inserts (-	Packs (W	et Ice)Dr	Ice S	Sleeves			~		
	dy papers properly		•						NA	$\langle \mathbf{y} \rangle$	Ν	
	les received in goo mple labels comple			- 10					NA	X	N	
	ple labels and tags			c.) ?					NA NA	X	N N	
	priate bottles/conta			the tests in	dicated?				NA	- M	N	
	H-preserved bottles) Indica	ta in tha tab	la halow		X		
	vials received with					тани	ie in me tuo	ie deidw	NA	Ŷ	N	
14. Was C12/R		iour neauspace	c: maicale in me	iadie deidi	<i>N</i> .					Y	N	
14. was C12/K									(NA)	Y	N	Andress
Sa	mple ID on Bott	le	Sai	nple ID or	n COC	复重论			Identified t	w:		
					<u> </u>	<u></u>			<u></u>			<u> </u>
												····
·												
			Bottle Cou	nt Head				Volume	Reagent L	ot	Section 1	
	Sample ID		Bottle Typ	e space	Broke	<u>भ ि</u>	Reagent	added	Number		nitials	Time
										 		

	0000	DIVIC		Ireefen	CODDO	Inditinet		IIIIIIIIIII	. E WHE
						[į
			1				Í		1
						1		1	1
						· · · · · · · · · · · · · · · · · · ·	t		r
						[1
						1			2
								ļ	
						1	1		ſ
						ł	{		i
]					Ł			i
						L			
									i i
							-	1	i
	L.					k			i i
						A			

Notes, Discrepancies, Resolutions:_____

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 11 of 32

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/07/21 16:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-17-1 K2107116-001	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	105	ug/L	2.5	0.5	5	07/19/21 13:49	06/24/21	
Lithium	200.8	695	ug/L	0.50	0.50	5	07/19/21 13:49	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/07/21 16:00
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-3-1 K2107116-002	Basis: NA

	Analysis							Date	0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	3.0	ug/L	2.5	0.5	5	07/19/21 13:53	06/24/21	
Lithium	200.8	518	ug/L	0.50	0.50	5	07/19/21 13:53	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2	2107116
Project:	Green County/201114-01.05 Task 02	Date Collected: 06	6/07/21 16:00
Sample Matrix:	Water	Date Received: 06	5/18/21 12:30
Sample Name: Lab Code:	GRC-COL-4-1 K2107116-003	Basis: NA	A

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	13.6	ug/L	2.5	0.5	5	07/19/21 13:58	06/24/21	
Lithium	200.8	650	ug/L	0.50	0.50	5	07/19/21 13:58	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/07/21 20:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-3-2 K2107116-004	Basis:	NA

	Analysis							Date	0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	7.9	ug/L	2.5	0.5	5	07/19/21 14:00	06/24/21	
Lithium	200.8	689	ug/L	0.50	0.50	5	07/19/21 14:00	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/07/21 20:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-4-2 K2107116-005	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	10.6	ug/L	2.5	0.5	5	07/19/21 14:05	06/24/21	
Lithium	200.8	695	ug/L	0.50	0.50	5	07/19/21 14:05	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/08/21 10:30
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-17-3 K2107116-006	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	73.8	ug/L	2.5	0.5	5	07/19/21 14:06	06/24/21	
Lithium	200.8	708	ug/L	0.50	0.50	5	07/19/21 14:06	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107116	
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/08/21 10:30	
Sample Matrix:	Water	Date Received: 06/18/21 12:30	
Sample Name: Lab Code:	GRC-COL-3-3 K2107116-007	Basis: NA	

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	7.0	ug/L	2.5	0.5	5	07/19/21 14:08	06/24/21	
Lithium	200.8	692	ug/L	0.50	0.50	5	07/19/21 14:08	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/08/21 10:30
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-4-3 K2107116-008	Basis:	NA

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	5.6	ug/L	2.5	0.5	5	07/19/21 14:09	06/24/21	
Lithium	200.8	683	ug/L	0.50	0.50	5	07/19/21 14:09	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/08/21 16:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-3-4 K2107116-009	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	7.9	ug/L	2.5	0.5	5	07/19/21 14:11	06/24/21	
Lithium	200.8	707	ug/L	0.50	0.50	5	07/19/21 14:11	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/08/21 16:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-4-4 K2107116-010	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	6.5	ug/L	2.5	0.5	5	07/19/21 14:13	06/24/21	
Lithium	200.8	723	ug/L	0.50	0.50	5	07/19/21 14:13	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/09/21 12:45
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-17-5 K2107116-011	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	61.6	ug/L	2.5	0.5	5	07/19/21 14:14	06/24/21	
Lithium	200.8	734	ug/L	0.50	0.50	5	07/19/21 14:14	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/09/21 12:45
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-3-5 K2107116-012	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	11.7	ug/L	2.5	0.5	5	07/19/21 14:16	06/24/21	
Lithium	200.8	703	ug/L	0.50	0.50	5	07/19/21 14:16	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/09/21 12:45
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-4-5 K2107116-013	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	6.9	ug/L	2.5	0.5	5	07/19/21 14:17	06/24/21	
Lithium	200.8	771	ug/L	0.50	0.50	5	07/19/21 14:17	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/10/21 13:15
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-17-6 K2107116-014	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	49.1	ug/L	2.5	0.5	5	07/19/21 14:19	06/24/21	
Lithium	200.8	717	ug/L	0.50	0.50	5	07/19/21 14:19	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107116
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/10/21 13:15
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-3-6 K2107116-015	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	12.6	ug/L	2.5	0.5	5	07/19/21 14:24	06/24/21	
Lithium	200.8	723	ug/L	0.50	0.50	5	07/19/21 14:24	06/24/21	

Analytical ReportClient:Anchor QEA, LLCService Request:K2107116Project:Green County/201114-01.05 Task 02Date Collected:NASample Matrix:WaterDate Received:NASample Name:Method BlankBasis:NALab Code:KQ2111389-01Collected:NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	ug/L	0.50	0.09	1	07/19/21 13:46	06/24/21	
Lithium	200.8	ND U	ug/L	0.10	0.10	1	07/19/21 13:46	06/24/21	

QA/QC Report

Client:	Anchor QEA, LI	LC				Service Request	: K2107	116		
Project	Green County/20	01114-01.05	Task 02			Date Collected	: 06/07/2	21		
Sample Matrix:	Water					Date Received	: 06/18/2	21		
						Date Analyzed	: 07/19/2	21		
Replicate Sample Summary										
Dissolved Metals										
Sample Name:	GRC-COL-INF	-MW-17-1				Units	ug/L			
Lab Code:	K2107116-001					Basis	: NA			
	Analysis			Sample	Duplicate Sample KQ2111389-03					
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit		
Arsenic	200.8	2.5	0.5	105	103	104	2	20		
Lithium	200.8	0.50	0.50	695	688	692	1	20		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Anchor QEA, LL	С				Service Request	K2107	116		
Project	Green County/20	1114-01.05	Task 02			Date Collected	06/07/2	21		
Sample Matrix:	Water					Date Received	06/18/2	21		
						Date Analyzed	07/19/2	21		
Replicate Sample Summary										
Dissolved Metals										
Sample Name:	GRC-COL-3-1					Units	: ug/L			
Lab Code:	K2107116-002					Basis	: NA			
					Duplicate Sample					
	Analysis			Sample	KQ2111389-05					
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit		
Arsenic	200.8	2.5	0.5	3.0	2.8	2.9	7	20		
Lithium	200.8	0.50	0.50	518	533	526	3	20		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Anchor QEA, LLC		Servic	e Request:	K2107116
Project:	Green County/201114-01.05 7	Task 02	Date (Collected:	06/07/21
Sample Matrix:	Water		Date I	Received:	06/18/21
			Date A	Analyzed:	07/19/21
			Date I	Extracted:	06/24/21
		Matrix Spike Su	mmary		
		Dissolved Mo			
Sample Name:	GRC-COL-INF-MW-17-1			Units:	ug/L
Lab Code:	K2107116-001			Basis:	NA
Analysis Method:	200.8				
Prep Method:	EPA CLP ILM04.0				
		Matrix Spike			
		KQ2111389-04			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits

155

756

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

105

695

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Arsenic

Lithium

100

122 #

50.0

50.0

70-130

70-130

QA/QC Report

Client:	Anchor QEA, LLC		Service	Request:	K2107116
Project:	Green County/201114-01.05 T	ask 02	Date Co	ollected:	06/07/21
Sample Matrix:	Water		Date Ro	eceived:	06/18/21
			Date A	nalyzed:	07/19/21
			Date Ex	stracted:	06/24/21
		Matrix Spike Sur	nmary		
		Dissolved Met	·		
Sample Name:	GRC-COL-3-1			Units:	ug/L
Lab Code:	K2107116-002			Basis:	NA
Analysis Method:	200.8				
Prep Method:	EPA CLP ILM04.0				
		Matrix Spike			
		KQ2111389-06			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits

57.6

570

50.0

50.0

109

103 #

70-130

70-130

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

3.0

518

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Arsenic

Lithium

QA/QC Report

Client:Anchor QEA, LLCProject:Green County/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2107116 **Date Analyzed:** 07/19/21

Lab Control Sample Summary Dissolved Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2111389-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	200.8	51.3	50.0	103	85-115
Lithium	200.8	48.4	50.0	97	85-115

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**:+1 360 577 7222 **F**:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K2107117

July 21, 2021

Masa Kanematsu Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

RE: Green County / 201114-01.05 Task 02

Dear Masa,

Enclosed are the results of the sample(s) submitted to our laboratory June 18, 2021 For your reference, these analyses have been assigned our service request number **K2107117**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

Mark Harris Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**: +1 360 577 7222 **F**: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms Qualifiers State Certifications, Accreditations, And Licenses Case Narrative Chain of Custody Metals

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 4 of 30

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 30

Client:Anchor QEA, LLCProject:Green CountySample Matrix:Water

Service Request: K2107117 Date Received: 06/18/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level II requested by the client.

Sample Receipt:

Thirteen water samples were received for analysis at ALS Environmental on 06/18/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

<u>Metals:</u>

No significant anomalies were noted with this analysis.

noe D. Oan

Approved by

Date

07/21/2021

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 30

Chain of Custody Pocord & Laboratory Analysis Poguast

 \mathcal{O}

Ch	iain of Custc	ody Record &	Laborato	ry Ana	lysis Re	equ	est														k] [2107117
Labor	ratory Number: 5	503-972-5019											F	Paran	meter	/\$				19.13 A.1	144, 1, 1, 1, 1 •	1, 1, A.	A & ANCHOR
	Date:		6/18/2021				poq		T			T		['									QEA 2000
	Project Name:		Green County		1		Met							'									Jessica Goin
	Project Number:	20*	1114-01.05 Tasl	k 02			ved,																6720 SW Macadam Ave
f	Project Manager.	1	Masa Kanemats	÷U	1	ŝ	lisso							'									Suite 125
	Phone Number:	503-972-	-5001 (Masa Ka	nematsu)	, 1	tain	(م 1							1	'								Portland OR 97219
Sh	nipment Method:		ALS Carrier	· · · · ·		Containers	Arsenic, Lithium (dissolved, Method 200.8)							'									
Line	Field 5		Collecti	ion	Matrix	No. of	a ic, I	3						1 '	'								
Line	rieiu a	ample ID	Date	Time	Matrix	Ŝ	Arse							<u> </u>	!								Comments/Preservation
1	GRC-COL-4-6		6/10/2021	13:15	Water	1	Х																HNO₃ preserved, filtered
2	GRC-COL-INF-MW	N-17-7	6/11/2021	14:00	Water	1	Х	T		1					\square							П	HNO ₃ preserved, filtered
3	GRC-COL-3-7		6/11/2021	14:00	Water	1	X	Ì				1		\square									HNO ₃ preserved, filtered
4	GRC-COL-4-7		6/11/2021	14:00	Water	1	X	Ī	1	1		1					Π						HNO ₃ preserved, filtered
5	GRC-COL-INF-MW	N-17-8	6/13/2021	13:50	Water	1	X		T	\square				\square									HNO ₃ preserved, filtered
6	GRC-COL-3-8		6/13/2021	13:50	Water	1	X	1		\square												П	HNO₃ preserved, filtered
7	GRC-COL-4-8		6/13/2021	13:50	Water	1	X		t	1													HNO ₃ preserved, filtered
8	GRC-COL-INF-MW	N-17-9	6/8/2021	16:00	Water	1	X	T	t	1													HNO3 preserved, filtered
9	GRC-COL-3-9		6/8/2021	16:00	Water	1	X	\square	T	\square												Π	HNO ₃ preserved, filtered
10	GRC-COL-4-9	· · · ·	6/8/2021	16:00	Water	1	X	\square	1	1												T	HNO ₃ preserved, filtered
11	GRC-COL-INF-MW	N-17-10	6/9/2021	15:00	Water	1	X	t	T	1					,,								HNO3 preserved, filtered
12	GRC-COL-3-10		6/9/2021	15:00	Water	1	X	t	1					[]									HNO ₃ preserved, filtered
13	GRC-COL-4-10	·	6/9/2021	15:00	Water	1	х	T		1													HNO ₃ preserved, filtered
14					[]			\square	1								\square					Ī	· · · · · · · · · · · · · · · · · · ·
15	í				1				1														
		nalytes with standard		***************************************															·				
		imits : As (<2 ug/L). F	or Lithium, plea	se use Met	hod 200.8 f	ior be	tter de	etection	n limit	if possi	ble. R	Report	require	ment	Type I	I (PDF	& csv 1	files)					
Relinqu	uished by:			Company	ſ.							Recei	ived by	r.							C	lomp	any:
	· · · · · · · · · · · · · · · · · · ·	a Kanematsu		<u></u>		.ncho	r QEA																
Signatu	ure/Print Name:			Date/Tim	ie:							Signa	ature/P	rint N	ame:						D)ate/	Time:
			5 5		6/1	18/20	21 9:0)0					******										
Relinqu	uished by:			Company	y:					1		Recei	ived by	/:			······				C	omp	any:
																							······
	ure/Print Name:			Date/Tim								Signa	ature/Pi	rint N	ame:						D)ate/	Time:
Ar	ervy:	Tanea	6	1181	121		12	23	0														

Distribution: A copy will be made for the laboratory and client. The Project file will retain the original.

Page_____of___2__

									PM	U[#
	A (Cooler Receipt	and Preser	rvation Form		6	\neg 1.		0]
Client	Huchor	2			Service Reque	st K21	$\underline{0}$	+1		
Received:	118/21	Opened: _	6/18/21	_By:	Unloaded	1: <u>6/ 18</u>	121	By:	PJ	
1. Samples we	ere received via?	USPS	Fed Ex U	PS DI	HL PDX	Couri	er) Ha	und Deli	vered	
Samples we	ere received in: (cir	rcle) C	ooler Box	Envelope	Other				NA	
3. Were custod	ly seals on coolers?	? (NA) Y N H	f yes, how man	y and where?					
If present, w	ere custody seals i	ntact?	Y N H	present, were	they signed and da	ted?		Y	Ν	
-	rature Blank prese		\smile	•	e temperature in th			w:		
		-	e sample bottle containe		oler; notate in the	column "Sam		m		
-		-	cified temperature range				NA	(\underline{v})	N	`
	-	-	as collected? If not, no		-	the PM.	NA	Y	C)
If applicable, tis	sue samples were	received:	Frozen Partially Tha	wed Thawe	rd -					
			the court courters	, in any contraction a	usion di succión d	M Server 1 - St				
Temp Blank				Out of	ftemp No	lified		10 20 00 00 00 00 00 00 00 00 00 00 00 00	- 114	
	Sample Temp	IR Gun TRO2	Cooler #/COC ID (NA) indicate		of temp	Tracking	NUMDe	<u>r na</u>	Filed
	2.6	4RU C					<u> </u>			
L										
		Contraction of the local division of the loc	bble Wrap Gel Packs	Wet Ice D	ry Ice Sleeves _			19		
	dy papers properly						NA	Ø	N	
•	les received in goo mple labels comple	•	noroken) s, preservation, etc.)?				NA NA	6	N N	
	ple labels and tags		•				NA	$\overline{\mathfrak{O}}$	N	
11. Were appro	opriate bottles/cont	ainers and vol	umes received for the te	sts indicated?			NA	Ð	N	
12. Were the pl	H-preserved bottles	s (see SMO GI	EN SOP) received at the	appropriate pH	1? Indicate in the	table below	NA	\odot	Ν	
		hout headspac	e? Indicate in the table	below.			NA	Y	N	
14. Was C12/R	les negative?						NA	Y	N	
Sa	mple ID on Bott	 	Sample	ID on COC		or of the second	Identified	hu		
			<u>ereseres ounpro</u>				100101100	<u>MJ • 2000</u>		
L					· · · · · · · · · · · · · · · · · · ·					انىسىنىيە بىيىسىيى
				Head-		Volume	Reagent			A.
	Sample ID		Bottle Type	space Broke	pH Reagent	added	Numbe	r nalist	Initials	Time
L]

Notes, Discrepancies, Resolutions:_____

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 11 of 30

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/10/21 13:15
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-4-6 K2107117-001	Basis: NA

	Analysis							Date	-
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	7.1	ug/L	2.5	0.5	5	07/19/21 14:32	06/24/21	
Lithium	200.8	702	ug/L	0.50	0.50	5	07/19/21 14:32	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/11/21 14:00
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-17-7 K2107117-002	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	44.1	ug/L	2.5	0.5	5	07/19/21 14:37	06/24/21	
Lithium	200.8	730	ug/L	0.50	0.50	5	07/19/21 14:37	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/11/21 14:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-3-7 K2107117-003	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	16.0	ug/L	2.5	0.5	5	07/19/21 14:41	06/24/21	
Lithium	200.8	717	ug/L	0.50	0.50	5	07/19/21 14:41	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/11/21 14:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-4-7 K2107117-004	Basis:	NA

	Analysis		TT 1 /					Date	0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	7.4	ug/L	2.5	0.5	5	07/19/21 14:43	06/24/21	
Lithium	200.8	718	ug/L	0.50	0.50	5	07/19/21 14:43	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/13/21 13:50
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-17-8 K2107117-005	Basis: NA

	Analysis							Date	0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	39.6	ug/L	2.5	0.5	5	07/19/21 14:52	06/24/21	
Lithium	200.8	732	ug/L	0.50	0.50	5	07/19/21 14:52	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/13/21 13:50
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-3-8 K2107117-006	Basis:	NA

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	20.1	ug/L	2.5	0.5	5	07/19/21 14:54	06/24/21	
Lithium	200.8	707	ug/L	0.50	0.50	5	07/19/21 14:54	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/13/21 13:50
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-4-8 K2107117-007	Basis: NA

	Analysis							Date	_
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	38.7	ug/L	2.5	0.5	5	07/19/21 14:56	06/24/21	
Lithium	200.8	742	ug/L	0.50	0.50	5	07/19/21 14:56	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/08/21 16:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-17-9 K2107117-008	Basis:	NA

	Analysis		•					Date	0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	36.8	ug/L	2.5	0.5	5	07/19/21 14:57	06/24/21	
Lithium	200.8	727	ug/L	0.50	0.50	5	07/19/21 14:57	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/08/21 16:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-3-9 K2107117-009	Basis:	NA

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	22.2	ug/L	2.5	0.5	5	07/19/21 14:59	06/24/21	
Lithium	200.8	724	ug/L	0.50	0.50	5	07/19/21 14:59	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/08/21 16:00
Sample Matrix:	Water	Date Received: 06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-4-9 K2107117-010	Basis: NA

	Analysis							Date	_
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	8.1	ug/L	2.5	0.5	5	07/19/21 15:00	06/24/21	
Lithium	200.8	707	ug/L	0.50	0.50	5	07/19/21 15:00	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/09/21 15:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-INF-MW-17-10 K2107117-011	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	33.2	ug/L	2.5	0.5	5	07/19/21 15:02	06/24/21	
Lithium	200.8	731	ug/L	0.50	0.50	5	07/19/21 15:02	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/09/21 15:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-3-10 K2107117-012	Basis:	NA

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	23.0	ug/L	2.5	0.5	5	07/19/21 15:04	06/24/21	
Lithium	200.8	718	ug/L	0.50	0.50	5	07/19/21 15:04	06/24/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107117
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/09/21 15:00
Sample Matrix:	Water	Date Received:	06/18/21 12:30
Sample Name: Lab Code:	GRC-COL-4-10 K2107117-013	Basis:	NA

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	7.9	ug/L	2.5	0.5	5	07/19/21 15:05	06/24/21	
Lithium	200.8	724	ug/L	0.50	0.50	5	07/19/21 15:05	06/24/21	

Analytical ReportClient:Anchor QEA, LLCService Request:K2107117Project:Green County/201114-01.05 Task 02Date Collected:NASample Matrix:WaterDate Received:NASample Name:Method BlankBasis:NALab Code:KQ2111390-01Collected:NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	ug/L	0.50	0.09	1	07/19/21 14:29	06/24/21	
Lithium	200.8	ND U	ug/L	0.10	0.10	1	07/19/21 14:29	06/24/21	

QA/QC Report

Client:	Anchor QEA, LL	С				Service Reques	t: K2107	/117	
Project	Green County/20	1114-01.05	Task 02			Date Collecte	d: 06/10/	21	
Sample Matrix:	Water					Date Receive	d: 06/18/	21	
						Date Analyze	d: 07/19/	21	
Replicate Sample Summary									
Dissolved Metals									
Sample Name:	GRC-COL-4-6					Uni	ts: ug/L		
Lab Code:	K2107117-001					Bas	is: NA		
					Duplicate Sample				
	Analysis			Sample	KQ2111390-03				
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit	
Arsenic	200.8	2.5	0.5	7.1	7.5	7.3	5	20	
Lithium	200.8	0.50	0.50	702	717	710	2	20	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Anchor QEA, LI	LC				Service Request	: K2107	117		
Project	Green County/20	01114-01.05	Task 02			Date Collected	: 06/11/2	21		
Sample Matrix:	Water					Date Received	: 06/18/2	21		
						Date Analyzed	: 07/19/2	21		
Replicate Sample Summary										
Dissolved Metals										
Sample Name:	GRC-COL-INF	-MW-17-7				Unit	s: ug/L			
Lab Code:	K2107117-002					Basi	s: NA			
	Analysis			Sample	Duplicate Sample KQ2111390-05					
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit		
Arsenic	200.8	2.5	0.5	44.1	43.6	43.9	1	20		
Lithium	200.8	0.50	0.50	730	728	729	<1	20		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Anchor QEA, LLC		Service	e Request:	K2107117
Project:	Green County/201114-01.05 7	Fask 02	Date C	collected:	06/10/21
Sample Matrix:	Water		Date R	eceived:	06/18/21
			Date A	nalyzed:	07/19/21
			Date E	xtracted:	06/24/21
		Matrix Spike Su	mmary		
		Dissolved Me	etals		
Sample Name:	GRC-COL-4-6			Units:	ug/L
Lab Code:	K2107117-001			Basis:	NA
Analysis Method:	200.8				
Prep Method:	EPA CLP ILM04.0				
		Matrix Spike			
		KQ2111390-04			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Lim

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	7.1	60.6	50.0	107	70-130
Lithium	702	749	50.0	92 #	70-130

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client:	Anchor QEA, LLC		Service	e Request:	K2107117
Project:	Green County/201114-01.05 Task	x 02	Date C	ollected:	06/11/21
Sample Matrix:	Water		Date R	eceived:	06/18/21
			Date A	nalyzed:	07/19/21
			Date E	xtracted:	06/24/21
		Matrix Spike Sur	nmary		
		Dissolved Met	tals		
Sample Name:	GRC-COL-INF-MW-17-7			Units:	ug/L
Lab Code:	K2107117-002			Basis:	NA
Analysis Method:	200.8				
Prep Method:	EPA CLP ILM04.0				
	I	Matrix Spike			
	К	Q2111390-06			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limit

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	44.1	95.6	50.0	103	70-130
Lithium	730	810	50.0	160 #	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client:Anchor QEA, LLCProject:Green County/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2107117 **Date Analyzed:** 07/19/21

Lab Control Sample Summary Dissolved Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2111390-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	200.8	52.6	50.0	105	85-115
Lithium	200.8	52.7	50.0	105	85-115

Service Request No:K2107406

Masa Kanematsu Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: Green County

Dear Masa,

Enclosed are the results of the sample(s) submitted to our laboratory June 25, 2021 For your reference, these analyses have been assigned our service request number **K2107406**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

Mark Harris Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 2 of 28

Client: Anchor QEA, LLC Project: Green County Sample Matrix: Water Service Request: K2107406 Date Received: 06/25/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Six water samples were received for analysis at ALS Environmental on 06/25/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

<u>Metals:</u>

No significant anomalies were noted with this analysis.

noe D. Dan

Approved by

Date

07/21/2021

SAMPLE DETECTION SUMMARY

LIENT ID: GRC-COL-INF-MW-17-11		Lab	ID: K2107	406-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	31.4		0.5	2.5	ug/L	200.8
Lithium, Dissolved	674		0.50	0.50	ug/L	200.8
LIENT ID: GRC-COL-3-11		Lab	ID: K2107	406-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	25.7		0.5	2.5	ug/L	200.8
Lithium, Dissolved	675		0.50	0.50	ug/L	200.8
LIENT ID: GRC-COL-4-11	Lab ID: K2107406-003					
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	11.1		0.5	2.5	ug/L	200.8
Lithium, Dissolved	656		0.50	0.50	ug/L	200.8
LIENT ID: GRC-COL-INF-MW-17-12		Lab	ID: K2107	406-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	39.5		0.5	2.5	ug/L	200.8
Lithium, Dissolved	671		0.50	0.50	ug/L	200.8
LIENT ID: GRC-COL-3-12		Lab	ID: K2107	406-005		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	33.8		0.5	2.5	ug/L	200.8
Lithium, Dissolved	683		0.50	0.50	ug/L	200.8
CLIENT ID: GRC-COL-4-12		Lab	ID: K2107	406-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	17.0		0.5	2.5	ug/L	200.8

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 5 of 28

Client:Anchor QEA, LLCProject:Green County/201114-01.05 Task 02

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
K2107406-001	GRC-COL-INF-MW-17-11	6/18/2021	1310
K2107406-002	GRC-COL-3-11	6/18/2021	1310
K2107406-003	GRC-COL-4-11	6/18/2021	1310
K2107406-004	GRC-COL-INF-MW-17-12	6/21/2021	1320
K2107406-005	GRC-COL-3-12	6/21/2021	1320
K2107406-006	GRC-COL-4-12	6/21/2021	1320

Chain of Custody Record & Laboratory Analysis Request

Signature/Print Name:

Cł	ain of Custo	dy Record 8	k Laborato	ry Ana	alysis R	equ	est																<u>K2107406</u> X ANCHOR		
Labo	ratory Number: !	503-972-5019												Parai	meter	rs				11 11 11 11 1 	·. · · ·		A ANCHOR		
	Date:		6/25/2021]	poq																V QEA 200		
	Project Name:		Green County	/			Met																Jessica Goin		
	Project Number:	20	01114-01.05 Tas	k 02]	ved,																6720 SW Macadam Ave		
	Project Manager.		Masa Kanemat	su		1 2	lisso																Suite 125		
	Phone Number:	er: 503-972-5001 (Masa Kanematsu)		503-972-5001 (Masa Kanematsu)		503-972-5001 (Masa Kanematsu)		l ii	р) Е																Portland OR 97219
SI	nipment Method:		ALS Carrier			of Containers	ithiu																		
		Collection				L L L L L L L L L L L L L L L L L L L					1														
Line	Field S	ample ID	Date	Time	Matrix	°.	Arsenic, Lithium (dissolved, Method 200 8)																Comments/Preservation		
1	GRC-COL-INF-MV	V-17-11	6/18/2021	13:10	Water	1	X		1			1				1						1	HNO3 preserved, filtered		
2	GRC-COL-3-11		6/18/2021	13:10	Water	1	X	1	1				1	_	1	Ī		Ī				T	HNO ₃ preserved, filtered		
3	GRC-COL-4-11		6/18/2021	13:10	Water	1	X	1	1			1		[1								HNO ₃ preserved, filtered		
4	GRC-COL-INF-MV	V-17-12	6/21/2021	13:20	Water	1	X	Γ	1		1	1											HNO ₃ preserved, filtered		
5	GRC-COL-3-12	·	6/21/2021	13:20	Water	1	X																HNO ₃ preserved, filtered		
6	GRC-COL-4-12		6/21/2021	13:20	Water	1	X																HNO ₃ preserved, filtered		
7												Τ			Ι										
8								Ι		Ι															
9																									
10																									
1 1													ŀ												
12																									
13																									
14																									
15																									
Notes:	Please analyze all a				**************************************	·····						***			T		<u>.</u>	<i>6</i> 1							
		mits : As (<2 ug/L).	For Lithium, plea			for de	πer ae	rection	s limit	it poss	Die.				: iype		& CSV	nies)							
Relinq	uished by:			Compan								Recei	ived by				1					Com	ipany:		
		a Kanematsu				ncho	r QEA					Ľ	0 l				\sqrt{c}	m	9				-2>		
Signature/Print Name: Date/Time:					ł	sture/F				Ā					,	/Time:									
6/25/2021 9:00				Ľ	er	\sim	4	L	lor	12	S		6	17	25/21 1335										
Relinq	Relinquished by: Company:				}	Recei	ved by	/:								Com	ipany:								
F											1	1													

Distribution: A copy will be made for the laboratory and client. The Project file will retain the original.

Date/Time:

Date/Time:

Signature/Print Name:

			.			_			рм	H
	A (Cooler Recei	pt and						
Client	Ancho	<u>e</u>	A . A		Servic	ce Request K21_(07406	2		
Received:	6/25/21	Opened: _	6/25/2	<u>/</u> By:	<u> </u>	Unloaded:	-25-21	_ By:	PJ	
1. Samples we	ere received via?	USPS	Fed Ex	UPS	DHL	PDX Con	urier Ha	nd Deliv	vered	
2. Samples we	ere received in: (cir	rcle) (C	ooler Box	·	Envelope	Other	- Contractor and a second second	(NA	
3. Were custod	ly seals on coolers?	?	NA Y N	If yes,	how many and wh	ere?			The second second second second second second second second second second second second second second second se	
If present, w	ere custody seals i	ntact?	Y N	If press	ent, were they sign	ed and dated?		Y	N	
4. Was a Tempe	rature Blank prese	nt in cooler?	NA (Y) N	If yes,	notate the tempera	ture in the appropria	ate column belov	w:		
If no, take th	ne temperature of a	representativo	e sample bottle cont	-	-	ate in the column "S				
5. Were sample	s received within th	ne method spe	cified temperature i	anges?			NA	(\mathbf{Y})	N	
•		•	as collected? If no	-	ne cooler # below a	and notify the PM.	(NA)	Y	N	
	sue samples were	-	rozen Partially		Thawed	······································				
· · ·	•	t	-							
						PM	2942 X - 2 - 2 12342 X - 2 - 2 - 2	anin 2012. Statistics		
Temp Blank	Sample Temp	IR Gun	Cooler #/COC ID	/ NA	Out of temp indicate with "X"	Notified If out of temp	Tracking	Number		Filed
4.7	Comple Temp	TROI		LER ENGON 25		n out of temp	IIEVANIS	TTUILIDE		
		Herr								
									·····	
······										
					And State and the second second second second second second second second second second second second second s					
6. Packing ma	aterial: Inserts	Baggies Bu	bble Wrap Gel Po	ucks We	et Ice) Dry Ice	Sleeves				
7. Were custo	dy papers properly	filled out (ink	, signed, etc.)?				NA	Ý	Ν	
8. Were samp	les received in goo	d condition (u	nbroken)				NA	8	Ν	
			s, preservation, etc.)?			NA		N	
	ple labels and tags	-					NA	6	N	
	-		umes received for the				NA	\odot	N	
•	-			••	• •	ate in the table below		\odot	N	
		hout headspac	c? Indicate in the t	able below	٧.		(NA)	Y	N	
14. Was C12/R	tes negative?						(NÁ)	Y	N	
	mple ID on Bott		Sel Sam	ple ID on			Identified I	1		
				10 01			- MONUNUUU I	• •• ••	<u>na je predu obje</u> lje L	<u></u>
······										

L			<u> </u>							

Sample ID	Bottle Count Bottle Type	Head- space	Broke	pН	Reagent	Volume added	Reagent Lot Number	Initials	Time

Notes, Discrepancies, Resolutions:_____

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 9 of 28

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 10 of 28

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client:	Anchor QEA, LLC
Project:	Green County/201114-01.05 Task 02

Service Request: K2107406

Sample Name:	GRC-COL-INF-MW-17-11	Date Collected: 06/18/21
Lab Code:	K2107406-001	Date Received: 06/25/21
Sample Matrix:	Water	

Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-3-11 K2107406-002 Water		Date Collected: 06/18/21 Date Received: 06/25/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-4-11 K2107406-003 Water		Date Collected: 06/18/21 Date Received: 06/25/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-INF-MW-17-12 K2107406-004 Water		Date Collected: 06/21/21 Date Received: 06/25/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-3-12 K2107406-005 Water		Date Collected: 06/21/21 Date Received: 06/25/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE

Analyst Summary report

Client:Anchor QEA, LLCProject:Green County/201114-01.05 Task 02

Service Request: K2107406

Sample Name:GRC-COL-4-12Lab Code:K2107406-006Sample Matrix:Water

Date Collected: 06/21/21 **Date Received:** 06/25/21

Analysis Method 200.8 Extracted/Digested By ABOYER Analyzed By RMOORE

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 15 of 28

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 16 of 28

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107406
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/18/21 13:10
Sample Matrix:	Water	Date Received: 06/25/21 13:35
Sample Name: Lab Code:	GRC-COL-INF-MW-17-11 K2107406-001	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	31.4	ug/L	2.5	0.5	5	07/19/21 16:19	07/01/21	
Lithium	200.8	674	ug/L	0.50	0.50	5	07/19/21 16:19	07/01/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107406
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/18/21 13:10
Sample Matrix:	Water	Date Received:	06/25/21 13:35
Sample Name: Lab Code:	GRC-COL-3-11 K2107406-002	Basis:	NA

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	25.7	ug/L	2.5	0.5	5	07/19/21 16:24	07/01/21	
Lithium	200.8	675	ug/L	0.50	0.50	5	07/19/21 16:24	07/01/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107406
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/18/21 13:10
Sample Matrix:	Water	Date Received:	06/25/21 13:35
Sample Name: Lab Code:	GRC-COL-4-11 K2107406-003	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	11.1	ug/L	2.5	0.5	5	07/19/21 16:26	07/01/21	
Lithium	200.8	656	ug/L	0.50	0.50	5	07/19/21 16:26	07/01/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107406
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/21/21 13:20
Sample Matrix:	Water	Date Received: 06/25/21 13:35
Sample Name: Lab Code:	GRC-COL-INF-MW-17-12 K2107406-004	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	39.5	ug/L	2.5	0.5	5	07/19/21 16:30	07/01/21	
Lithium	200.8	671	ug/L	0.50	0.50	5	07/19/21 16:30	07/01/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107406
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/21/21 13:20
Sample Matrix:	Water	Date Received:	06/25/21 13:35
Sample Name: Lab Code:	GRC-COL-3-12 K2107406-005	Basis:	NA

	Analysis							Date	_
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	33.8	ug/L	2.5	0.5	5	07/19/21 16:32	07/01/21	
Lithium	200.8	683	ug/L	0.50	0.50	5	07/19/21 16:32	07/01/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107406
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/21/21 13:20
Sample Matrix:	Water	Date Received:	06/25/21 13:35
Sample Name: Lab Code:	GRC-COL-4-12 K2107406-006	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	17.0	ug/L	2.5	0.5	5	07/19/21 16:34	07/01/21	
Lithium	200.8	667	ug/L	0.50	0.50	5	07/19/21 16:34	07/01/21	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 23 of 28

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 24 of 28

Analytical ReportClient:Anchor QEA, LLCService Request:K2107406Project:Green County/201114-01.05 Task 02Date Collected:NASample Matrix:WaterDate Received:NASample Name:Method BlankBasis:NAKQ2111981-01KQ2111981-01KQ2111981-01KCR

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	ug/L	0.50	0.09	1	07/19/21 15:54	07/01/21	
Lithium	200.8	ND U	ug/L	0.10	0.10	1	07/19/21 15:54	07/01/21	

QA/QC Report

Client:	Anchor QEA, LLC		Service	Request:	K2107406				
Project:	Green County/201114-01.05 T	°ask 02	Date C	ollected:	06/18/21				
Sample Matrix:	Water		Date R	eceived:	06/25/21				
			Date A	nalyzed:	07/19/21				
			Date E	xtracted:	07/1/21				
		Matrix Spike Su	mmary						
Dissolved Metals									
Sample Name:	GRC-COL-INF-MW-17-11			Units:	ug/L				
Lab Code:	K2107406-001			Basis:	NA				
Analysis Method:	200.8								
Prep Method:	EPA CLP ILM04.0								
		Matrix Spike							
		KQ2111981-06							
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits				

85.1

725

50.0

50.0

107

101 #

70-130

70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

31.4

674

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Arsenic

Lithium

QA/QC Report

Client:	Anchor QEA, LI	LC				Service Request	: K2107	406		
Project	Green County/20	01114-01.05	Task 02			Date Collected	: 06/18/2	21		
Sample Matrix:	Water					Date Received	: 06/25/2	21		
						Date Analyzed	: 07/19/2	21		
Replicate Sample Summary										
Dissolved Metals										
Sample Name:	GRC-COL-INF	-MW-17-11				Units	ug/L			
Lab Code:	K2107406-001					Basis	: NA			
					Duplicate Sample					
	Analysis			Sample	KQ2111981-05					
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit		
Arsenic	200.8	2.5	0.5	31.4	31.3	31.4	<1	20		
Lithium	200.8	0.50	0.50	674	677	676	<1	20		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:Anchor QEA, LLCProject:Green County/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2107406 **Date Analyzed:** 07/19/21

Lab Control Sample Summary Dissolved Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2111981-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	200.8	51.8	50.0	104	85-115
Lithium	200.8	49.7	50.0	99	85-115

Service Request No:K2107408

Masa Kanematsu Anchor QEA, LLC 6720 SW Macadam Avenue Suite 125 Portland, OR 97219

Laboratory Results for: Green County

Dear Masa,

Enclosed are the results of the sample(s) submitted to our laboratory June 25, 2021 For your reference, these analyses have been assigned our service request number **K2107408**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

Mark Harris Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 2 of 28

Client: Anchor QEA, LLC Project: Green County Sample Matrix: Water Service Request: K2107408 Date Received: 06/25/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Six water samples were received for analysis at ALS Environmental on 06/25/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

<u>Metals:</u>

No significant anomalies were noted with this analysis.

noe D. Dan

Approved by

Date

07/21/2021

Page 3 of 28

SAMPLE DETECTION SUMMARY

CLIENT ID: GRC-COL-INF-MW-1-11		Lab	ID: K2107	408-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	1.6	J	0.5	2.5	ug/L	200.8
Cobalt, Dissolved	184		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-1-11		Lab	ID: K2107	408-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	1.5	J	0.5	2.5	ug/L	200.8
Cobalt, Dissolved	181		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-2-11		Lab	ID: K2107	408-003		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	1.0	J	0.5	2.5	ug/L	200.8
Cobalt, Dissolved	181		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-INF-MW-1-12		Lab	ID: K2107	408-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	1.1	J	0.5	2.5	ug/L	200.8
Cobalt, Dissolved	222		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-1-12		Lab	ID: K2107	408-005		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic, Dissolved	0.8	J	0.5	2.5	ug/L	200.8
Cobalt, Dissolved	185		0.05	0.10	ug/L	200.8
CLIENT ID: GRC-COL-2-12		Lab	ID: K2107	408-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
Cobalt, Dissolved	188		0.05	0.10	ug/L	200.8

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 5 of 28

Client:Anchor QEA, LLCProject:Green County/201114-01.05 Task 02

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
K2107408-001	GRC-COL-INF-MW-1-11	6/18/2021	1310
K2107408-002	GRC-COL-1-11	6/18/2021	1310
K2107408-003	GRC-COL-2-11	6/18/2021	1310
K2107408-004	GRC-COL-INF-MW-1-12	6/21/2021	1320
K2107408-005	GRC-COL-1-12	6/21/2021	1320
K2107408-006	GRC-COL-2-12	6/21/2021	1320

K2107408

Chain of Custody Record & Laboratory Analysis Request

.

	atory Number: 5	وستعاصا ساعتها بلاحت فالباد والانتقاص والمتحدين				<u> </u>			1997 - 1997 1997 - 1997				1	Parar	nete	rs		* * • • • • •	••• •••		• •		A SE ANCHOR
	Date:		6/25/2021			1	g		Ι	Ι						Ι	Ι			[1		V ANCHOR QEA
	Project Name:		Green County			1	Meth																Jessica Goin
	Project Number:	20)1114-01.05 Tasl	k 02			Arsenic, Cobalt (dissolved, Method 200.8)																6720 SW Macadam Ave
	Project Manager:		Masa Kanemats	iu		۲ ۲	ssolv										ĺ						Suite 125
	Phone Number:	503-972	2-5001 (Masa Ka	nematsu))	aj l	lt (d																Portland OR 97219
Sł	ipment Method:		ALS Carrier			Containers	Coba																
Line	Field S	ample ID	Collecti	ion	Matrix	5	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,															
Little	riciu Ja	inpie io	Date	Time	Watrix	No.	Arse 200					1											Comments/Preservation
1	GRC-COL-INF-MW	/-1-11	6/18/2021	13:10	Water	1	X																HNO₃ preserved, filtered
2	GRC-COL-1-11		6/18/2021	13:10	Water	1	X																HNO ₃ preserved, filtered
3	GRC-COL-2-11		6/18/2021	13:10	Water	1	X																HNO3 preserved, filtered
4	GRC-COL-INF-MW	/-1-12	6/21/2021	13:20	Water	1	X																HNO ₃ preserved, filtered
5	GRC-COL-1-12		6/21/2021	13:20	Water	1	X			L													HNO3 preserved, filtered
6	GRC-COL-2-12		6/21/2021	13:20	Water	1	X		l														HNO ₃ preserved, filtered
7									<u> </u>						L.,,								
8													Į										
9									L	ļ		Į				ļ				L			· · · · · · · · · · · · · · · · · · ·
10								ļ	ļ			<u> </u>											
11							L	[L								ļ			
12																ļ						<u> </u>	
13							<u> </u>	ļ	ļ							ļ							
14							<u> </u>	ļ				ļ						ļ	<u> </u>				
15	P-1		twee we all				L				L											L	
Notes:	Please analyze all an Desired reporting lit			*****								*****		Report	regui	rement	Type	II (PD	F & csi	r files)			
Relina	ished by:			Company	·····								ved by									Comp	220.11
		a Kanematsu		using ding		ncho	r QEA						~		······	1	40	0		·····	·		LS
Signati	ire/Print Name:			Date/Tim									ture/P			$\underline{\checkmark}$	Y		2			Date	<u>~></u> /Time:
- griati	a cyr ffar rwaraic.	27				25/20	121 0.0	0												ŕ	4		7
	6/25/2021 9:00							êr	<u> </u>	2	JČ	m	40		þ	$\not\models$	5/	21 1335					
Relinqu	iished by:			Company	<i>I</i> .							Recei	ved by	r:								Com	Dany:
											-										<u> </u>		
Signati	ire/Print Name:			Date/Tim	e:							Signa	ture/P	rint N	ame:							Date/	Time:

Distribution: A copy will be made for the laboratory and client. The Project file will retain the original.

			PM_MH
Cooler Receipt and Preservation Form		d	
Client Service Reques	t K210740	8	
Received: 6/25/21 Opened: 6/25/21 By: PJ Unloaded:		Ву:	PJ
1. Samples were received via? USPS Fed Ex UPS DHL PDX	(Courier)	Hand Deliv	ered
2. Samples were received in: (circle) Cooler Box Envelope Other	\bigcirc	(M
3. Were custody seals on coolers? (NA) Y N If yes, how many and where?			
If present, were custody seals intact? Y N If present, were they signed and date	ed?	Y	N
4. Was a Temperature Blank present in cooler? NA (Y) N If yes, notate the temperature in the	appropriate column	below:	
If no, take the temperature of a representative sample bottle contained within the cooler; notate in the co	olumn "Sample Tem	o":	
5. Were samples received within the method specified temperature ranges?	NA	(Y)	N
If no, were they received on ice and same day as collected? If not, notate the cooler # below and notify the	he PM.	D Y	N
If applicable, tissue samples were received: Frozen Partially Thawed Thawed			
Pi Antonio de Calendario de	v de la composition		
Temp Blank Sample Temp IR Gun Cooler #/COC ID / NA Indicate with "X" If out of		king Number	(NA) Filed
4.7 TROI			
	<u></u>		
6. Packing material: Inserts (Baggies) Bubble Wrap Gel Packs (Wet Ice) Dry Ice Sleeves _			
7. Were custody papers properly filled out (ink, signed, etc.)?	NA	\sim	Ν
8. Were samples received in good condition (unbroken)	NA	1	N
9. Were all sample labels complete (ie, analysis, preservation, etc.)?10. Did all sample labels and tags agree with custody papers?	N/ N/	<u> </u>	N N
11. Were appropriate bottles/containers and volumes received for the tests indicated?	N/	~	N
 Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the ta 		~	
 Were VOA vials received without headspace? Indicate in the table below. 		\sim	N
14. Was C12/Res negative?	NA R	-	N N
	<u>W</u>		in

Sample ID on Bottle	Sample ID on COC	Identified by:

Sample ID	Bottle Count Bottle Type	Head- space	Broke	pН	Reagent	Volume added	Reagent Lot Number	Initials	Time
							·······		

Notes, Discrepancies, Resolutions:_____

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 9 of 28

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 10 of 28

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client:	Anchor QEA, LLC
Project:	Green County/201114-01.05 Task 02

Service Request: K2107408

Sample Name:	GRC-COL-INF-MW-1-11	Date Collected:	06/18/21
Lab Code:	K2107408-001	Date Received:	06/25/21
Sample Matrix:	Water		

Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-1-11 K2107408-002 Water		Date Collected: 06/18/21 Date Received: 06/25/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-2-11 K2107408-003 Water		Date Collected: 06/18/21 Date Received: 06/25/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-INF-MW-1-12 K2107408-004 Water		Date Collected: 06/21/21 Date Received: 06/25/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE
Sample Name: Lab Code: Sample Matrix:	GRC-COL-1-12 K2107408-005 Water		Date Collected: 06/21/21 Date Received: 06/25/21
Analysis Method 200.8		Extracted/Digested By ABOYER	Analyzed By RMOORE

Analyst Summary report

Client:Anchor QEA, LLCProject:Green County/201114-01.05 Task 02

Service Request: K2107408

Sample Name:GRC-COL-2-12Lab Code:K2107408-006Sample Matrix:Water

Date Collected: 06/21/21 **Date Received:** 06/25/21

Analysis Method 200.8 Extracted/Digested By ABOYER Analyzed By RMOORE

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 15 of 28

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 16 of 28

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107408
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/18/21 13:10
Sample Matrix:	Water	Date Received:	06/25/21 13:35
Sample Name: Lab Code:	GRC-COL-INF-MW-1-11 K2107408-001	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	1.6 J	ug/L	2.5	0.5	5	07/19/21 16:38	07/02/21	
Cobalt	200.8	184	ug/L	0.10	0.05	5	07/19/21 16:38	07/02/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107408
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/18/21 13:10
Sample Matrix:	Water	Date Received:	06/25/21 13:35
Sample Name: Lab Code:	GRC-COL-1-11 K2107408-002	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	1.5 J	ug/L	2.5	0.5	5	07/19/21 16:43	07/02/21	
Cobalt	200.8	181	ug/L	0.10	0.05	5	07/19/21 16:43	07/02/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107408
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/18/21 13:10
Sample Matrix:	Water	Date Received:	06/25/21 13:35
Sample Name: Lab Code:	GRC-COL-2-11 K2107408-003	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	1.0 J	ug/L	2.5	0.5	5	07/19/21 16:45	07/02/21	
Cobalt	200.8	181	ug/L	0.10	0.05	5	07/19/21 16:45	07/02/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request: K2107408
Project:	Green County/201114-01.05 Task 02	Date Collected: 06/21/21 13:20
Sample Matrix:	Water	Date Received: 06/25/21 13:35
Sample Name: Lab Code:	GRC-COL-INF-MW-1-12 K2107408-004	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	1.1 J	ug/L	2.5	0.5	5	07/19/21 16:50	07/02/21	
Cobalt	200.8	222	ug/L	0.10	0.05	5	07/19/21 16:50	07/02/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107408
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/21/21 13:20
Sample Matrix:	Water	Date Received:	06/25/21 13:35
Sample Name: Lab Code:	GRC-COL-1-12 K2107408-005	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	0.8 J	ug/L	2.5	0.5	5	07/19/21 16:51	07/02/21	
Cobalt	200.8	185	ug/L	0.10	0.05	5	07/19/21 16:51	07/02/21	

Analytical Report

Client:	Anchor QEA, LLC	Service Request:	K2107408
Project:	Green County/201114-01.05 Task 02	Date Collected:	06/21/21 13:20
Sample Matrix:	Water	Date Received:	06/25/21 13:35
Sample Name: Lab Code:	GRC-COL-2-12 K2107408-006	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	ug/L	2.5	0.5	5	07/19/21 16:53	07/02/21	
Cobalt	200.8	188	ug/L	0.10	0.05	5	07/19/21 16:53	07/02/21	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 23 of 28

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 24 of 28

Analytical ReportClient:Anchor QEA, LLCService Request:K2107408Project:Green County/201114-01.05 Task 02Date Collected:NASample Matrix:WaterDate Received:NASample Name:Method BlankBasis:NAKQ2111986-01KQ2111986-01KQ2111986-01KA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Arsenic	200.8	ND U	ug/L	0.50	0.09	1	07/19/21 16:35	07/02/21	
Cobalt	200.8	ND U	ug/L	0.020	0.009	1	07/19/21 16:35	07/02/21	

QA/QC Report

Client:	Anchor QEA, LLC		Service	Request:	K2107408
Project:	Green County/201114-01.05 Ta	ask 02	Date C	ollected:	06/18/21
Sample Matrix:	Water		Date R	eceived:	06/25/21
			Date A	nalyzed:	07/19/21
			Date E	xtracted:	07/2/21
		Matrix Spike Su	mmary		
		Dissolved Me	tals		
Sample Name:	GRC-COL-INF-MW-1-11			Units:	ug/L
Lab Code:	K2107408-001			Basis:	NA
Analysis Method:	200.8				
Prep Method:	EPA CLP ILM04.0				
		Matrix Spike			
		KQ2111986-04			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits

52.7

212

50.0

25.0

102

112 #

70-130

70-130

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

1.6 J

184

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Arsenic

Cobalt

QA/QC Report

Client:	Anchor QEA, L	LC				Service Reque	st: K2107	7408
Project	Green County/20	01114-01.05	Task 02			Date Collecte	d: 06/18/	21
Sample Matrix:	Water					Date Receive	d: 06/25/	21
						Date Analyze	d: 07/19/	21
			Replicate	e Sample Sun	nmary			
			-	solved Metal	•			
Sample Name:	GRC-COL-INF	-MW-1-11				Uni	its: ug/L	
Lab Code:	K2107408-001 Basis: NA							
	Analysis			Sample	Duplicate Sample KQ2111986-03			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Arsenic	200.8	2.5	0.5	1.6 J	1.5 J	1.6	6	20
Cobalt	200.8	0.10	0.05	184	181	183	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:Anchor QEA, LLCProject:Green County/201114-01.05 Task 02Sample Matrix:Water

Service Request: K2107408 **Date Analyzed:** 07/19/21

Lab Control Sample Summary Dissolved Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2111986-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	200.8	51.6	50.0	103	85-115
Cobalt	200.8	25.6	25.0	103	85-115